Solvable Dyson-Schwinger equations

Raimar Wulkenhaar

Mathematisches Institut der Westfälischen Wilhelms-Universität Münster

contributed to "Algebraic Structures in Perturbative Quantum Field Theory"

based on collaboration with

Harald Grosse, Erik Panzer, Alex Hock, Jörg Schürmann & Johannes Branahl

Introduction	
00000	

Blobbed topological recursion

Discussion

Introduction

- In March 1998 (shortly after I started as postdoc at CPT Marseille), a larger group of us attended a conference on noncommutative geometry in Vietri sul Mare (Italy).
- Alain Connes reported on a ground-breaking result by a physicist Dirk Kreimer who discovered in q-alg/9707029 that renormalisation in quantum field theory is encoded in a Hopf algebra.

Blobbed topological recursion

Discussion 00

Introduction

- In March 1998 (shortly after I started as postdoc at CPT Marseille), a larger group of us attended a conference on noncommutative geometry in Vietri sul Mare (Italy).
- Alain Connes reported on a ground-breaking result by a physicist Dirk Kreimer who discovered in q-alg/9707029 that renormalisation in quantum field theory is encoded in a Hopf algebra.
- Remarkably, this Hopf algebra is closely related to another Hopf algebra which emerges in the computation of the local index formula for transverse hypoelliptic operators [Connes-Moscovici 98].
- All participants understood that this is a development of greatest importance. In Marseille we stopped all other projects and tried to understand the results.

Quartic Kontsevich model

Blobbed topological recursion

Discussion 00

Overlapping divergences

• With Thomas Krajewski we understood the generic cases, but had problems with overlapping divergences.

Quartic Kontsevich model

Blobbed topological recursion

Discussion

Overlapping divergences

- With Thomas Krajewski we understood the generic cases, but had problems with overlapping divergences.
- Dirk accepted an invitation to Marseille for the end of May 1998. As a basis for discussion, Thomas and I made our notes available as arXiv:hep-th/9805098:

On Kreimer's Hopf algebra of Feynman graphs

T. Krajewski^a, R. Wulkenhaar^b

Centre de Physique Théorique, CNRS - Luminy, Case 907, 13288 Marseille Cedex 9, France

Received: 9 July 1998 / Revised version: 21 September 1998 / Published online: 19 November 1998

Abstract. We reinvestigate Kreimer's Hopf algebra structure of perturbative quantum field theories with a special emphasis on overlapping divergences. Kreimer first disentangles overlapping divergences into a linear combination of disjoint and nested ones and then tackles that linear combination by the Hopf algebra operations. We present a formulation where the Hopf algebra operations are directly defined on any type of divergence. We explain the precise relation to Kreimers Hopf algebra and obtain thereby a characterization of their primitive elements.

Quartic Kontsevich model

Blobbed topological recursion

Discussion

Overlapping divergences

- With Thomas Krajewski we understood the generic cases, but had problems with overlapping divergences.
- Dirk accepted an invitation to Marseille for the end of May 1998. As a basis for discussion, Thomas and I made our notes available as arXiv:hep-th/9805098:

On Kreimer's Hopf algebra of Feynman graphs

T. Krajewski^a, R. Wulkenhaar^b

Centre de Physique Théorique, CNRS - Luminy, Case 907, 13288 Marseille Cedex 9, France

Received: 9 July 1998 / Revised version: 21 September 1998 / Published online: 19 November 1998

Abstract. We reinvestigate Kreimer's Hopf algebra structure of perturbative quantum field theories with a special emphasis on overlapping divergences. Kreimer first disentangles overlapping divergences into a linear combination of disjoint and nested ones and then tackles that linear combination by the Hopf algebra operations. We present a formulation where the Hopf algebra operations are directly defined on any type of divergence. We explain the precise relation to Kreimers Hopf algebra and obtain thereby a characterization of their primitive elements.

Blobbed topological recursion

Discussion

Dyson-Schwinger equations

Dirk's e-mail from 13 May 1998

'It is actually so that the problem of overlapping divergences can be totally resolved using the construction as given in q-alg/9707029, though the paper is succinct and assumes that the reader digested the use of the Schwinger Dyson equation as indicated in Fig.5 in that paper. This needs reading of section 6 of my Habil Thesis (J.Knot Th.Ram.6 (1997) 479-581).'

Blobbed topological recursion

Discussion

Dyson-Schwinger equations

Dirk's e-mail from 13 May 1998

'It is actually so that the problem of overlapping divergences can be totally resolved using the construction as given in q-alg/9707029, though the paper is succinct and assumes that the reader digested the use of the Schwinger Dyson equation as indicated in Fig.5 in that paper. This needs reading of section 6 of my Habil Thesis (J.Knot Th.Ram.6 (1997) 479-581).'

I cannot contribute to the Hopf algebra of Feynman graphs and refer to talks by Walter, Alain, Thomas and others.

But I am happy to contribute to Dyson-Schwinger equations. It is true that I hadn't digested them in 1998. In the meantime they became my strongest tool ...

Blobbed topological recursion

Discussion 00

INSPIRE "f a Kreimer and t Dyson"

- D. Kreimer, "Dyson-Schwinger equations: Fix-point equations for quantum fields"
- O. Krüger and D. Kreimer, "Filtrations in Dyson-Schwinger equations: Next-to^{1}-leading log expansions systematically"

- A. Tanasa and D. Kreimer, "Combinatorial Dyson-Schwinger equations in noncommutative field theory"
- G. van Baalen, D. Kreimer, D. Uminsky and K. Yeats, "The QCD beta-function from global solutions to Dyson-Schwinger equations"

G. van Baalen, D. Kreimer, D. Uminsky and K. Yeats, "The QED beta-function from global solutions to Dyson-Schwinger equations"

- D. Kreimer, "Dyson Schwinger equations: From Hopf algebras to number theory"
- D. Kreimer and K. Yeats, "An Étude in non-linear Dyson-Schwinger Equations"
- C. Bergbauer and D. Kreimer, "Hopf algebras in renormalization theory: Locality and Dyson-Schwinger equations from Hochschild cohomology"

- D. Kreimer, "What is the trouble with Dyson-Schwinger equations?"
- D. J. Broadhurst and D. Kreimer, "Exact solutions of Dyson-Schwinger equations for iterated one loop integrals and propagator coupling duality"

Quartic Kontsevich model

Blobbed topological recursion

Discussion

Dyson-Schwinger equations

- ... are quantum equations of motion for Green functions in a QFT.
 - Can be graphically understood when collecting Feynman graph series of the same external structure into blobs:

Quartic Kontsevich model

Blobbed topological recursion

Discussion 00

Dyson-Schwinger equations

- ... are quantum equations of motion for Green functions in a QFT.
 - Can be graphically understood when collecting Feynman graph series of the same external structure into blobs:

 This graphical picture relies on perturbation theory. However, the equations between blobs can be rigorously derived without any reference to formal power series.

Dyson-Schwinger equations thus provide a non-perturbative definition of QFTs — provided we can solve these equations

- Difficulty: *n*-point function needs (*m*>*n*)-point function
- Can be resolved in QFT on finite-dim. approximations of noncommutative geometries (matrix models)

Free Euclidean fields on noncommutative geometries

Let H_N be the real vector space of self-adjoint $N \times N$ -matrices, and (E_1, \ldots, E_N) be (increasing) positive real numbers.

Theorem [Bochner 1933, Schur 1911]

For any inner product \langle , \rangle on H_N there exists a unique probability measure $d\mu_0$ on the dual space H'_N with

$$\exp\left(-\frac{1}{2}\langle M,M\rangle\right) = \int_{H_N'} d\mu_0(\Phi) \ e^{i\Phi(M)} \quad \forall M = (M_{kl}) \in H_N$$

Free Euclidean fields on noncommutative geometries

Let H_N be the real vector space of self-adjoint $N \times N$ -matrices, and (E_1, \ldots, E_N) be (increasing) positive real numbers.

Theorem [Bochner 1933, Schur 1911]

For any inner product \langle , \rangle on H_N there exists a unique probability measure $d\mu_0$ on the dual space H'_N with

$$\exp\left(-\frac{1}{2}\langle M, M\rangle\right) = \int_{H'_N} d\mu_0(\Phi) \ e^{i\Phi(M)} \quad \forall M = (M_{kl}) \in H_N \ .$$

Choose $\langle M, M' \rangle_E = \frac{1}{N} \sum_{k,l=1}^N \frac{M_{kl}M'_{lk}}{E_k + E_l}$ and corresponding $d\mu_{E,0}$

- Defines the free Euclidean scalar field on *N*-dimensional approximation of a noncommutative geometry.
- (E_1, \ldots, E_N) is truncated spectrum of the Laplacian.
- All moments can be described explicitly.

Blobbed topological recursion

Discussion 00

The Kontsevich model and its quartic analogue

3 The Kontsevich model
$$d\mu_{E,\lambda}(\Phi) = \frac{e^{-\frac{\lambda N}{3} \operatorname{Tr}(\Phi^3)} d\mu_{E,0}(\Phi)}{\int_{H'_N} e^{-\frac{\lambda N}{3} \operatorname{Tr}(\Phi^3)} d\mu_{E,0}(\Phi)}$$

- Computes intersection numbers of tautological characteristic classes on the moduli space $\overline{\mathcal{M}}_{g,n}$ of stable complex curves [Kontsevich 92].
- It is integrable via a relation (suggested by [Witten 91]) to the KdV hierarchy. Its moments obey topological recursion.

Blobbed topological recursion

Discussion

The Kontsevich model and its quartic analogue

3 The Kontsevich model
$$d\mu_{E,\lambda}(\Phi) = \frac{e^{-\frac{\lambda N}{3} \operatorname{Tr}(\Phi^3)} d\mu_{E,0}(\Phi)}{\int_{H'_N} e^{-\frac{\lambda N}{3} \operatorname{Tr}(\Phi^3)} d\mu_{E,0}(\Phi)}$$

- Computes intersection numbers of tautological characteristic classes on the moduli space $\overline{\mathcal{M}}_{g,n}$ of stable complex curves [Kontsevich 92].
- It is integrable via a relation (suggested by [Witten 91]) to the KdV hierarchy. Its moments obey topological recursion.

A quartic analogue
$$d\mu_{E,\lambda}(\Phi) = \frac{e^{-\frac{\lambda N}{4} \operatorname{Tr}(\Phi^4)} d\mu_{E,0}(\Phi)}{\int_{H'_N} e^{-\frac{\lambda N}{4} \operatorname{Tr}(\Phi^4)} d\mu_{E,0}(\Phi)}$$

 Although perturbatively far apart, we find very similar algebraic geometrical structures. Our solutions are exact in λ.

Quartic Kontsevich model

Blobbed topological recursion

Discussion

Equations of motion for quartic Kontsevich model

Fourier transform
$$\mathcal{Z}(M) := \int_{H'_N} d\mu_{E,\lambda}(\Phi) \ e^{i\Phi(M)}$$
 satisfies
• $-N(E_p - E_q) \sum_{k=1}^N \frac{\partial^2 \mathcal{Z}(M)}{\partial M_{pk} \partial M_{kq}} = \sum_{k=1}^N \left(M_{kp} \frac{\partial \mathcal{Z}(M)}{\partial M_{kq}} - M_{qk} \frac{\partial \mathcal{Z}(M)}{\partial M_{pk}} \right)$
• $\frac{1}{N} \frac{\partial \mathcal{Z}(M)}{\partial E_p} = \sum_{k=1}^N \frac{\partial^2 \mathcal{Z}(M)}{\partial M_{pk} \partial M_{kp}} + \mathcal{Z}(M) \int_{H'_N} d\mu_{E,\lambda}(\Phi) \frac{1}{N} \sum_{k=1}^N \Phi_{pk} \Phi_{kp}$

• They allow to express $\sum_{k=1}^{N} \frac{\mathcal{Z}(M)}{\partial M_{pk}\partial M_{kq}}$ in Dyson-Schwinger equations by fewer derivatives, i.e. of same or lower order.

Quartic Kontsevich model

Blobbed topological recursion

Discussion

Equations of motion for quartic Kontsevich model

Fourier transform
$$\mathcal{Z}(M) := \int_{H'_N} d\mu_{E,\lambda}(\Phi) \ e^{i\Phi(M)}$$
 satisfies

$$-N(E_p - E_q) \sum_{k=1}^N \frac{\partial^2 \mathcal{Z}(M)}{\partial M_{pk} \partial M_{kq}} = \sum_{k=1}^N \left(M_{kp} \frac{\partial \mathcal{Z}(M)}{\partial M_{kq}} - M_{qk} \frac{\partial \mathcal{Z}(M)}{\partial M_{pk}} \right)$$

$$\frac{1}{N} \frac{\partial \mathcal{Z}(M)}{\partial E_p} = \sum_{k=1}^N \frac{\partial^2 \mathcal{Z}(M)}{\partial M_{pk} \partial M_{kp}} + \mathcal{Z}(M) \int_{H'_N} d\mu_{E,\lambda}(\Phi) \frac{1}{N} \sum_{k=1}^N \Phi_{pk} \Phi_{kp}$$

- They allow to express $\sum_{k=1}^{N} \frac{\mathcal{Z}(M)}{\partial M_{pk}\partial M_{kq}}$ in Dyson-Schwinger equations by fewer derivatives, i.e. of same or lower order.
- Eq. (1) can be used for $p \neq q$, whereas p = q requires (2).
- Dyson-Schwinger equations complexify to equations for meromorphic functions in several complex variables in which we admit multiplicities (*E*₁,..., *E*_N) = (<u>e₁,..., e₁,..., <u>e_d,..., e_d</u>)
 </u>

000000 Dyson-Schwinger equation for planar 2-point function For $p \neq q$, expand $N \int_{H'_N} d\mu_{E,\lambda}(\Phi) \Phi_{pq} \Phi_{qp} =: \sum_{g=0}^{\infty} N^{-2g} Z G^{(g)}_{|pq|}$. Then $G_{|pq|}^{(g)} = G^{(g)}(\zeta, \eta)|_{\zeta = e_p, \eta = e_q}$ with initial equation [Grosse-W 09] $\left(\mu_{bare}^{2} + \xi + \eta + \frac{\lambda}{N}\sum^{a} r_{k}ZG^{(0)}(\zeta, e_{k})\right)ZG^{(0)}(\zeta, \eta)$ $=1+\frac{\lambda}{N}\sum_{k=1}^{d}r_{k}\frac{ZG^{(0)}(\boldsymbol{e}_{k},\eta)-ZG^{(0)}(\zeta,\eta)}{\boldsymbol{e}_{k}-\zeta}$

 Z, μ_{bare} : renormalisation parameters

Quartic Kontsevich model

Introduction

Blobbed topological recursion

Discussion

Dyson-Schwinger equation for planar 2-point function

For $p \neq q$, expand $N \int_{H'_N} d\mu_{E,\lambda}(\Phi) \Phi_{pq} \Phi_{qp} =: \sum_{g=0}^{\infty} N^{-2g} ZG^{(g)}_{|pq|}$. Then $G^{(g)}_{|pq|} = G^{(g)}(\zeta,\eta)|_{\zeta=e_p,\eta=e_q}$ with initial equation [Grosse-W 09]

$$\left(\mu_{bare}^{2} + \xi + \eta + \frac{\lambda}{N} \sum_{k=1}^{d} r_{k} ZG^{(0)}(\zeta, e_{k}) \right) ZG^{(0)}(\zeta, \eta)$$
$$= 1 + \frac{\lambda}{N} \sum_{k=1}^{d} r_{k} \frac{ZG^{(0)}(e_{k}, \eta) - ZG^{(0)}(\zeta, \eta)}{e_{k} - \zeta}$$

 Z, μ_{bare} : renormalisation parameters

- In [Panzer-W 18] we solved this equation for $r_k = 1$, $e_k = \frac{k}{N}$ in large-*N* limit, corresponding to $\lambda \Phi^4$ on 2D-Moyal space.
- Key step was to resum perturbative results (obtained with HyperInt) for an auxiliary function to Lambert-W.
- In [Grosse-Hock-W 19] we understood the general solution.
 Find ₂F₁ for 4D Moyal. See Alex Hock's talk at 15h15.

Introduction

Quartic Kontsevich model

Blobbed topological recursion

Discussion 00

Solution for finite matrices

Theorem [Grosse-Hock-W 19, Schürmann-W 19]

Let $(\varepsilon_k, \varrho_k)$ be implicitly defined by $e_k = R(\varepsilon_k), r_k = R'(\varepsilon_k)\varrho_k$

for
$$R(z) = z - \frac{\lambda}{N} \sum_{k=1}^{a} \frac{\varrho_k}{z + \varepsilon_k}$$

Quartic Kontsevich model

Blobbed topological recursion

Discussion 00

Solution for finite matrices

Theorem [Grosse-Hock-W 19, Schürmann-W 19]

Let $(\varepsilon_k, \varrho_k)$ be implicitly defined by $e_k = R(\varepsilon_k), r_k = R'(\varepsilon_k)\varrho_k$

for
$$R(z) = z - \frac{\lambda}{N} \sum_{k=1}^{d} \frac{\varrho_k}{z + \varepsilon_k}$$
.
Then $G^{(0)}(\zeta, \eta) = \mathcal{G}^{(0)}(z, w)$ for $R(z) = \zeta$, $R(w) = \eta$

Quartic Kontsevich model 000000

Blobbed topological recursion

Discussion

Solution for finite matrices

Theorem [Grosse-Hock-W 19, Schürmann-W 19]

Let (ε_k, ρ_k) be implicitly defined by $e_k = R(\varepsilon_k), r_k = R'(\varepsilon_k)\rho_k$ for $R(z) = z - \frac{\lambda}{N} \sum_{k=1}^{d} \frac{\varrho_k}{z + \varepsilon_k}$.

Then $G^{(0)}(\zeta,\eta) = \mathcal{G}^{(0)}(z,w)$ for $R(z) = \zeta$, $R(w) = \eta$ and

$$\mathcal{G}^{(0)}(z,w) = \frac{1 - \frac{\lambda}{N} \sum_{k=1}^{d} \frac{r_k \prod_{j=1}^{d} \frac{R(w) - R(-\widehat{\varepsilon}_k^j)}{R(w) - R(\varepsilon_j)}}{(R(z) - R(\varepsilon_k))(R(\varepsilon_k) - R(-w))}}{R(w) - R(-z)}$$

where $u \in \{z, \hat{z}^1, \dots, \hat{z}^d\}$ are all solutions of R(u) = R(z).

Quartic Kontsevich model

Blobbed topological recursion

Discussion

Solution for finite matrices

Theorem [Grosse-Hock-W 19, Schürmann-W 19]

Let $(\varepsilon_k, \varrho_k)$ be implicitly defined by $e_k = R(\varepsilon_k), r_k = R'(\varepsilon_k)\varrho_k$

for
$$R(z) = z - \frac{\lambda}{N} \sum_{k=1}^{\infty} \frac{\varrho_k}{z + \varepsilon_k}$$
.
Then $G^{(0)}(\zeta, \eta) = \mathcal{G}^{(0)}(z, w)$ for $R(z) = \zeta$, $R(w) = \eta$ and

$$\mathcal{G}^{(0)}(z,w) = \frac{1 - \frac{\lambda}{N} \sum_{k=1}^{d} \frac{r_k \prod_{j=1}^{d} \frac{R(w) - R(-\widehat{\varepsilon}_k^j)}{R(w) - R(\varepsilon_j)}}{(R(z) - R(\varepsilon_k))(R(\varepsilon_k) - R(-w))}}{R(w) - R(-z)}$$

where $u \in \{z, \hat{z}^1, \dots, \hat{z}^d\}$ are all solutions of R(u) = R(z). (The symmetry $\mathcal{G}^{(0)}(z, w) = \mathcal{G}^{(0)}(w, z)$ is automatic)

Thus, planar 2-point function solved by the composition of a rational function $\mathcal{G}^{(0)}$ with inverse of another rational function *R*.

Introduction

Blobbed topological recursion

Discussion 00

Remarks

We succeeded in solving a non-linear (D-S) equation.

- First (with Erik) by brute force and luck in a special case, later by the beauty of complex analysis.
- There must be a hidden algebraic structure which made this possible. We are confident to find it in the affine equations [with Johannes Branahl & Alex Hock].

Introduction

Blobbed topological recursion

Discussion 00

Remarks

We succeeded in solving a non-linear (D-S) equation.

- First (with Erik) by brute force and luck in a special case, later by the beauty of complex analysis.
- There must be a hidden algebraic structure which made this possible. We are confident to find it in the affine equations [with Johannes Branahl & Alex Hock].

Message to retain

Original model had spectrum $(\underbrace{e_1, \ldots, e_1}_{\ldots, \ldots, \ldots, \ldots, \ldots, \underbrace{e_d, \ldots, e_d}_{\ldots, \ldots, d})$, coupling λ .

But in these variables the structure is completely obscure!

• The structure emerges when transforming via R^{-1} , with $R(z) = z - \frac{\lambda}{N} \sum_{k=1}^{d} \frac{\varrho_k}{z + \varepsilon_k}$

Introduction

Blobbed topological recursion

Discussion 00

Remarks

We succeeded in solving a non-linear (D-S) equation.

- First (with Erik) by brute force and luck in a special case, later by the beauty of complex analysis.
- There must be a hidden algebraic structure which made this possible. We are confident to find it in the affine equations [with Johannes Branahl & Alex Hock].

Message to retain

Original model had spectrum $(\underbrace{e_1, \ldots, e_1}_{, \ldots, , \underbrace{e_d, \ldots, e_d}_{, \ldots, \underbrace{e_d}})$, coupling λ .

But in these variables the structure is completely obscure!

- The structure emerges when transforming via R^{-1} , with $R(z) = z \frac{\lambda}{N} \sum_{k=1}^{d} \frac{\varrho_k}{z + \varepsilon_k}$
- Q: Is something analogous true in familar QFT, i.e. can we possiby uncover some deep structure after transformation (to discover) to more appropriate variables?

Raimar Wulkenhaar (Münster)

Solvable Dyson-Schwinger equations

Blobbed topological recursion

Discussion

The affine equations

- All other correlations functions satisfy affine equations. They are always solvable, but no path seemed to exist.
- Alex Hock: need first to look at auxiliary functions!

Blobbed topological recursion

Discussion

The affine equations

- All other correlations functions satisfy affine equations. They are always solvable, but no path seemed to exist.
- Alex Hock: need first to look at auxiliary functions!

Recall that $d\mu_{E,\lambda}$ depends on given family E_1, \ldots, E_N . Introduce

Blobbed topological recursion

Discussion

The affine equations

- All other correlations functions satisfy affine equations. They are always solvable, but no path seemed to exist.
- Alex Hock: need first to look at auxiliary functions!

Recall that $d\mu_{E,\lambda}$ depends on given family E_1, \ldots, E_N . Introduce

$$\sum_{g=0}^{\infty} N^{2-2g-n} \Omega_{a_1,\ldots,a_n}^{(g)} := \frac{\partial^{n-1} \left(N \sum_{k=1}^{N} \int_{\mathcal{H}'_N} d\mu_{E,\lambda}(\Phi) \Phi_{a_1k} \Phi_{ka_1} \right)}{\partial E_{a_2} \cdots \partial E_{a_n}} + \frac{\delta_{n,2}}{(E_{a_1} - E_{a_2})^2} \right)$$

- We derive and solve Dyson-Schwinger equations for (meromorphic continuation of) Ω^(g).
- This needs *R* and *G*⁽⁰⁾, but no prior knowledge of its *E*-derivatives and of 2-point functions of higher topology.

Blobbed topological recursion

Discussion

The affine equations

- All other correlations functions satisfy affine equations. They are always solvable, but no path seemed to exist.
- Alex Hock: need first to look at auxiliary functions!

Recall that $d\mu_{E,\lambda}$ depends on given family E_1, \ldots, E_N . Introduce

$$\sum_{g=0}^{\infty} N^{2-2g-n} \Omega_{a_1,\ldots,a_n}^{(g)} := \frac{\partial^{n-1} \left(N \sum_{k=1}^{N} \int_{\mathcal{H}'_N} d\mu_{E,\lambda}(\Phi) \Phi_{a_1k} \Phi_{ka_1} \right)}{\partial E_{a_2} \cdots \partial E_{a_n}} + \frac{\delta_{n,2}}{(E_{a_1} - E_{a_2})^2} \right)$$

- We derive and solve Dyson-Schwinger equations for (meromorphic continuation of) Ω^(g).
- This needs *R* and *G*⁽⁰⁾, but no prior knowledge of its *E*-derivatives and of 2-point functions of higher topology.

Unexpected result: The $\Omega^{(g)}$ translate to differential forms which obey blobbed topological recursion [Borot-Shadrin 15]!

Quartic Kontsevich model

Blobbed topological recursion

Discussion

Solution procedure [Branahl-Hock-W 20]

Three types of functions involved:

- $\Omega_m^{(g)}(u_1, ..., u_m)$ objects of BTR, most difficult to compute
- *T*^(g)(*u*₁,..., *u_m*||*z*, *w*|) auxiliary functions, easy to compute
 T^(g)(*u*₁,..., *u_m*||*z*|*w*|) auxiliary functions, easy to compute

Introduction 00000	Quartic Kontsevich model	Blobbed topological recursion	Discussion 00
Results			

Proposition

$$\Omega_2^{(0)}(u,z) = \frac{1}{R'(u)R'(z)} \Big(\frac{1}{(u-z)^2} + \frac{1}{(u+z)^2}\Big)$$

One recognises the Bergman kernel of topological recursion!

Introduc	tion

Blobbed topological recursion

Discussion 00

Results

Proposition

$$\Omega_2^{(0)}(u,z) = \frac{1}{R'(u)R'(z)} \Big(\frac{1}{(u-z)^2} + \frac{1}{(u+z)^2}\Big)$$

One recognises the Bergman kernel of topological recursion!

Suggests
$$\omega_{g,m}(z_1, ..., z_m) = \lambda^{2-2g-m} \Omega_m^{(g)}(z_1, ..., z_m) \prod_{k=1}^m dR(z_i)$$

Proposition (g = 0) / Conjecture (g > 0)

 $z \mapsto \omega_{g,m}(u_1, ..., u_{m-1}, z)$ is meromorphic with poles at $z \in \{0, -u_1, ..., -u_{m-1}, \beta_1, ..., \beta_{2d}\}$ where $R'(\beta_i) = 0$ (ramification points)

Introdu	uction

Blobbed topological recursion

Discussion 00

Results

Proposition

$$\Omega_2^{(0)}(u,z) = \frac{1}{R'(u)R'(z)} \left(\frac{1}{(u-z)^2} + \frac{1}{(u+z)^2}\right)$$

One recognises the Bergman kernel of topological recursion!

Suggests
$$\omega_{g,m}(z_1, ..., z_m) = \lambda^{2-2g-m} \Omega_m^{(g)}(z_1, ..., z_m) \prod_{k=1}^m dR(z_i)$$

Proposition (g = 0) / Conjecture (g > 0)

 $z \mapsto \omega_{g,m}(u_1, ..., u_{m-1}, z)$ is meromorphic with poles at $z \in \{0, -u_1, ..., -u_{m-1}, \beta_1, ..., \beta_{2d}\}$ where $R'(\beta_i) = 0$ (ramification points)

Gives residue formula for $\omega_{g,m}$ into which solutions of the Dyson-Schwinger equations for $\mathcal{T}^{(g)}(u_1, ..., u_m || z, w|)$ and $\mathcal{T}^{(g)}(u_1, ..., u_m || z|w|)$ are inserted. Many cancellations arise.

Raimar Wulkenhaar (Münster)

Quartic Kontsevich model

Blobbed topological recursion

Discussion

Solution at low $-\chi = 2g + m - 2$

$$\begin{split} \omega_{0,3}(u_{1}, u_{2}, z) &= -\sum_{i=1}^{2d} \frac{\left(\frac{1}{(u_{1}-\beta_{i})^{2}} + \frac{1}{(u_{1}+\beta_{i})^{2}}\right)\left(\frac{1}{(u_{2}-\beta_{i})^{2}} + \frac{1}{(u_{2}+\beta_{i})^{2}}\right)du_{1} du_{2} dz}{R'(-\beta_{i})R''(\beta_{i})(z-\beta_{i})^{2}} \\ &+ \left[d_{u_{1}}\left(\frac{\omega_{0,2}(u_{2}, u_{1})}{(dR)(u_{1})}\frac{dz}{R'(-u_{1})(z+u_{1})^{2}}\right) + u_{1} \leftrightarrow u_{2}\right] \\ \omega_{1,1}(z) &= \sum_{i=1}^{2d} \frac{dz}{R'(-\beta_{i})R''(\beta_{i})} \left\{-\frac{1}{8(z-\beta_{i})^{4}} + \frac{R'''(\beta_{i})}{24R''(\beta_{i})(z-\beta_{i})^{3}} \right. \\ &+ \frac{\frac{R'''(\beta_{i})}{48R''(\beta_{i})} - \frac{(R'''(\beta_{i}))^{2}}{48(R''(\beta_{i}))^{2}} + \frac{R''(-\beta_{i})R'''(\beta_{i})}{48R'(-\beta_{i})R''(\beta_{i})} + \frac{(R''(-\beta_{i}))^{2}}{48(R'(-\beta_{i}))^{2}} - \frac{1}{8\beta_{i}^{2}}}{(z-\beta_{i})^{2}} \right\} \\ &- \frac{dz}{8(R'(0))^{2}z^{3}} + \frac{R''(0)dz}{16(R'(0))^{3}z^{2}} \end{split}$$

Quartic Kontsevich model

Blobbed topological recursion

Discussion

Solution at low $-\chi = 2g + m - 2$

$$\begin{split} \omega_{0,3}(u_1, u_2, z) &= -\sum_{i=1}^{2d} \frac{\left(\frac{1}{(u_1 - \beta_i)^2} + \frac{1}{(u_1 + \beta_i)^2}\right) \left(\frac{1}{(u_2 - \beta_i)^2} + \frac{1}{(u_2 + \beta_i)^2}\right) du_1 \, du_2 \, dz}{R'(-\beta_i) R''(\beta_i) (z - \beta_i)^2} \\ &+ \left[d_{u_1} \left(\frac{\omega_{0,2}(u_2, u_1)}{(dR)(u_1)} \frac{dz}{R'(-u_1)(z + u_1)^2}\right) + u_1 \leftrightarrow u_2 \right] \\ \omega_{1,1}(z) &= \sum_{i=1}^{2d} \frac{dz}{R'(-\beta_i) R''(\beta_i)} \left\{ -\frac{1}{8(z - \beta_i)^4} + \frac{R'''(\beta_i)}{24R''(\beta_i)(z - \beta_i)^3} \right. \\ &+ \frac{\frac{R'''(\beta_i)}{48R''(\beta_i)} - \frac{(R'''(\beta_i))^2}{48(R''(\beta_i))^2} + \frac{R''(-\beta_i)R'''(\beta_i)}{48R'(-\beta_i)R''(\beta_i)} + \frac{(R''(-\beta_i))^2}{48(R'(-\beta_i))^2} - \frac{1}{8\beta_i^2}}{\left. -\frac{dz}{8(R'(0))^2 z^3} + \frac{R''(0) dz}{16(R'(0))^3 z^2} \right] \end{split}$$

- Reflect (convergent!) summation of infinite series of Feynman (ribbon) graphs of fixed external structure and topology.
- The λ-series results by solving the system

$$R(\varepsilon_k) = e_k, R'(\varepsilon_k)\varrho_k = r_k, R'(\beta_i) = 0 \text{ and } z = R^{-1}(\zeta)$$

via Taylor approach to the implicit function theorem.

Raimar Wulkenhaar (Münster)

Solvable Dyson-Schwinger equations

Proposition $(g, m) \in \{(0, 2), \dots, (0, 5), (1, 1)\}$ / Conjecture

Let $R: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be the ramified cover identified in the solution of $\mathcal{G}^{(0)}(z, w)$.

Let $\beta_1, ..., \beta_{2d}$ be the ramification points of *R* and σ_i be the corresponding local Galois involution in the vicinity of β_i .

Proposition $(g, m) \in \{(0, 2), \dots, (0, 5), (1, 1)\}$ / Conjecture

Let $R: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be the ramified cover identified in the solution of $\mathcal{G}^{(0)}(z, w)$.

Let $\beta_1, ..., \beta_{2d}$ be the ramification points of *R* and σ_i be the corresponding local Galois involution in the vicinity of β_i .

Define $\omega_{0,1}(z) = -R(-z)R'(z)dz$ and for $2 - 2g - m \le 0$ the $\omega_{g,m}$ as before. Then:

Proposition $(g, m) \in \{(0, 2), \dots, (0, 5), (1, 1)\}$ / Conjecture

Let $R: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be the ramified cover identified in the solution of $\mathcal{G}^{(0)}(z, w)$.

Let $\beta_1, ..., \beta_{2d}$ be the ramification points of *R* and σ_i be the corresponding local Galois involution in the vicinity of β_i .

Define $\omega_{0,1}(z) = -R(-z)R'(z)dz$ and for $2 - 2g - m \le 0$ the $\omega_{g,m}$ as before. Then:

Iinear loop equation:

 $\omega_{g,m}(u_1,...,u_{m-1},z)+\omega_{g,m}(u_1,...,u_{m-1},\sigma_i(z))=\mathcal{O}(z-\beta_i)dz$

Proposition $(g, m) \in \{(0, 2), \dots, (0, 5), (1, 1)\}$ / Conjecture

Let $R: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be the ramified cover identified in the solution of $\mathcal{G}^{(0)}(z, w)$.

Let $\beta_1, ..., \beta_{2d}$ be the ramification points of *R* and σ_i be the corresponding local Galois involution in the vicinity of β_i .

Define $\omega_{0,1}(z) = -R(-z)R'(z)dz$ and for $2 - 2g - m \le 0$ the $\omega_{g,m}$ as before. Then:

Inear loop equation: $\omega_{g,m}(u_1, ..., u_{m-1}, z) + \omega_{g,m}(u_1, ..., u_{m-1}, \sigma_i(z)) = \mathcal{O}(z-\beta_i)dz$

$$\begin{split} & \omega_{g-1,m+1}(u_1,...,u_{m-1},z,\sigma_i(z)) \\ &+ \sum_{\substack{l_1 \uplus l_2 = \{u_1,...,u_{m-1}\}\\g_1+g_2=g}} \omega_{g_1,|l_1|+1}(l_1,z)\omega_{g_2,|l_2|+1}(l_2,\sigma_i(z)) \\ &= \mathcal{O}((z-\beta_i)^2)(dz)^2 \end{split}$$

Raimar Wulkenhaar (Münster)

Blobbed topological recursion

Discussion 00

Blobbed topological recursion [Borot-Shadrin 15]

Theorem

Let $\{\omega_{g,m}\}_{a>0,m>0}$ be a family of meromorphic differential forms which satisfy the abstract loop equations. Then their parts $\mathcal{P}\omega_{q,m}$ containing the poles at ramification points are given by $\mathcal{P}_{z}\omega_{q,m}(u_1,...,u_{m-1},z)$ $=\sum_{i=1}^{2d} \operatorname{Res}_{q \to \beta_{i}} \frac{\frac{1}{2} \int_{q'=\sigma(q)}^{q'=q} B(z,q')}{\omega_{0,1}(q) - \omega_{0,1}(\sigma_{i}(q))} \left(\omega_{g-1,m+1}(u_{1},...,u_{m-1},q,\sigma_{i}(q)) + \sum_{\substack{l_{1} \uplus l_{2} = \{u_{1},...,u_{m-1}\}}} \omega_{g_{1},|l_{1}|+1}(l_{1},q) \omega_{g_{2},|l_{2}|+1}(l_{2},\sigma_{i}(q)) \right)$ $g_1 + g_2 = g$ $(l_1, q_1) \neq (\emptyset, \overline{0}) \neq (l_2, q_2)$

where $B(u, z) = \frac{du dz}{(u-z)^2}$ is the Bergman kernel (for $x : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$).

$$\mathcal{H}_{z}\omega_{g,m}(...,z) := \omega_{g,m}(...,z) - \mathcal{P}_{z}\omega_{g,m}(...,z)$$
 is made of blobs.

 $\omega_{g,m}$ = meromorphic forms on space of compactified complex lines through the marked points on a genus-*g* Riemann surface.

 $\mathcal{H}_{z_1}\omega_{q,m}(z_1,\ldots,z_m)$

- The universal formula of topological recursion produces the parts *P*ω_{g,m} from the entire ω_{g',m'} of smaller degree.
- The parts Hω_{g,m} are additional input at every recursion step. We are confident to understand them soon.

 $\omega_{q,m}(z_1, ..., z_m)$

 $\sigma(c$

 $\mathcal{P}_{z_1}\omega_{q,m}(z_1,\ldots,z_m)$

 $z_j, j \in I \setminus J$

 $\omega_{g,m}$ = meromorphic forms on space of compactified complex lines through the marked points on a genus-*g* Riemann surface.

- The universal formula of topological recursion produces the parts $\mathcal{P}\omega_{g,m}$ from the entire $\omega_{g',m'}$ of smaller degree.
- The parts Hω_{g,m} are additional input at every recursion step. We are confident to understand them soon.

The quartic analogue of the Kontsevich model distinguishes a unique such form $\omega_{g,m}$ for every (g, m). What is its significance?

Blobbed topological recursion

Discussion

Intersection numbers and integrability

Fact [Borot-Shadrin 15]

- Forms ω_{g,m} which satisfy BTR encode intersection numbers on the moduli space M_{g,m} of stable complex curves.
- These are several copies of the same intersections of ψ, κ -classes as in the Kontsevich model, coupled via blobs.

These coupled intersections could be interesting or not. Since the global involution $z \rightarrow -z$ is very natural we expect that blobs about its fixed point z = 0 could be significant.

Blobbed topological recursion

Discussion

Intersection numbers and integrability

Fact [Borot-Shadrin 15]

- Forms ω_{g,m} which satisfy BTR encode intersection numbers on the moduli space M_{g,m} of stable complex curves.
- These are several copies of the same intersections of ψ, κ -classes as in the Kontsevich model, coupled via blobs.

These coupled intersections could be interesting or not. Since the global involution $z \rightarrow -z$ is very natural we expect that blobs about its fixed point z = 0 could be significant.

Integrability

- Understanding better our recursion should give access to the partition function itself, a function of λ and (*E_i*).
- Is it a *τ*-function for a Hirota equation, i.e. is it integrable? [not known in general BTR]

Raimar Wulkenhaar (Münster)

Introdu	ction
00000	

Blobbed topological recursion

Discussion

Summary

- Dyson-Schwinger equations resolve the problem of overlapping divergences in the Hopf algebra of Feynman graphs.
- They are a central research topic for Dirk and for me.

Blobbed topological recursion

Discussion

Summary

- Dyson-Schwinger equations resolve the problem of overlapping divergences in the Hopf algebra of Feynman graphs.
- They are a central research topic for Dirk and for me.
- I have tried to convince you that, at least for some QFT toy models, Dyson-Schwinger equations provide the best non-perturbative approach. They can lead to a complete understanding.

Blobbed topological recursion

Discussion

Summary

- Dyson-Schwinger equations resolve the problem of overlapping divergences in the Hopf algebra of Feynman graphs.
- They are a central research topic for Dirk and for me.
- I have tried to convince you that, at least for some QFT toy models, Dyson-Schwinger equations provide the best non-perturbative approach. They can lead to a complete understanding.

@Dirk

I wish you a lot of pleasure and success with your work on Dyson-Schwinger equations.

Happy Birthday!