On a theorem of Kreimer

Marko Berghoff, University of Oxford

Algebraic Structures in Perturbative Quantum Field Theory, IHES, 18.11.20

The Kreimer gang

On a vision of Kreimer:

Cutkosky rules in Outer space
arXiv:1512.01705 (Bloch, Kreimer), 1607.04861 (Kreimer) \& 2008.09540 (Kreimer, MB)

A visionary at work

Baby example

Consider

$$
f(t)=\int_{\gamma} \frac{d x}{x^{2}-t}
$$

where γ is a small circle around $1 \in \mathbb{C}$.

f is holomorphic at $t=1$, can be analytically continued to $\mathbb{C} \backslash\{0\}$.

Feynman rules

Momentum-space Feynman rules associate to a graph G on N edges, l loops and s legs the integral

$$
I_{G}:=\int_{\left(\mathbb{M}^{d}\right)^{l}} d k \prod_{i=1}^{N} \frac{1}{D_{i}}
$$

where

- $D_{i}:=q_{i}^{2}-m_{i}^{2}+i \epsilon$, the q_{i} being linear combinations of loop momenta k_{1}, \ldots, k_{l} and the external momenta p_{1}, \ldots, p_{s} (determined by momentum conservation),
- \mathbb{M}^{d} is d-dimensional Minkowski space.

Example

$$
\begin{aligned}
& \text { Let } d=4 \text { and } G=p_{1} \\
& I_{G}=I_{G}\left(p_{1}, p_{2}, p_{3}, m_{1}, m_{2}, m_{3}\right) \text { is given by } \\
& \int_{\mathbb{M}^{4}} \frac{m_{1}}{m_{3} k} \text {. Then the function } \\
& \left(k^{2}-m_{1}^{2}+i \epsilon\right)\left(\left(k+p_{1}\right)^{2}-m_{2}^{2}+i \epsilon\right)\left(\left(k+p_{1}+p_{2}\right)^{2}-m_{3}^{2}+i \epsilon\right)
\end{aligned}
$$

Analytic structure of Feynman integrals

Problem

Understand the analytic structure of I_{G}.

- Pham (and many others) give a nice mathematical account of this problem, almost covering the case of Feynman integrals.
- Landau ('60) and Mühlbauer (this week!) formulate a necessary condition for such singularities to occur:

$$
\begin{aligned}
& \forall i \in\{1, \ldots, N\}: x_{i} D_{i}=0 \\
& \forall j \in\{1, \ldots, l\}: \sum_{i \in E_{\operatorname{loop}(j)}} x_{i} q_{i}=0 .
\end{aligned}
$$

A solution (in p-space) where all $D_{i}=0$ is called a leading singularity, all others are referred to as reduced singularities of G, or I_{G}.

Analytic structure of Feynman integrals

If we knew the types of these singularities and the discontinuities along the associated branch cuts, we could, in principle, construct the function I_{G} from this data (Hilbert transform).

Conjecture (Cutkosky '60)

The discontinuity of I_{G} with respect to the Landau singularity associated to $D_{1}=\ldots=D_{k}=0$ is given by

$$
\operatorname{Disc}\left(I_{G}\right)=\int_{\left(\mathbb{M}^{d}\right)^{l}} \prod_{i=1}^{k} \delta^{+}\left(D_{i}\right) \prod_{j=k+1}^{N} \frac{1}{D_{j}}
$$

where $\delta^{+}\left(q^{2}-m^{2}\right):=\theta\left(q_{0}\right) \delta\left(q_{0}-\sqrt{\vec{q}^{2}+m^{2}}\right) \frac{1}{2 \sqrt{\vec{q}^{2}+m^{2}}}$.

Analytic structure of Feynman integrals

An unfinished proof can be found in arXiv:1512.01705 (Bloch, Kreimer). Alternative approach: "Regroup" Feynman integrals.

Theorem (Kreimer, MB)

The (unrenormalized) Feynman integral I_{G} can be written as a sum of cut integrals associated to spanning trees of G,

$$
I_{G}=\sum_{T \in \mathcal{T}(G)} I_{G, T}
$$

with

$$
I_{G, T}:=\int \prod_{e \in T} \frac{1}{D_{e}} \prod_{e^{\prime} \notin T} \delta^{+}\left(D_{e^{\prime}}\right)
$$

the original integral where all edges not in T have been cut.

Example

1. Diagrammatically,

2. In terms of integrals,

$$
\begin{aligned}
I_{\bigcirc}= & \left.\pi i \int_{\mathbb{R}^{3}} d^{3} \vec{k} \frac{1}{k_{0}} \frac{1}{(k-p)^{2}-m_{2}^{2}+i \epsilon}\right|_{k_{0}=\sqrt{\vec{k}^{2}+m_{1}^{2}-i \epsilon}} \\
& +\left.\frac{1}{k_{0}-p_{0}} \frac{1}{k^{2}-m_{1}^{2}+i \epsilon}\right|_{k_{0}=p_{0}+\sqrt{(\vec{k}-\vec{p})^{2}+m_{2}^{2}-i \epsilon}} .
\end{aligned}
$$

An alternative point of view
Let's go to Outer space!

Parametric Feynman rules

Using the Schwinger trick we can rewrite a Feynman integral as

$$
I_{G}:=\int_{\Delta_{G}} \omega_{G}
$$

where $\Delta_{G}:=\left\{\left[x_{1}: \ldots: x_{N}\right] \in \mathbb{P}\left(\mathbb{R}^{N}\right) \mid x_{i} \geq 0\right\} \cong \Delta^{N-1}$ and

$$
\omega_{G}:=\psi_{G}^{-\frac{d}{2}} \Theta_{G}^{N-h_{1}(G) \frac{d}{2}} \sum_{i=1}^{N}(-1)^{i} x_{i} d x_{1} \wedge \ldots \wedge \hat{d x}_{i} \wedge \ldots \wedge d x_{N}
$$

with ψ_{G} and Θ_{G} two graph polynomials, Θ_{G} depending on the masses m_{1}, \ldots, m_{N} and momenta p_{1}, \ldots, p_{s}.

Parametric Feynman rules

Crucial identities

1. $\delta_{x_{e}}\left[\omega_{G}\right]=\omega_{G / e}$ if e is not a self-loop,
2. $\operatorname{Res}_{\left\{x_{e}=0 \mid e \in E_{\gamma}\right\}}\left[\omega_{G}\right]=\omega_{\gamma} \otimes \omega_{G / \gamma}$ if γ is divergent.
(and similar for Δ_{G} and its blow-up/compactification)

The first one allows to relate (reduced) Landau singularities (of the first type) of different Feynman integrals, the second one is fundamental for renormalization.

A moduli space of colored graphs

Suppose we are given only a finite set C of masses to "color" our Feynman graphs with, possibly with further restrictions on the coloring maps $c: E_{G} \rightarrow C$.

Definition

The moduli space of (metric) colored graphs with l loops and s legs is defined as

$$
\mathcal{M} \mathcal{G}_{l, s}^{C}:=\left(\bigcup_{G \in \mathbb{G}_{l, s}^{C}} \dot{\Delta}_{G}\right)_{/ \sim}
$$

where $\mathbb{G}_{l, s}^{C}$ is the set of all 1PI Feynman diagrams with all vertices at least three-valent, internal edges colored by C, and \sim is induced by edge collapses (and graph isomorphisms).

Example

$\mathcal{M G}_{1,3}^{\{1,2,3\}, \text { inj }}$ looks like

Example

space $\mathcal{M} \mathcal{G}_{2,4}^{\{1,2,3,4\}, \text { inj }:}$

Feynman integrals on $\mathcal{M G}_{l, s}^{C}$

Recall $I_{G}=\int_{\sigma_{G}} \omega_{G}$.
We see

- the integration domain σ_{G} is a cell in $\mathcal{M G}_{l, s}^{C}$,
- the integrand ω_{G} is a (compactly supported) distribution density on $\mathcal{M} \mathcal{G}_{l, s}^{C}$.
This allows to
- formulate amplitudes as "semi-discrete" volumes of $\mathcal{M G}_{l, s}^{C}$,
- study renormalization on a Borel-Serre compactification $\widetilde{\mathcal{M}}_{l, s}^{C}$ of $\mathcal{M G}_{l, s}^{C}$.

The topology of $\mathcal{M G}_{l, s}^{C}$

Theorem (Mühlbauer, MB)

1. $H_{s-1}\left(\mathcal{M} \mathcal{G}_{1, s}^{\{1, \ldots, s\}, i n j} ; \mathbb{Z}\right) \cong \mathbb{Z}^{\frac{(s-1)!}{2}}$.
2. The Betti numbers $h_{s-1}\left(\mathcal{M G}_{1, s}^{\{1, \ldots, m\}}\right)$ grow polynomially of degree s with the number of colors m.
3. For all $i<s-1$ we have $h_{i}\left(\mathcal{M G}_{1, s}^{\{1, \ldots, m\}}\right)=h_{i}\left(\mathcal{M G}_{1, s}\right)$.

There are many interesting maps between these moduli spaces changing the number of colors, legs or loop numbers. Can these be used to study $H_{*}\left(\mathcal{M} \mathcal{G}_{l, s} ; \mathbb{Q}\right) \cong H_{*}\left(\Gamma_{l, s} ; \mathbb{Q}\right)$? (here $\Gamma_{l, 0}=\operatorname{Out}\left(F_{l}\right)$, $\left.\Gamma_{l, 1}=\operatorname{Aut}\left(F_{l}\right), \ldots\right)$

Back to Feynman integrals

Our theorem " $I_{G}=\sum_{T \in \mathcal{T}(G)} I_{G, T}$ ", as well as other instances of loop-tree duality, (could) have a nice reformulation:

The space $\mathcal{M G}_{l, s}^{C}$ is of dimension $3 l-4+s$. It deformation retracts onto a subspace of dimension $2 l-3+s$ that has a natural decomposition into cubes (cf. sector decomposition). Each cell σ_{G} retracts onto a union of cubes, indexed by pairs $(G, T), T \in \mathcal{T}(G)$.

Loop-tree duality appears as the result of fiber integration!

Singularities of Feynman amplitudes

The natural cell decomposition of $\mathcal{M} \mathcal{G}_{l, s}^{C}$ encodes relations between "neighboring" Feynman integrals.

Let us consider a theory with only cubic interactions (all graphs three-regular). Then the l-loop amplitude is the integral of a $3 l-4+s$-form on $\mathcal{M G}_{l, s}^{C}$ (or a $2 l-3+s$-form on the associated cube complex).
That is, we consider only contributions from the top-dimensional cells of $\mathcal{M G}_{l, s}^{C}$.

Singularities of Feynman amplitudes

However, the lower dimensional cells still carry information:

We can map the boundary strata of a cell σ_{G} to poles of the integrand of I_{G} (or the associated Landau varieties),

$$
\rho: G \supset \gamma \longmapsto L_{G / \gamma}
$$

where

$$
L_{G / \gamma}:=\bigcup_{I \subset E_{G} \backslash E_{\gamma}}\left\{\text { Sol. of Landau's eq. for }\left\{D_{i}=0\right\}\right\} .
$$

This is a map of posets between the set of subgraphs of G, ordered by reverse inclusion, and the singularities of I_{G}.
Extending ρ to $\mathbb{G}_{l, s}^{C}$ allows to encode if and where two Feynman integrals I_{G} and $I_{G^{\prime}}$ have singularities in common.

A graph complex

Definition

Let $G C_{l, s}^{C}:=\mathbb{Z}_{2}\left\langle G \mid G \in \mathbb{G}_{l, s}^{C}\right\rangle$, graded by \#edges -1 , and equip it with a differential d defined by

$$
d(G, c):=\sum_{e \in E_{G}}\left(G / e, c_{e}\right)
$$

where $c_{e}:=c_{E_{G} \backslash\{e\}}$. If e is a tadpole, set $G / e=0$.
Experimental observation: The top rank homology classes seem to partition the set of graphs that contribute to the l loop and s legs amplitude into "nice" subamplitudes.

Example

The element

represent a class in $H_{2}\left(G C_{1,3}^{\{1,2\}}\right) \cong \mathbb{Z}_{2}^{2}$. The function $I_{G_{1}+\ldots+G_{4}}$ has (reduced) singularities along

$$
\left\{p_{i}^{2}=4 m_{1}^{2}, p_{i}^{2}=0, p_{i}^{2}=\left(m_{1} \pm m_{2}\right)^{2} \mid i=1,2,3\right\} .
$$

The other class and its set of singularities is given by the same expressions, with m_{1} and m_{2} interchanged.
So, the full amplitude splits into $\mathcal{A}_{l, s}(p)=I_{1}(p)+I_{2}(p)$ with both summands (and their singularities) related by a S_{2}-symmetry.

Theorem (Kreimer, MB)

The "partition property" holds for all $H_{s-1}\left(G C_{1, s}^{\{1, \ldots, s\}, i n j}\right), s \geq 3$.

Conjecture (Kreimer, MB)

The "partition property" holds for all $H_{s-1}\left(G C_{1, s}^{\{1, \ldots, m\}}\right), s \geq 3$ and $m \geq 2$.

For $l>1$ we know nothing about the homology of this complex, might have to switch to the cubical world

Theorem (Kreimer, MB)

The "partition property" holds for all $H_{s-1}\left(G C_{1, s}^{\{1, \ldots, s\}, i n j}\right), s \geq 3$.

Conjecture (Kreimer, MB)

The "partition property" holds for all $H_{s-1}\left(G C_{1, s}^{\{1, \ldots, m\}}\right), s \geq 3$ and $m \geq 2$.

For $l>1$ we know nothing about the homology of this complex, might have to switch to the cubical world

- of course, in total agreement with Dirk's prophecy!

Thank you for your attention and, once again, happy birthday, Dirk!

