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A visionary at work



Baby example

Consider

f(t) =

∫
γ

dx

x2 − t

where γ is a small circle around 1 ∈ C.

√
t−

√
t

f is holomorphic at t = 1, can be analytically continued to C \{0}.



Feynman rules

Momentum-space Feynman rules associate to a graph G on N
edges, l loops and s legs the integral

IG :=

∫
(Md)l

dk

N∏
i=1

1

Di

where

- Di := q2
i −m2

i + iε, the qi being linear combinations of loop
momenta k1, . . . , kl and the external momenta p1, . . . , ps
(determined by momentum conservation),

- Md is d-dimensional Minkowski space.



Example

Let d = 4 and G =

p2

p3

p1

m2

m1

m3 . Then the function

IG = IG(p1, p2, p3,m1,m2,m3) is given by

∫
M4

d4k(
k2 −m2

1 + iε
) (

(k + p1)2 −m2
2 + iε

) (
(k + p1 + p2)2 −m2

3 + iε
) .



Analytic structure of Feynman integrals

Problem

Understand the analytic structure of IG.

• Pham (and many others) give a nice mathematical account of
this problem, almost covering the case of Feynman integrals.

• Landau (’60) and Mühlbauer (this week!) formulate a
necessary condition for such singularities to occur:

∀i ∈ {1, . . . , N} : xiDi = 0,

∀j ∈ {1, . . . , l} :
∑

i∈Eloop(j)

xiqi = 0.

A solution (in p-space) where all Di = 0 is called a leading
singularity, all others are referred to as reduced singularities of
G, or IG.



Analytic structure of Feynman integrals

If we knew the types of these singularities and the discontinuities
along the associated branch cuts, we could, in principle, construct
the function IG from this data (Hilbert transform).

Conjecture (Cutkosky ’60)

The discontinuity of IG with respect to the Landau singularity
associated to D1 = . . . = Dk = 0 is given by

Disc(IG) =

∫
(Md)l

k∏
i=1

δ+(Di)

N∏
j=k+1

1

Dj

where δ+(q2 −m2) := θ(q0)δ
(
q0 −

√
~q2 +m2

)
1

2
√
~q2+m2

.



Analytic structure of Feynman integrals

An unfinished proof can be found in arXiv:1512.01705 (Bloch,
Kreimer). Alternative approach: “Regroup” Feynman integrals.

Theorem (Kreimer, MB)

The (unrenormalized) Feynman integral IG can be written as a
sum of cut integrals associated to spanning trees of G,

IG =
∑

T∈T (G)

IG,T

with

IG,T :=

∫ ∏
e∈T

1

De

∏
e′ /∈T

δ+(De′)

the original integral where all edges not in T have been cut.



Example

1. Diagrammatically,

= + + + + .

2. In terms of integrals,

I =πi

∫
R3

d3~k
1

k0

1

(k − p)2 −m2
2 + iε

∣∣∣
k0=

√
~k2+m2

1−iε

+
1

k0 − p0

1

k2 −m2
1 + iε

∣∣∣
k0=p0+

√
(~k−~p)2+m2

2−iε
.



An alternative point of view

Let’s go to Outer space!



Parametric Feynman rules

Using the Schwinger trick we can rewrite a Feynman integral as

IG :=

∫
∆G

ωG

where ∆G := {[x1 : . . . : xN ] ∈ P(RN ) | xi ≥ 0} ∼= ∆N−1 and

ωG := ψ
− d

2
G Θ

N−h1(G) d
2

G

N∑
i=1

(−1)ixidx1 ∧ . . . ∧
∧
dxi ∧ . . . ∧ dxN

with ψG and ΘG two graph polynomials, ΘG depending on the
masses m1, . . . ,mN and momenta p1, . . . , ps.



Parametric Feynman rules

Crucial identities

1. δxe [ωG] = ωG/e if e is not a self-loop,

2. Res{xe=0|e∈Eγ}[ωG] = ωγ ⊗ ωG/γ if γ is divergent.

(and similar for ∆G and its blow-up/compactification)

The first one allows to relate (reduced) Landau singularities (of the
first type) of different Feynman integrals, the second one is
fundamental for renormalization.



A moduli space of colored graphs

Suppose we are given only a finite set C of masses to “color” our
Feynman graphs with, possibly with further restrictions on the
coloring maps c : EG → C.

Definition

The moduli space of (metric) colored graphs with l loops and s
legs is defined as

MGCl,s :=
( ⋃
G∈GCl,s

∆̇G

)
/∼
,

where GC
l,s is the set of all 1PI Feynman diagrams with all vertices

at least three-valent, internal edges colored by C, and ∼ is induced
by edge collapses (and graph isomorphisms).



Example

MG{1,2,3},inj1,3 looks like



Example

G =

p3

p4

p1

p2
2

1

3 4 represents a “cell” σG in the moduli

space MG{1,2,3,4},inj2,4 :

σG =

x3 = x4 = 0

σ̃G =
∆G/γ ×∆γ



Feynman integrals on MGCl,s

Recall IG =
∫
σG
ωG.

We see

• the integration domain σG is a cell in MGCl,s,
• the integrand ωG is a (compactly supported) distribution

density on MGCl,s.
This allows to

• formulate amplitudes as “semi-discrete” volumes of MGCl,s,
• study renormalization on a Borel-Serre compactification

M̃G
C

l,s of MGCl,s.



The topology of MGCl,s

Theorem (Mühlbauer, MB)

1. Hs−1(MG{1,...,s},inj1,s ;Z) ∼= Z
(s−1)!

2 .

2. The Betti numbers hs−1(MG{1,...,m}1,s ) grow polynomially of
degree s with the number of colors m.

3. For all i < s− 1 we have hi(MG{1,...,m}1,s ) = hi(MG1,s).

There are many interesting maps between these moduli spaces
changing the number of colors, legs or loop numbers. Can these be
used to study H∗(MGl,s;Q) ∼= H∗(Γl,s;Q)? (here Γl,0 = Out(Fl),
Γl,1 = Aut(Fl), ...)



Back to Feynman integrals

Our theorem “IG =
∑

T∈T (G) IG,T ”, as well as other instances of
loop-tree duality, (could) have a nice reformulation:

The space MGCl,s is of dimension 3l − 4 + s. It deformation
retracts onto a subspace of dimension 2l− 3 + s that has a natural
decomposition into cubes (cf. sector decomposition). Each cell σG
retracts onto a union of cubes, indexed by pairs (G,T ), T ∈ T (G).

1

2

3
p1 p2

Loop-tree duality appears as the result of fiber integration!



Singularities of Feynman amplitudes
The natural cell decomposition of MGCl,s encodes relations
between “neighboring” Feynman integrals.

Let us consider a theory with only cubic interactions (all graphs
three-regular). Then the l-loop amplitude is the integral of a
3l − 4 + s-form on MGCl,s (or a 2l − 3 + s-form on the associated
cube complex).
That is, we consider only contributions from the top-dimensional
cells of MGCl,s.



Singularities of Feynman amplitudes

However, the lower dimensional cells still carry information:

We can map the boundary strata of a cell σG to poles of the
integrand of IG (or the associated Landau varieties),

ρ : G ⊃ γ 7−→ LG/γ

where

LG/γ :=
⋃

I⊂EG\Eγ

{
Sol. of Landau’s eq. for {Di = 0}

}
.

This is a map of posets between the set of subgraphs of G, ordered
by reverse inclusion, and the singularities of IG.
Extending ρ to GC

l,s allows to encode if and where two Feynman
integrals IG and IG′ have singularities in common.



A graph complex

Definition

Let GCCl,s := Z2〈G | G ∈ GC
l,s〉, graded by #edges −1, and equip it

with a differential d defined by

d(G, c) :=
∑
e∈EG

(G/e, ce)

where ce := c∣∣EG\{e}. If e is a tadpole, set G/e = 0.

Experimental observation: The top rank homology classes seem to
partition the set of graphs that contribute to the l loop and s legs
amplitude into “nice” subamplitudes.



Example

The element

m1

m2

m1

p1

p2

p3

+
m1

m1

m2

p1

p2

p3

+
m2

m1

m1

p1

p2

p3

+
m1

m1

m1

p1

p2

p3

represent a class in H2(GC
{1,2}
1,3 ) ∼= Z2

2. The function IG1+...+G4

has (reduced) singularities along{
p2
i = 4m2

1, p
2
i = 0, p2

i = (m1 ±m2)2 | i = 1, 2, 3
}
.

The other class and its set of singularities is given by the same
expressions, with m1 and m2 interchanged.
So, the full amplitude splits into Al,s(p) = I1(p) + I2(p) with both
summands (and their singularities) related by a S2-symmetry.



Theorem (Kreimer, MB)

The “partition property” holds for all Hs−1(GC
{1,...,s},inj
1,s ), s ≥ 3.

Conjecture (Kreimer, MB)

The “partition property” holds for all Hs−1(GC
{1,...,m}
1,s ), s ≥ 3 and

m ≥ 2.

For l > 1 we know nothing about the homology of this complex,
might have to switch to the cubical world

- of course, in total agreement with Dirk’s prophecy!
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Thank you for your attention
and, once again, happy birthday, Dirk!


