On a theorem of Kreimer

Marko Berghoff, University of Oxford

Algebraic Structures in Perturbative Quantum Field Theory, IHES, 18.11.20

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Kreimer gang

On a vision of Kreimer:

Cutkosky rules in Outer space

arXiv:1512.01705 (Bloch, Kreimer), 1607.04861 (Kreimer) & 2008.09540 (Kreimer, MB)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A visionary at work

Baby example

Consider

$$f(t) = \int_{\gamma} \frac{dx}{x^2 - t}$$

where γ is a small circle around $1 \in \mathbb{C}$.

f is holomorphic at t = 1, can be analytically continued to $\mathbb{C} \setminus \{0\}$.

Feynman rules

Momentum-space Feynman rules associate to a graph G on N edges, l loops and s legs the integral

$$I_G := \int_{(\mathbb{M}^d)^l} dk \prod_{i=1}^N \frac{1}{D_i}$$

where

- $D_i := q_i^2 - m_i^2 + i\epsilon$, the q_i being linear combinations of *loop* momenta k_1, \ldots, k_l and the external momenta p_1, \ldots, p_s (determined by momentum conservation),

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- \mathbb{M}^d is *d*-dimensional Minkowski space.

Example

Let
$$d = 4$$
 and $G = p_1 - m_1 - m_2 - m_3$. Then the function
 $I_G = I_G(p_1, p_2, p_3, m_1, m_2, m_3)$ is given by

$$\int_{\mathbb{M}^4} \frac{d^4k}{(k^2 - m_1^2 + i\epsilon) ((k + p_1)^2 - m_2^2 + i\epsilon) ((k + p_1 + p_2)^2 - m_3^2 + i\epsilon)}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Analytic structure of Feynman integrals

Problem

Understand the analytic structure of I_G .

- Pham (and many others) give a nice mathematical account of this problem, *almost* covering the case of Feynman integrals.
- Landau ('60) and Mühlbauer (this week!) formulate a necessary condition for such singularities to occur:

$$\forall i \in \{1, \dots, N\} : x_i D_i = 0,$$

$$\forall j \in \{1, \dots, l\} : \sum_{i \in E_{\mathsf{loop}(j)}} x_i q_i = 0.$$

A solution (in *p*-space) where all $D_i = 0$ is called a *leading* singularity, all others are referred to as *reduced* singularities of G, or I_G .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Analytic structure of Feynman integrals

If we knew the types of these singularities and the discontinuities along the associated branch cuts, we could, *in principle*, construct the function I_G from this data (Hilbert transform).

Conjecture (Cutkosky '60)

where d

The discontinuity of I_G with respect to the Landau singularity associated to $D_1 = \ldots = D_k = 0$ is given by

$$\operatorname{Disc}(I_G) = \int_{(\mathbb{M}^d)^l} \prod_{i=1}^k \delta^+(D_i) \prod_{j=k+1}^N \frac{1}{D_j}$$
$$\delta^+(q^2 - m^2) := \theta(q_0)\delta(q_0 - \sqrt{\vec{q}^2 + m^2}) \frac{1}{2\sqrt{\vec{q}^2 + m^2}}$$

Analytic structure of Feynman integrals

An unfinished proof can be found in arXiv:1512.01705 (Bloch, Kreimer). Alternative approach: "Regroup" Feynman integrals.

Theorem (Kreimer, MB)

The (unrenormalized) Feynman integral I_G can be written as a sum of cut integrals associated to spanning trees of G,

$$I_G = \sum_{T \in \mathcal{T}(G)} I_{G,T}$$

with

$$I_{G,T} := \int \prod_{e \in T} \frac{1}{D_e} \prod_{e' \notin T} \delta^+(D_{e'})$$

the original integral where all edges not in T have been cut.

Example

1. Diagrammatically,

2. In terms of integrals,

$$\begin{split} I_{\longrightarrow} = &\pi i \int_{\mathbb{R}^3} d^3 \vec{k} \frac{1}{k_0} \frac{1}{(k-p)^2 - m_2^2 + i\epsilon} \Big|_{k_0 = \sqrt{\vec{k}^2 + m_1^2 - i\epsilon}} \\ &+ \frac{1}{k_0 - p_0} \frac{1}{k^2 - m_1^2 + i\epsilon} \Big|_{k_0 = p_0 + \sqrt{(\vec{k} - \vec{p})^2 + m_2^2 - i\epsilon}}. \end{split}$$

(日) (四) (日) (日) (日)

An alternative point of view

Let's go to Outer space!

Parametric Feynman rules

Using the Schwinger trick we can rewrite a Feynman integral as

$$I_G := \int_{\Delta_G} \omega_G$$

where $\Delta_G := \{ [x_1 : \ldots : x_N] \in \mathbb{P}(\mathbb{R}^N) \mid x_i \ge 0 \} \cong \Delta^{N-1}$ and

$$\omega_G := \psi_G^{-\frac{d}{2}} \Theta_G^{N-h_1(G)\frac{d}{2}} \sum_{i=1}^N (-1)^i x_i dx_1 \wedge \ldots \wedge \stackrel{\wedge}{dx_i} \wedge \ldots \wedge dx_N$$

with ψ_G and Θ_G two graph polynomials, Θ_G depending on the masses m_1, \ldots, m_N and momenta p_1, \ldots, p_s .

・ロト・西ト・山田・山田・山口・

Parametric Feynman rules

Crucial identities

- 1. $\delta_{x_e}[\omega_G] = \omega_{G/e}$ if e is not a self-loop,
- 2. Res $_{\{x_e=0|e\in E_{\gamma}\}}[\omega_G] = \omega_{\gamma} \otimes \omega_{G/\gamma}$ if γ is divergent.

(and similar for Δ_G and its blow-up/compactification)

The first one allows to relate (reduced) Landau singularities (of the first type) of different Feynman integrals, the second one is fundamental for *renormalization*.

A moduli space of colored graphs

Suppose we are given only a finite set C of masses to "color" our Feynman graphs with, possibly with further restrictions on the coloring maps $c: E_G \to C$.

Definition

The moduli space of (metric) colored graphs with l loops and s legs is defined as

$$\mathcal{MG}_{l,s}^C := \Big(\bigcup_{G \in \mathbb{G}_{l,s}^C} \dot{\Delta}_G\Big)_{/\sim},$$

where $\mathbb{G}_{l,s}^{C}$ is the set of all 1PI Feynman diagrams with all vertices at least three-valent, internal edges colored by C, and \sim is induced by edge collapses (and graph isomorphisms).

Example

 $\mathcal{MG}_{1,3}^{\{1,2,3\},\mathsf{inj}}$ looks like

Example

・ロト・日本・日本・日本・日本・日本

Feynman integrals on $\mathcal{MG}_{l,s}^C$

Recall
$$I_G = \int_{\sigma_G} \omega_G$$
.

We see

- the integration domain σ_G is a cell in $\mathcal{MG}_{l,s}^C$,
- the integrand ω_G is a (compactly supported) distribution density on $\mathcal{MG}_{l,s}^C$.

This allows to

formulate amplitudes as "semi-discrete" volumes of MG^C_{l.s}

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• study renormalization on a Borel-Serre compactification $\widetilde{\mathcal{MG}}_{l,s}^C$ of $\mathcal{MG}_{l,s}^C$.

The topology of $\mathcal{MG}_{l,s}^C$

Theorem (Mühlbauer, MB)

1.
$$H_{s-1}(\mathcal{MG}_{1,s}^{\{1,...,s\},inj};\mathbb{Z}) \cong \mathbb{Z}^{\frac{(s-1)!}{2}}.$$

- 2. The Betti numbers $h_{s-1}(\mathcal{MG}_{1,s}^{\{1,\dots,m\}})$ grow polynomially of degree s with the number of colors m.
- 3. For all i < s 1 we have $h_i(\mathcal{MG}_{1,s}^{\{1,...,m\}}) = h_i(\mathcal{MG}_{1,s})$.

There are many interesting maps between these moduli spaces changing the number of colors, legs or loop numbers. Can these be used to study $H_*(\mathcal{MG}_{l,s};\mathbb{Q}) \cong H_*(\Gamma_{l,s};\mathbb{Q})$? (here $\Gamma_{l,0} = \operatorname{Out}(F_l)$, $\Gamma_{l,1} = \operatorname{Aut}(F_l), \ldots$)

(日)(1)<p

Back to Feynman integrals

Our theorem " $I_G = \sum_{T \in \mathcal{T}(G)} I_{G,T}$ ", as well as other instances of loop-tree duality, (could) have a nice reformulation:

The space $\mathcal{MG}_{l,s}^C$ is of dimension 3l - 4 + s. It deformation retracts onto a subspace of dimension 2l - 3 + s that has a natural decomposition into cubes (cf. sector decomposition). Each cell σ_G retracts onto a union of cubes, indexed by pairs $(G, T), T \in \mathcal{T}(G)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Loop-tree duality appears as the result of fiber integration!

Singularities of Feynman amplitudes

The natural cell decomposition of $\mathcal{MG}_{l,s}^C$ encodes relations between "neighboring" Feynman integrals.

Let us consider a theory with only cubic interactions (all graphs three-regular). Then the *l*-loop amplitude is the integral of a 3l - 4 + s-form on $\mathcal{MG}_{l,s}^C$ (or a 2l - 3 + s-form on the associated cube complex).

That is, we consider only contributions from the top-dimensional cells of $\mathcal{MG}_{l,s}^C.$

Singularities of Feynman amplitudes

However, the lower dimensional cells still carry information:

We can map the boundary strata of a cell σ_G to poles of the integrand of I_G (or the associated Landau varieties),

$$\rho: G \supset \gamma \longmapsto L_{G/\gamma}$$

where

$$L_{G/\gamma} := \bigcup_{I \subset E_G \setminus E_{\gamma}} \{ \text{Sol. of Landau's eq. for } \{D_i = 0 \} \}.$$

This is a map of posets between the set of subgraphs of G, ordered by reverse inclusion, and the singularities of I_G . Extending ρ to $\mathbb{G}_{l,s}^C$ allows to encode if and where two Feynman integrals I_G and $I_{G'}$ have singularities in common.

A graph complex

Definition

Let $GC_{l,s}^C := \mathbb{Z}_2 \langle G \mid G \in \mathbb{G}_{l,s}^C \rangle$, graded by #edges -1, and equip it with a differential d defined by

$$d(G,c) := \sum_{e \in E_G} (G/e, c_e)$$

where
$$c_e := c_{|E_G \setminus \{e\}}$$
. If e is a tadpole, set $G/e = 0$.

Experimental observation: The top rank homology classes seem to partition the set of graphs that contribute to the l loop and s legs amplitude into "nice" subamplitudes.

Example

The element

represent a class in $H_2(GC_{1,3}^{\{1,2\}}) \cong \mathbb{Z}_2^2$. The function $I_{G_1+\ldots+G_4}$ has (reduced) singularities along

$$\{p_i^2 = 4m_1^2, p_i^2 = 0, p_i^2 = (m_1 \pm m_2)^2 \mid i = 1, 2, 3\}.$$

The other class and its set of singularities is given by the same expressions, with m_1 and m_2 interchanged.

So, the full amplitude splits into $A_{l,s}(p) = I_1(p) + I_2(p)$ with both summands (and their singularities) related by a S_2 -symmetry.

Theorem (Kreimer, MB)

The "partition property" holds for all $H_{s-1}(GC_{1,s}^{\{1,\ldots,s\},inj})$, $s \geq 3$.

Conjecture (Kreimer, MB)

The "partition property" holds for all $H_{s-1}(GC_{1,s}^{\{1,\ldots,m\}})$, $s \geq 3$ and $m \geq 2$.

For l>1 we know nothing about the homology of this complex, might have to switch to the cubical world

・ロ・・ 日・ ・ 日・ ・ 日・ ・ つくつ

Theorem (Kreimer, MB)

The "partition property" holds for all $H_{s-1}(GC_{1,s}^{\{1,\dots,s\},inj})$, $s \geq 3$.

Conjecture (Kreimer, MB)

The "partition property" holds for all $H_{s-1}(GC_{1,s}^{\{1,\ldots,m\}})$, $s \geq 3$ and $m \geq 2$.

For l>1 we know nothing about the homology of this complex, might have to switch to the cubical world

- of course, in total agreement with Dirk's prophecy!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Thank you for your attention and, once again, happy birthday, Dirk!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ