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Introduction

One area of interest in quantum field theory concerns the description of phase
transitions which can be in particle physics or in material sciences

In general, dynamics of electron transport in materials are described by spin
models on discrete lattices

The phase transitions that such materials undergo can be described by
continuum quantum field theories with the same symmetry properties

One example is in the area of graphene which is a sheet of carbon atoms

Electrons are located at the corners of a honeycomb or hexagonal lattice and
can be studied with Monte Carlo or lattice methods

When the sheet is stretched it can undergo a quantum phase change from a
conductor to a Mott-insulating phase for instance
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The properties of the phase transition are described by Gross-Neveu-Yukawa
interactions with or without QED

Equally the Mott transition could be a mimic of spontaneous symmetry
breaking in the Standard Model

There is also a connection with continuum field theories whose Wilson-Fisher
fixed points describe various phase transitions in graphene

The focus here will be on the Gross-Neveu model but with variations in the
interaction

Specifically the case where the core interaction will have a non-abelian
symmetry structure

Recently such symmetries have arisen in a new spin model context where there
is a fractionalized Gross-Neveu model with a novel spectrum
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Renormalization and phase transitions

In the continuum quantum field theory underlying a second order phase
transition the renormalization group equation plays a key role

Phase transitions correspond to fixed points in the renormalization group flow
being defined by

β(g∗) = 0

where g∗ is the critical coupling and similarly for multi-coupling theories

The trivial solution at g∗ = 0 is known as the Gaussian fixed point

One important non-trivial example is the Wilson-Fisher fixed point which is
present in the d-dimensional theory

If
β(g) = − εg + ag 2 + bg 3 + O(g 4)

where d = Dc − 2ε and Dc is the critical dimension of the field theory then the
fixed point is at

g∗ = − ε

a
+ O(ε2)

5 / 37



Background
Gross-Neveu models

Large N approach
Conclusions

Introduction
Criticality

For SUf (N) Gross-Neveu

g∗ = − ε

2(N − 1)
+ O(ε2)

which illustrates the dependence on the symmetry group parameters

At either type of fixed point the evaluation of the renormalization group
functions leads to observables termed critical exponents

For example η = γψ(g∗) and ω = β′(g∗) and these will depend on d and any
parameters such as colour group Casimirs

They define the properties of the universal quantum field theory which
describes the Wilson-Fisher fixed point in all spacetime dimensions

They can be computed up to an approximation using methods such as large N,
functional renormalization group, d-dimensional conformal field theory and
matched Padé approximants based on ε expansion

Main condensed matter interest concerns the three dimensional theory
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The aim is to compute the large N critical exponents of this more general
non-abelian Gross-Neveu model at three orders in d-dimensions

A secondary motivation is to gain insight into the potential group Casimir
structure of the renormalization group invariant exponents in the universal
theory

This ought to give a flavour of what to expect for similar large N exponents in
a non-abelian gauge theory
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Basic Lagrangian

The Gross-Neveu (GN) model is a renormalizable quantum field theory in two
dimensions based on a 4-fermi interaction

The original Ising Gross-Neveu Lagrangian is

LGN = iψ̄i∂/ψi − mψ̄iψi +
g 2

2

(
ψ̄iψi

)2

where 1 ≤ i ≤ N for the SUf (N) flavour symmetry or it can be rewritten using
an auxiliary field

LGN = iψ̄i∂/ψi − mψ̄iψi + gσψ̄iψi − 1

2
σ2

In the underlying critical universal theory the σ field becomes dynamical and
moreover corresponds to the bound state of two fermions that is known to be
part of the spectrum in the true two dimensional theory

This version allows one to connect with four dimensional Gross-Neveu-Yukawa
(GNY) models through ultraviolet completion [Zinn-Justin]
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Extension of Gross-Neveu model

The phase transition of the recent investigation into the fractionalized
Gross-Neveu model is driven by a variation on the original Gross-Neveu model
called the chiral Heisenberg-Gross-Neveu (cHGN) given by

LcHGN = iψ̄i∂/ψi − mψ̄iψi +
g 2

2

(
ψ̄iλaψi

)2

or

LcHGN = iψ̄i∂/ψi − mψ̄iψi + gπaψ̄iλaψi − 1

2
πaπa

The ultraviolet completion to four dimensions is called the chiral
Heisenberg-Gross-Neveu (cHGNY) model with Lagrangian

LcHGNY = iψ̄i∂/ψi − mψ̄iψi +
1

2
∂µπ

a∂µπa +
1

2
g1π

aψ̄iλaψi +
1

24
g 2

2 (πaπa)2
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For the fractionalized Gross-Neveu model the λa correspond to SO(3) matrices
that satisfy

λa
bcλ

a
de = δbeδcd − δbdδce

The chiral Heisenberg Gross-Neveu model was also the basis for the phase
transition in graphene from a conductor to a Mott-insulator and large N
exponents were computed to O(1/N3)

In that case the symmetry group was SU(2) and λa corresponded to the Pauli
matrices

Can generalize the SU(3) computations to the case where λa are the group
generators of a non-abelian Lie group T a so that, for example,

T aT a = CF , f acd f bcd = CAδ
ab

Then the Mott-insulator transition corresponds to SU(2) in the fundamental
and the fractionalized Gross-Neveu is adjoint SO(3)
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Large N expansion of generalized non-abelian GN model

Large N critical point method of Vasil’ev et al determines the critical exponents
of the universality class as a function of d = 2µ

Key ingredient is the universal interaction which is common in all the theories
of the universality class whose critical dimension is 2n where n is an integer

The ε expansion of the large N critical exponents are in complete agreement
with the ε expansion of each theory in the tower where d = 2n − 2ε

For the generalized non-abelian Gross-Neveu universality class the critical point
Lagrangian is

L = iψ̄i∂/ψi + πaψ̄iT aψi + f (πa)

where the fermion kinetic term and the interaction define the canonical
dimensions of the fields where f (πa) corresponds to the spectator sector
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In coordinate space the propagators in the asymptotic limit to the fixed point
take the scaling forms, (d = 2µ),

ψ(x) ∼ Ax/

(x2)α

[
1 + A′(x2)λ

]
, π(x) ∼ C

(x2)γ

[
1 + C ′(x2)λ

]
where corrections to scaling are included and

α = µ + 1
2
η , γ = 1 − η − χπ

which imply
2α + γ = 2µ + 1 − χπ

The anomalous dimension of ψ is η and χπ is the vertex anomalous dimension
and have expansions

η(µ) =
∞∑
n=1

ηn(µ)

Nn
,

Explicit expressions for η and χπ can be found by algebraically solving the
skeleton Schwinger-Dyson equations in the approach to criticality
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Graphs

Graphs for to determine η1 and η2 are

0 = π−1 + +
Π1

0 = ψ−1 + +
Σ1

No dressing of internal lines since the inclusion of the anomalous dimension in
the propagator exponent would overcount those contributions

Two loop graphs are analytically regularized by ∆ which is introduced by

χπ → χπ + ∆

Two loop and other graphs are computed using conformal integration or
uniqueness methods
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Uniqueness

In coordinate space when the sum of the exponents at a 3-point vertex sum to
d + 1 then the integration over z can be carried out

x y

z

0

α

γ β ≡ a(α)a(β−1)a(γ−1)
(β−1)(γ−1)

x y

0

µ− α

µ− γ + 1µ− β + 1

where α + β + γ = 2µ + 1 and

a(α) =
Γ(µ− α)

Γ(α)

There is a similar rule for a purely scalar vertex but does not extend to the

quark-gluon vertex of QCD
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Leading order results

From the first few orders of 2-point functions in 1/N find

η1 = − 2Γ(2µ− 1)CF

µΓ(1− µ)Γ(µ− 1)Γ2(µ)TF
, χπ 1 =

(2CF − CA)µ

2(µ− 1)CF
η1

η2 =

[
(2µ− 1)CF

(µ− 1)
Ψ(µ)− µCA

2(µ− 1)
Ψ(µ) +

(4µ− 1)(2µ− 1)CF

2µ(µ− 1)2

− 3µCA

2(µ− 1)2

]
η2

1

CF

where
Ψ(µ) = ψ(2µ− 1) − ψ(1) + ψ(2− µ) − ψ(µ)

The vertex anomalous dimension is determined after renormalization at
O(1/N2) from ensuring that there are no ln(x2) terms to preserve the scaling
behaviour in the critical limit
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The exponent 1/ν is determined from the correction to scaling part of the
asymptotic propagators by setting 1/ν = 2λ where λ0 = µ − 1

This requires the corrections to the inverse propagator scaling functions where
are determined from the inverse Fourier transform of the momentum space
2-point function scaling form

Explicitly we have

ψ−1(x) ∼ r(α− 1)x/

A(x2)2µ−α+1

[
1− A′s(α− 1)(x2)λ

]
π−1(x) ∼ p(γ)

C(x2)2µ−γ

[
1− C ′q(γ)(x2)λ

]
and

a(α) =
Γ(µ− α)

Γ(α)
, p(γ) =

a(γ − µ)

a(γ)
, r(α) =

αp(α)

(µ− α)

q(γ) =
a(γ − µ+ λ)a(γ − λ)

a(γ − µ)a(γ)
, s(α) =

α(α− µ)q(α)

(α− µ+ λ)(α− λ)
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With the exponents

α = µ + 1
2
η , γ = 1 − η − χπ , λ = µ − 1 + λ̃

where λ̃ is O(1/N) then

q(γ) =
a(γ − µ+ λ)a(γ − λ)

a(γ − µ)a(γ)

is O(1/N) since

a(α) =
Γ(µ− α)

Γ(α)

This means there is a reordering within the algebraic solution of the skeleton
Dyson-Schwinger equations governing the correction to scaling so that higher
order diagrams are needed to find λ2
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+

Π6C1

+

Π6C2

+

Π5C1

+

Π5C2

+

Π3C

+

Π4C

Π2C1

+

Π2C2
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The higher order corrections contain light-by-light graphs which will give group
factors like

Tr
(
T aT cT dT e

)
Tr
(
T bT eT cT d

)
which are proportional to δab

Have used the color.h routine of Form to rationalize such group factors into
a basis of Casimirs

In addition to CA and CF the rank 4 fully symmetric tensor

dabcd
F =

1

6
Tr
(
T aT (bT cT d)

)
will appear but the rank 3 symmetric tensor

dabc =
1

2
Tr
(
T a{T b,T c}

)
is absent
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Solving the corrections to the Schwinger-Dyson equation in the critical limit
using the values for the master integrals at O(1/N2) gives

λ2 =

[[
µ(3µ2 − 6µ+ 2)C 2

ACF

16TF
+ 4µ

dabcd
F dabcd

F CF

T 3
FNA

]
1

(µ− 1)(µ− 2)2η1

−
[

1

24
µ2(2µ− 3)C 2

A + 2µ2(2µ− 3)
dabcd
F dabcd

F

T 2
FNA

]
[Ψ2(µ) + Φ(µ)]

(µ− 1)(µ− 2)

+
[
−(2µ− 1)2(µ+ 1)(µ− 1)(µ− 2)2C 2

F

+ µ(2µ− 1)(µ− 1)(µ− 2)2CFCA

+
1

24
µ2(µ− 1)(6µ2 − 21µ+ 20)C 2

A

− µ2(3µ− 5)(2µ− 5)
dabcd
F dabcd

F

T 2
FNA

]
Ψ(µ)

(µ− 1)2(µ− 2)2
+ . . .
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+

[
−3

2
µ2(2µ+ 1)(µ− 2)C 2

F +
3

4
µ2(2µ+ 5)(µ− 2)CFCA

− 11

8
µ2(µ− 2)C 2

A + 3µ2(5µ− 7)
dabcd
F dabcd

F

T 2
FNA

]
Θ(µ)

(µ− 1)(µ− 2)

+
3µ(2µ− 1)

4(µ− 1)2
CFCA +

(2µ− 1)2(2µ3 − 4µ2 − 2µ+ 1)

2µ(µ− 1)2
C 2
F

− µ2(8µ4 − 42µ3 + 85µ2 − 75µ+ 20)

48(µ− 1)3(µ− 2)2
C 2
A

− µ2(4µ4 − 18µ3 + 26µ2 − 15µ+ 7)

2(µ− 1)3(µ− 2)2

dabcd
F dabcd

F

T 2
FNA

]
η2

1

C 2
F

where

Θ(µ) = ψ′(µ) − ψ′(1)

Φ(µ) = ψ′(2µ− 1) − ψ′(2− µ) − ψ′(µ) + ψ′(1)
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η3
To proceed to next order need to use another technique which is the large N
conformal bootstrap of Vasil’ev et al motivated by early work by Parisi et al

Same asymptotic scaling forms of the propagators are used but the 3-point
function Schwinger-Dyson equation of primitive diagrams is solved

+ + +

+

where each vertex is replaced by a conformal triangle
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Conformal triangle
The conformal triangle vertex is

α3

α1 α2

= f(αi, ai)

α1 α2

α3

a2 a1

a3

with all internal vertices unique and

a1 + a2 + α3 = 2µ + 1

a2 + a3 + α1 = 2µ + 1

a3 + a1 + α2 = 2µ + 1

where f (αi , ai ) is the value of the vertex itself

Conformal transformation is
xµ →

xµ
x2

which implies

(x/− y/) → − y/(x/− y/)x/

x2y 2
= − x/(x/− y/)y/

x2y 2
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To determine η at O(1/N3) requires not only the evaluation of the two and
higher loop graphs but also the expansion of the one loop ones to the same
order

Regularization is required by shifting πa and one ψi external leg dimension

α+ ∆̃π − δ′ γ α+ ∆̃π

γ + ∆̃π − δ′ α+ ∆̃π

+ δ′
α+ ∆̃π γ + ∆̃π

α α

γ + ∆̃π + δ

α+ ∆̃π − δ α+ ∆̃π − δ

0

x y

where δ and δ′ are the regulators and χπ = 2∆̃π
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Applying the conformal transformation to the regularized 3-point vertex
diagrams with conformal triangles as vertices produces

α+ ∆̃π − δ′ γ α+ ∆̃π

γ + ∆̃π − δ′ α+ ∆̃π

+ δ′
α+ ∆̃π γ + ∆̃π

α α

γ + ∆̃π + δ

0

x y

25 / 37



Background
Gross-Neveu models

Large N approach
Conclusions

Chiral Heisenberg Gross-Neveu
Results

This reduces to the diagram to a d-dimensional 2-point function

α+ ∆̃π − δ′ γ α+ ∆̃π

γ + ∆̃π − δ′ α+ ∆̃π

+ δ′
α+ ∆̃π γ + ∆̃π

δ − ∆̃π

x y

which equates to

α+ ∆̃π − δ′ γ α+ ∆̃π

γ + ∆̃π − δ′ α+ ∆̃π

+ δ′
α+ ∆̃π γ + ∆̃π

x y

× fA(δ − ∆̃π)

where the graphs are simple to evaluate
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The function fA(ε− ∆̃π) can be written as

fA(δ − ∆̃π) = exp
[
x1(δ − ∆̃π) + x2(δ − ∆̃π)2 + x3(δ − ∆̃π)∆̃π

+ x4(δ − ∆̃π)δ′ + . . .
]

to the order of the approximation needed for finding η3

The parameters xi are determined by repeating the process separately by
choosing in turn each of the other two external points as the origin of the
conformal transformation

For the external points x and y the discrepancy functions are fB(δ′ − ∆̃π) and
fC (∆̃π)
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Ultimately one loop graph can be written as

Γ1 = − Qπ

∆̃π[∆̃π − δ][∆̃π − δ′]
exp

(
FΓ1 (δ, δ′, ∆̃π)

)
where

FΓ1 (δ, δ′, ∆̃π) =

[
5B(γ)− 2B(α− 1)− 3B(0)− 2

(α− 1)

]
∆̃π

+

[
B0 − Bα−1 −

1

(α− 1)

]
δ′

− [Bγ − B0] δ + . . .

with
B(0) = ψ(µ) + ψ(1) , B(α) = ψ(α) + ψ(µ− α)

for α 6= 0 or µ
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In effect in this conformal bootstrap approach, one is carrying out perturbation
theory in the vertex anomalous dimension χπ = 1

2
∆̃π

Sum of all 3-point graphs is denoted by V (ȳ , α, γ; δ, δ′) and the consistency
equations for the vertex functions are

1 = V (ȳ , α, γ; 0, 0)

TFN r(α− 1)

CFp(γ)
=

[
1 + 2χπ

∂
∂δ′V (ȳ , α, γ; δ, δ′)

][
1 + 2χπ

∂
∂δ

V (ȳ , α, γ; δ, δ′)
] ∣∣∣∣∣
δ=δ′=0

which involve two unknown variables ȳ and η

For O(1/N3) graphs only need the difference of[
∂

∂δ′
V (ȳ , α, γ; δ, δ′) − ∂

∂δ
V (ȳ , α, γ; δ, δ′)

]∣∣∣∣
δ=δ′=0

at leading order
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Value of η3

Solving the large N conformal bootstrap equations in d-dimensions yields

η3 =

[
(2µ− 1)(35µ3 − 43µ2 + 16µ− 2)

4µ2(µ− 1)4
C 2
F −

µ2(43µ2 − 35µ+ 6)

8µ2(µ− 1)4
CFCA

− µ4(4µ3 − 5µ2 − 9µ− 14)

48µ2(µ− 1)4
C 2
A

− µ4(4µ3 − 2µ2 − 3µ+ 10)

4µ2(µ− 1)4

dabcd
F dabcd

F

T 2
FNA

+

[
1

2
(11µ− 3)(2µ− 1)2 − 1

4
µ(19µ− 2)(2µ− 1)CFCA

− 1

24
µ3(2µ2 − 6µ− 23)C 2

A

− µ3(2µ2 − 3µ+ 4)dabcd
F dabcd

F

2T 2
FNA

]
Ψ(µ)

µ(µ− 1)3
+ . . .
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(2µ− 1)(35µ3 − 43µ2 + 16µ− 2)

4µ2(µ− 1)4
C 2
F −

µ2(43µ2 − 35µ+ 6)

8µ2(µ− 1)4
CFCA

+
3(2CF − 4µCF + µCA)2

8(µ− 1)2

[
3Ψ2(µ) + Φ(µ)

]
+

[
(2µ− 1)(µ+ 1)C 2

F −
1

2
µ(5µ− 1)CFCA −

1

24
µ2(µ− 4)C 2

A

+ µ2(µ+ 8)
dabcd
F dabcd

F

T 2
FNA

] [
Θ(µ) +

1

(µ− 1)2

]
1

4(µ− 1)2

−
[
C 2
A − 24

dabcd
F dabcd

F

NAT 2
F

] [
Θ(µ) +

1

(µ− 1)2

]
× [2Ψ(µ) + Ξ(µ)]

µ2

16(µ− 1)

]
η3

1

C 2
F
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Ξ(µ) is a new function that appears at O(1/N3) in non-chirally symmetric
theory

It is related to the derivative with respect to the regularizing parameter ∆ of

1

1

µ− 1

µ− 1

µ− 1 + ∆

Analytically it can be expressed as an 4F3 function where the regulator
derivative translates to derivatives of the parameters

The ε expansion of Ξ(µ) is known to all orders near 2 and 4 dimensions and
contains ζ5,3 at high order in ε

In three dimensions [Vasil’ev et al]

Ξ

(
3

2

)
=

3

2π2
Ψ′′
(

1

2

)
+ 2 ln(2) +

4

3
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Checks

As the exponent evaluation has been carried out for the general interaction
πaψ̄iT aψi taking certain limits should produce known results

The original Gross-Neveu interaction, σψ̄iψi , corresponds to the limit

CF → 1 , TF → 1 , dabcd
F dabcd

F → 1 , CA → 0

The Mott insulating phase corresponds to taking the colour group to be SU(2)

CF →
3

4
, TF →

1

2
, dabcd

F dabcd
F → 5

64
, CA → 2

The fractionalized Gross-Neveu model is described by the exponents in the
adjoint of SO(3)

CF → 2 , TF → 2 , dabcd
F dabcd

F → 20

3
, CA → 2

All agree with direct large N evaluations and the ε expansion of all known three
and four loop renormalization group functions near four dimensions
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Three dimensions
In three dimensions the exponents take a simpler form

For instance in the adjoint representation where

CF = CA , TF = CA , dabcd
F dabcd

F = dabcd
A dabcd

A

then

λ = 1 − 16

3π2N
+

[
96

dabcd
A dabcd

A

C 4
ANA

+
5248

π2
− 432

]
1

27π2N2

η =
8

3π2N
+

1216

27π4N2

+
[
[9072ζ3 − 864π2 ln 2][C 4

ANA − 24dabcd
A dabcd

A ]

+ [25920π2 − 435456]dabcd
A dabcd

A

+ [151072− 8760π2]C 4
ANA

] 1

243π6C 4
ANAN3
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Conclusions

Have provided a set of general critical exponents for a scalar Yukawa type of
interaction that includes a Lie group generator in the large N expansion to
third order

The d-dimensional exponents agree with direct computations carried out in
specific models by taking various limits

Essential for this was the color package written in Form that expresses group
generator combinations in terms of colour Casimirs

This allows one to track the presence and contribution of the so-called
light-by-light diagrams; such graphs will arise in similar computations in QCD

A similar approach can be used for other universality classes with a different
basic driving interaction at criticality but endowed with a Lie group symmetry
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Gross-Neveu-Yukawa models

The corresponding renormalizable four dimensional Gross-Neveu-Yukawa
(GNY) model is

LGNY = iψ̄i∂/ψi − mψ̄iψi +
1

2
∂µσ∂

µσ +
1

2
g1σψ̄

iψi +
1

24
g 2

2σ
4

The quartic scalar interaction is only relevant in four dimensions due to power
counting and is termed a spectator

The canonical dimensions of the fields at the Wilson-Fisher fixed point are

[ψ] = 1
2
d − 1

2
, [σ] = 1

with both couplings dimensionless in d = 4

Both the GN and GNY models lie in the same universality class at the
Wilson-Fisher fixed point in 2 < d < 4
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