

CATEGORICAL INTERACTIONS IN ALGEBRA, GEOMETRY AND PHYSICS: CUBICAL STRUCTURES AND TRUNCATIONS

Ralph Kaufmann

Purdue University

IHES, remote, Nov 2020

イロト イボト イエト エヨー のくで

Introduction 00000000	Feynman categories		W-construction		
Plan					

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Introduction

- Peynman categories Definition
- Hopf algebras
 - Bi- and Hopf algebras
- 4 Constructions

 $\mathcal{F}_{dec\mathcal{O}}$

6 W-construction

W-construction

6 Geometry

Moduli space geometry

Extras

Master equations

Outlook

Next steps and ideas

Dedica	tion				
	Feynman categories				

Celebrating 60 years of achievement

Happy birthday Dirk!

Personal note

Ever since I was a post-doc back in 1998 at the IHES the conversations and discussions with Dirk have been very influential for me. Much of the latest developments of what I will be presenting would not be in the same form, or exist, if these would not have taken place. Thank you!

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Idoac /	and Goals				
	Feynman categories 0000000000000000				

Main idea

- Several structures are most naturally regarded in a categorical context → Feynman categories.
- There are natural structures on morphisms that are the "raison d'être" for many other more complicated structures.

Main Objective

Find common categorical background for various constructions in Algebra, Geometry and Physics, which allows for

- Deeper theoretical understanding.
- O Calculations.
- Inks between Algebra, Geometry and Physics.

Automatic relation between different structures

Functors, push-forward, pull-back, six functor formalism.

Constu	etions				
	Feynman categories				

Combinatorics \rightsquigarrow Algebra

The morphisms directly yield colored or partial algebras and co-algebras. Hopf and bialgebras ensue.

Representations \rightsquigarrow Combinatorics, Algebra and Geometry

Look at representations. These are functors into a target category \mathcal{C} . This can have combinatorial, algebraic or geometric flavor.

Different flavours

Can also enrich, this makes the morphisms directly linear or geometric. Spaces of morphisms, dg morphisms etc.

<u> </u>							
00000000							
Introduction	Feynman categories	Hopf algebras	Constructions	W-construction	Geometry	Extras	Outlook

Constructions

Constructions ~> Geometry, enrichment

- O Grothendieck construction. E.g. gives various types of graphs.
- *W* construction → cubical complexes. E.g. of graphs → moduli spaces.
- - object, simplicial, planar rooted trees (non-sigma operadic), nestings of these (hyper-) ...
 - object, crossed-simplicial (symmetric) aka. NCSet, rooted trees (operads), nestings of these ...

ション ふゆ アメヨア オヨア コー ろくの

- Cyclic objects, planar trees, nestings, ...
- Graphs, nestings (hyper–), ...

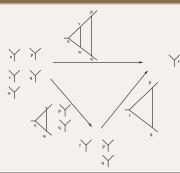
Introduction Feynman categories Hopf algebras Constructions W-construction Geometry Extras Outlook

Example for a graphical Feynman category

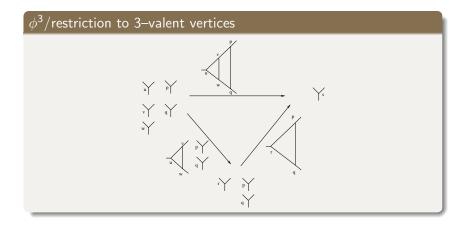
Objects and morphisms

- Objects are stars: labeled vertices, with marked flags/tails.
- Morphisms: Graphs, with identification data for the source and target.

ϕ^3 /restriction to 3-valent vertices



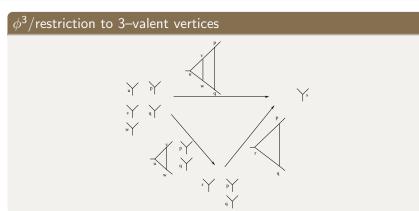
Note: "everything" is labelled and tracked.



Rules

- Composition of morphisms $\hat{=}$ insertion.

	Feynman categories				
Fyamn	le				



Subtleties

- Isomorphisms and automorphisms of objects → groupoid.
- Isomorphisms and automorphisms of morphisms → multiplicities and compatibilities.

Example cubical complex

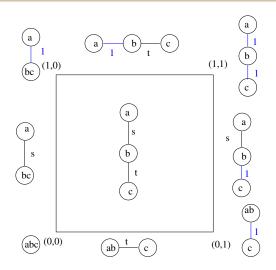


Figure: The cubical structure in the case of n = 3. One can think of the edges marked by 1 as cut.

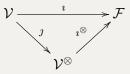
・ロト・日本・日本・日本・日本・日本

Data

- $\bigcirc \mathcal{V}$ a groupoid
- \oslash \mathcal{F} a symmetric monoidal category
- $\odot \ \imath : \mathcal{V} \to \mathcal{F}$ a functor.

Notation

 \mathcal{V}^{\otimes} the free symmetric category on \mathcal{V} (words in $\mathcal{V}).$



	Feynman categories 000000000000000000000000000000000000			
Feynm	an category			

Definition ([KW17])

Such a triple $\mathfrak{F}=(\mathcal{V},\mathcal{F},\imath)$ is called a Feynman category if

- ι^{\otimes} induces an equivalence of symmetric monoidal categories between \mathcal{V}^{\otimes} and $Iso(\mathcal{F})$.
- *i* and *i*[⊗] induce an equivalence of symmetric monoidal categories between $Iso(\mathcal{F} \downarrow \mathcal{V})^{\otimes}$ and $Iso(\mathcal{F} \downarrow \mathcal{F})$.
- For any $* \in \mathcal{V}$, $(\mathcal{F} \downarrow *)$ is essentially small.

Basic consequences

$$X\simeq \bigotimes_{v\in I} *_v$$

② φ : Y → X, φ ≃ ⊗_{v∈I} φ_v, φ_v : Y_v → *_v, Y ≃ ⊗_{v∈I} Y_v. The morphisms φ_v : Y → *_v are called basic or one–comma generators.

Introduction 00000000	Feynman categories 00●0000000000000000000000000000000000		W-construction	Geometry 000000	Extras 000000	
Examp	ole					

Diagram

Introduction Feynman categories Hopf algebras Constructions W-construction Geometry Extras Outlook

Graph related Feynman categories. Why Feynman?

Math

Basic graphs, full subcategory of Borisov-Manin category of graphs whose objects are aggregates of corollas (no edges). The morphisms have an underlying graph, the ghost graph.

Physics (connected case)

Objects of ${\cal V}$ are the vertices of the theory. The morphims of ${\cal F}$ "are" the possible Feynman graphs. Both can be read off the Lagrangian or actions.

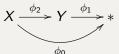
The source of a morphisms ϕ_{Γ} "is" the set of vertices $V(\Gamma)$ and the target of a basic morphism is the external leg structure $\Gamma/E(\Gamma)$. The terms in the *S* matrix corresponding to the external leg structure * is $(\mathcal{F} \downarrow *_v)$. "Dressed vertex".

Examp		000000000	0000000	0000000	000000	000000	0000
	Feynman categories						

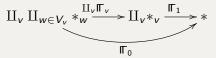
Roughly (in the connected case and up to isomorphism)

The source of a morphism are the vertices of the ghost graph Γ and the target is the vertex obtained from Γ obtained by contracting all edges. If Γ is not connected, one also needs to merge vertices according to ϕ_V .

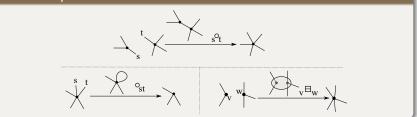
Composition corresponds to insertion of ghost graphs into vertices.



up to isomorphisms (if Π_0 , Π_1 are connected) corresponds to inserting Π_v into $*_v$ of Π_1 to obtain Π_0 .



Basic morphisms



Names

- Non-self gluing/(virtual) edge contraction
- Self-gluing/(virtual) loop contraction (exclude for trees/forests)
- Merger (exclude for connected).

Introduction Feynman categories Hopf algebras Constructions W-construction Geometry Extras Outlook "Representations" of Feynman categories: OF Feynman categories: Ops and Mods Mods

Definition

Fix a symmetric cocomplete monoidal category C, where colimits and tensor commute, and $\mathfrak{F} = (\mathcal{V}, \mathcal{F}, \imath)$ a Feynman category.

- Consider the category of strong symmetric monoidal functors \mathcal{F} - $\mathcal{O}ps_{\mathcal{C}} := Fun_{\otimes}(\mathcal{F}, \mathcal{C})$ which we will call \mathcal{F} -ops in \mathcal{C}
- \mathcal{V} - $\mathcal{M}ods_{\mathcal{C}} := Fun(\mathcal{V}, \mathcal{C})$ will be called \mathcal{V} -modules in \mathcal{C} with elements being called a \mathcal{V} -mod in \mathcal{C} .

Trival op

Let $\mathcal{T}: \mathcal{F} \to \mathcal{C}$ be the functor that assigns $\mathbb{I} \in Obj(\mathcal{C})$ to any object, and which sends morphisms to the identity of the unit.

Remark

 \mathcal{F} - $\mathcal{O}\textit{ps}_{\mathcal{C}}$ is again a symmetric monoidal category.

Introduction Feynman categories Hopf algebras Constructions W-construction Geometry Extras Outlook

Ops as "Feynman rules"

Space of fields and propagators

Fix a linear target category for general graph type FCs: $Vect_m/k$; k-vector spaces with a non-degenerate (super)-symmetric bilinear form.

Picking a basis ϕ_i (of fields), the quadratic form $g_{ij} = \langle \phi_i, \phi_j \rangle$ will give the Casimir (propagator)

$$C = \sum_{ij} g^{ij} \phi_i \otimes \phi_j$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Introduction Feynman categories Hopf algebras Constructions W-construction Geometry Extras Outlook

Vertex factors from $\mathcal{O} \in \mathcal{O}\textit{ps}$

In the simplest case: for each vertex $*_S$, we have an element, the vertex factor:

$$Y_{S} := \mathcal{O}(*_{S}) : W^{\otimes S} \to k$$

For a graph morphisms ϕ , we get the morphism given by contacting tensors with the propagator

$$\bigotimes_{v\in V} \mathcal{O}(*_v)\otimes C^{\otimes E} \to \check{W}^{\otimes F}\otimes W^{\otimes E} \to k$$

where V are the vertices, F are the flags or half edges, and E are the edges of the graph.

Introduction Feynman categories Hopf algebras Constructions W-construction Geometry OCODO OCODO

Remarks

Can do different field lines as colors. Can do more elaborate propagators.

Introduction Feynman categories Hopf algebras Constructions W-construction Geometry Extras Outlook

Examples based on \mathfrak{G} : morphisms have underlying graphs

F	Feynman category for	condition on graphs additional decoration
D	operads	rooted trees
\mathfrak{O}_{mult}	operads with mult.	b/w rooted trees.
C	cyclic operads	trees
G	unmarked nc modular operads	graphs
\mathfrak{G}^{ctd}	unmarked modular operads	connected graphs
M	modular operads	connected + genus marking
$\mathfrak{M}^{nc,}$	nc modular operads	genus marking
\mathfrak{D}	dioperads	connected directed graphs w/o directed
		loops or parallel edges
P	PROPs	directed graphs w/o directed loops
\mathfrak{P}^{ctd}	properads	connected directed graphs
		w/o directed loops
$\mathfrak{D}^{\circlearrowleft}$	wheeled dioperads	directed graphs w/o parallel edges
$\mathfrak{P}^{(\mathrm{O},\mathit{ctd})}$	wheeled properads	connected directed graphs
$\dot{\mathfrak{P}}_{Q}$	wheeled props	directed graphs

Table: List of Feynman categories with conditions and decorations on the graphs, yielding the zoo of examples

Introduction Feynman categories Hopf algebras Constructions W-construction Geometry OCOCO OUTON OUTON

Theorem

The forgetful functor $G : \mathcal{O}ps \to \mathcal{M}ods$ has a left adjoint F (free functor) and this adjunction is monadic. The endofunctor $\mathbb{T} = GF$ is a monad (triple) and $\mathcal{F}-\mathcal{O}ps_{\mathcal{C}}$, algebras over the triple.

Theorem

Feynman categories form a 2-category and it has push-forwards $f_!$ and pull-backs f^* for Ops and Mods.

Remarks

The push-forward is given by a left Kan extension $f_1 = Lan_f$. Sometimes there is also a right adjoint $f_* = Ran_f$ which is "extension by zero" together with its adjoint f^1 will form part of a 6 functor formalism.

Other	examples				
	Feynman categories			Extras 000000	

Trivial $\mathcal{V}: \mathcal{V} = \underline{*}$

- $\mathcal{V}^{\otimes} \simeq \underline{N}$ in the *non–symmetric case*. $\mathcal{V}^{\otimes} \simeq \mathbb{S}$ in the *symmetric* case. Both categories have the natural numbers as objects and while \underline{N} is discrete $Hom_{\mathbb{S}}(\underline{n},\underline{n}) = \mathbb{S}_n$.
- \mathcal{V} - $\mathcal{M}ods_{\mathcal{C}}$ are simply objects of \mathcal{C} .

$\mathcal{F}=\mathcal{V}^{\otimes}$, groupoid reps

 \mathcal{F} - $\mathcal{O}ps_{\mathcal{C}} = \mathcal{V}$ - $\mathcal{M}ods_{\mathcal{C}} = Rep(\mathcal{V})$, that is groupoid representation. Special case $\mathcal{V} = \underline{G}$:

- \mathcal{F} - $\mathcal{O}ps_{\mathcal{C}}$ are representations.
- Morphisms induced by $f: H \to G \rightsquigarrow \underline{f}: \underline{H} \to \underline{G}$.
- <u>f</u>^{*} is restriction, <u>f</u>₁ is induction, adjointness is Frobenius reciprocity.

Surj, (commutative) Algebras

 $\begin{aligned} \mathcal{F} &= \mathcal{S}\textit{urj} \text{ is finite sets with surjections. } \textit{lso}(\textit{sk}(\mathcal{S}\textit{urj})) = \mathbb{S}. \\ \mathcal{F} &- \mathcal{O}\textit{ps}_{\mathcal{C}} \text{ are commutative algebra objects in } \mathcal{C}. \text{ Let } \mathcal{O} \in \mathcal{F} \text{-} \mathcal{O}\textit{ps}_{\mathcal{C}}. \end{aligned}$

- $A = \mathcal{O}(\underline{1}).$
- $\mathcal{O}(\underline{n}) = A^{\otimes n}$ (\mathcal{O} is monoidal).
- $\pi: \underline{2} \to \underline{1}$ gives the multiplication $\mu = \mathcal{O}(\pi): A^{\otimes 2} \to A$.
- π ∘ (π II id) = (π ∘ id) II π = π₃ : <u>3</u> → <u>1</u>; product is associative.

• (12) $\circ \pi = \pi$; so product is commutative.

More exampes, see e.g. [Kau20]

Hopf algebras

Other versions

Feynman categories

000000000000000

Introduction

 If once considers the non-symmetric analogue, one obtains ordered sets, with order preserving surjections and associative algebras.

Constructions

2) The \mathcal{F} - $\mathcal{O}ps_{\mathcal{C}}$ for $\mathcal{F}in\mathcal{S}et$ are unital commutative algebras.

More examples of this type

- Finite sets and injections → FI algebras, Church-Farb-Ellenberg.
- $\bigcirc \Delta_+ S$ crossed simplicial group. There are the skeleton of non-commutative sets: order on the fibers of morphisims

Geometry

Extras

Outlook

Introduction Feynman categories Hopf algebras Constructions W-construction Geometry Consolo October Oc

Basic structures

Assume \mathcal{F} is decomposition finite. Consider $\mathcal{B} = Hom(Mor(\mathcal{F}), \mathbb{Z})$. Let μ be the tensor product with unit $id_{\mathbb{I}}$. $\Delta(\phi) = \sum_{(\phi_0,\phi_1):\phi=\phi_1\circ\phi_0} \phi_0 \otimes \phi_1$ and $\epsilon(\phi) = 1$ if $\phi = id_X$ and 0 else.

Quotient by symmetries/isomorphisms

We let $f \sim g$ is there are isomorphisms σ, σ' such that $f = \sigma^{-1}g\sigma$ and we set $\mathcal{B}^{iso} = \mathcal{B}/\sim$.

Theorem (Galvez-Carrillo, K, Tonks)

For a Feynman category, on \mathcal{B}^{iso} the structure above together with the multiplication $\mu = \otimes$ induce a bi–algebra structure. Under certain explicitly checkable assumptions, a canonical quotient is a Hopf algebra.

Introduction	Feynman categories	Hopf algebras	Constructions	W-construction	Geometry	Extras	Outlook
		00000000					

Theorem

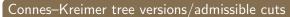
In the non- Σ case, if the monoidal structure is strict, $\mathcal B$ as above is already a bi-algebra.

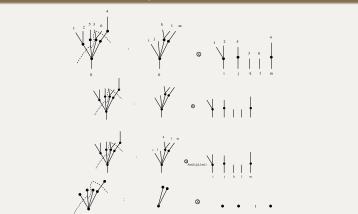
The quotient in the $\neg\Sigma$ case

Let $\mathcal{I} = \langle id_X - 1 \rangle$, then $\mathcal{H} = \mathcal{B}/\mathcal{I}$. $1 = id_{\mathbb{I}_{\mathcal{F}}}$. "Reason:" $\Delta(\phi) = id_X \otimes \phi + \phi \otimes id_Y + \dots$ In the symmetric case this is more complicated.

Hopf algebras/(co)operads/Feynman category

H _{Gont}	$\mathit{Inj}_{*,*} = \mathit{Surj}^*$	\mathfrak{F}_{Surj}
H _{CK}	leaf labelled trees	\mathfrak{F} Surj, \mathcal{O}
$H_{CK,graphs}$	graphs	\mathfrak{F}_{graphs}
H_{Baues}	Inj ^{gr} _{*,*}	$\mathfrak{F}_{Surj,odd}$





DIFFERENT VERSIONS: Fully labelled, planar or non planar, equivariant, contracting legs aka. quotienting out by ideal.

	Feynman categories			Extras 000000	
Remar	ks				

Upshot: Common framewok

In this fashion, we can reproduce Connes–Kreimer's Hopf algebra, the Hopf algebras of Goncharov and a Hopf algebra of Baues that he defined for double loop spaces. This is a non–commutative graded version.

There is a three-fold hierarchy.

- A non-commutative version
- 2 a commutative version and
- e) an "amputated" version.

Decoration

Through decoration get for instance motic Hopf algebras of Brown.

	000000000000000000000000000000000000000	0000000000	00000000	0000000	000000	000000	0000
Remark							

Remaks

- Baues and Gontcharov: "Simplices form an operad".
- In fact use new notion of co-operads with multiplication.
- Sector to not necessarily free case with multiplication. $\Delta = (id \otimes \mu^{\otimes n}) \circ \check{\gamma}.$ Filtrations instead of grading. Developable and deformation of associated graded.
- Iterated co-products correspond to elements in the nerve.

$$X_n \stackrel{\phi_n}{\to} X_{n-1} \cdots X_1 \stackrel{\phi_1}{\to} X_0$$

This is related to the + construction and the CK-trees of sub-divergencies.

The graph case (core Hopf algebra)

Theorem

On isomorphism classes $I\!\Gamma$ in Agg^{ctd} .

(1)
$$\Delta^{iso}(\mathbf{\Gamma}) = \sum_{\mathbf{\Gamma}_1 \subset \mathbf{\Gamma}} \mathbf{\Gamma} / \mathbf{\Gamma}_1 \otimes \mathbf{\Gamma}_1 = \sum_{\mathbf{\Gamma}_1 \subset \mathbf{\Gamma}} \mathbf{\Gamma}_0 \otimes \mathbf{\Gamma}_1$$

Here $\[Gamma]$ is the isomorphism class $\[Gamma] = \[Gamma](\phi)$ and $\[Gamma]_1 = \[Gamma](\phi_1)$ is a subgraph, which corresponds to the isomorphism class of a decomposition $[(\phi_0, \phi_1)]$ where then necessarily $\[Gamma](\phi_0) = \[Gamma](\phi)/\[Gamma]_1$. Moreover if $\[Gamma]$ is connected, so is $\[Gamma]_0$. — both are isomorphism classes in $(Agg^{ctd} \downarrow Crl)$.

Basic factorization/ comodule structure B^+ operator

Constructions

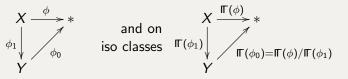
Hopf algebras

000000000

Basic morphisms

Introduction

The corresponding factorization of a morphism in $(\mathcal{F} \downarrow \mathcal{V})$ is



where $\Pi(\phi_1)a$ is a subgraph, $\Pi(\phi)/\Pi(\phi_0)$ is sometimes called the co-graph and * is the residue in the physics nomenclature.

Remark

This is also the place for restrictions/generalization: non-core/linear, infinite and B_+ , where $B^{\phi_0}_+(\phi_1) = \phi_0 \circ \phi_1 = \phi$.

Outlook

Geometry

Extras

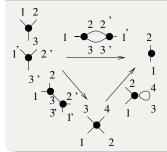
Example with a multiplicity

The co-product of a graph.

$$\Delta (-\bullet \frown \bullet) = -\bullet \frown \bullet \otimes 1 + 1 \otimes -\bullet \frown \bullet + 2 \bullet \bigcirc \otimes \bullet -\bullet ($$

The factor of 2 is there, since there are two distinct subgraphs —given by the two distinct edges— which give rise to two factorizations whose abstract graphs coincide.

Details: label everything. One decomposition:

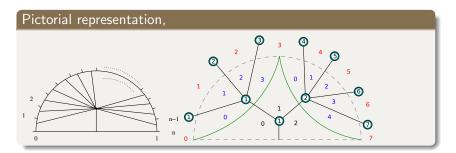


 ϕ_1 : $\phi_1^F(3) = 1', \phi_1^F(4) = 2'$ is a nontrivial identification of flags. There is only one choice for the vertex maps and the involution is the one given by the ghost graph. Introduction Feynman categories Hopf algebras Constructions W-construction Geometry Cococo Outlook

Joyal duality

Order preserving surjections/double base point preserving injections. Joyal duality.

 $Hom_{smCat}([n], [m]) = Hom_{*,*}([m+1], [n+1])$



Introduction Feynman categories Hopf algebras Constructions W-construction Geometry Extras Outlook

Constructions yielding Feynman categories

A partial list

- \$\mathcal{F}_{decO}\$: non-Sigma and dihedral versions. It also yields all graph decorations. "Vertex decoration".
- + construction. Gives hierarchies. Twisted modular operads, twisted versions of any of the previous structures. Generalizations w/ M. Monaco.
- Enrichment via + construction. $\mathfrak{F}_{\mathcal{O}}$ for $\mathcal{O} : \mathfrak{F}^+ \to \mathcal{C}$. "Edge decoration".
- Non-connected construction 3^{nc}, whose *F^{nc}-Ops* are equivalent to lax monoidal functors of *F*.
 This is also where the *B*₊ operator appears.
- ⑤ Cobar/bar, Feynman transforms in analogy to algebras and (modular) operads → Master-equations.
- O W-construction.

Theorem

Given an $\mathcal{O} \in \mathcal{F}$ - $\mathcal{O}ps$, then there is a Feynman category $\mathcal{F}_{dec\mathcal{O}}$ which is indexed over \mathcal{F} .

- It objects are pairs $(X, dec \in \mathcal{O}(X))$
- $Hom_{\mathcal{F}_{dec\mathcal{O}}}((X, dec), (X', dec'))$ is the set of $\phi : X \to X'$, s.t. $\mathcal{O}(\phi)(dec) = dec'$.

(This construction works a priori for Cartesian C, but with modifications it also works for the non–Cartesian case.)

Example

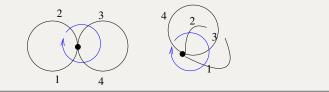
 $\mathfrak{F} = \mathfrak{C}, \mathcal{O} = CycAss, CycAss(*_{S}) = \{cyclic \text{ orders } \prec \text{ on } S\}$. New basic objects of $\mathfrak{C}_{decCycAss}$ are planar corollas $*_{S,\prec}$. Morphisms "are planar trees".

Trivial $\mathcal{T}:\mathcal{F}\to\mathcal{C}$

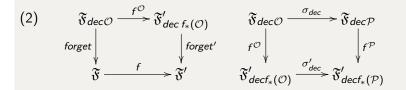
$$\mathcal{T}(X) = \mathbb{I}_{\mathcal{C}}, \mathcal{T}(\phi) = \mathit{id}_{\mathcal{C}}$$

CycAss and decorating with it

$$CycAss(*_S) = \{cyclic \text{ orders on } S\}$$



Theorem



The squares above commute squares and are natural in \mathcal{O} . We get the induced diagram of adjoint functors.

 Introduction
 Feynman categories
 Hopf algebras
 Constructions
 W-construction
 Geometry
 Extras
 Outlook

 00000000
 00000000
 00000000
 0000000
 0000000
 0000000
 0000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 00000000
 0000000
 0000000
 00000000
 0000000
 0000000

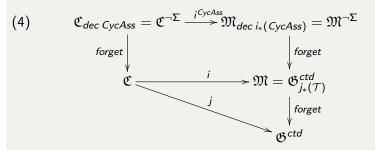
Examples on \mathfrak{G} with extra decorations

Decoration and restriction allows to generate the whole zoo and even new species

$\mathfrak{F}_{dec}\mathcal{O}$	Feynman category for	decorating ${\cal O}$	restriction
\mathfrak{F}^{dir}	directed version	$\mathbb{Z}/2\mathbb{Z}$ set	edges contain one input
			and one output flag
\mathfrak{F}^{rooted}	root	$\mathbb{Z}/2\mathbb{Z}$ set	vertices have one output flag.
\mathfrak{F}^{genus}	genus marked	\mathbb{N}	
\mathfrak{F}^{c-col}	colored version	c set	edges contain flags
			of same color
$\mathfrak{O}^{\neg\Sigma}$	non-Sigma-operads	Ass	
$\mathfrak{C}^{\neg\Sigma}$	non-Sigma-cyclic operads	CycAss	
$\mathfrak{M}^{\neg\Sigma}$	non–Signa-modular	ModAss	
\mathfrak{C}^{dihed}	dihedral	Dihed	
\mathfrak{M}^{dihed}	dihedral modular	ModDihed	

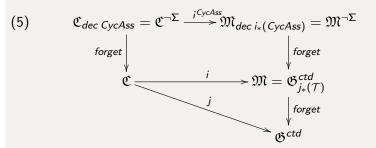
Table: List of decorates Feynman categories with decorating \mathcal{O} and possible restriction. \mathfrak{F} stands for an example based on \mathfrak{G} in the list.

Bootstrap



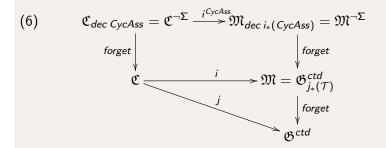
- 𝔅-𝒴ps are cyclic operads. Basic graphs are trees.
- $\bigcirc \mathfrak{G}^{ctd}$: Basic graphs are connected graphs.
- S j_{*}(T)(*_S) = II_{g∈N}* hence elements of V for M are of the form *_{g,S} they can be thought of an oriented surface of genus g and S boundaries.

Bootstrap



3 M^{-Σ} are non-sigma modular operads (Markl, K-Penner). Elements of V are *_{g,s,S1},...,S_b where each S_i has a cyclic order. These can be thought of as oriented surfaces with genus g, s internal marked points, b boundaries where each boundary i has marked points labelled by S_i in the given cyclic order.

Bootstrap



- This is now actually a *calculation*. A succinct proof uses the theorem that the spanning tree graph is connected and mutations act transitively. (Thanks Karen!)
- This also re-proves well known results about TFT and OCTFT being defined by Frobenius algebras using adjunction.

W-con	struction				
	Feynman categories			Extras 000000	

Input: Cubical Feynman categories in a nutshell

- Ex: $\phi_{e_1} \circ \phi_{e_2} = \phi_{e'_2} \circ \phi_{e'_1}$, commutative square for two consecutive edge contractions.
- Generators and relations for basic morphisms.
- Additive length function $I(\phi)$, $I(\phi) = 0$ equivalent to ϕ is iso.
- Quadratic relations and every morphism of length *n* has precisely *n*! decompositions into morphisms of length 1 up to isomorphisms.

Definition

Let
$$\mathcal{P} \in \mathcal{F}\text{-}\mathcal{O}ps_{\mathcal{T}op}$$
. For $Y \in ob(\mathcal{F})$ we define

$$W(\mathcal{P})(Y) := colim_{w(\mathfrak{F},Y)}\mathcal{P} \circ s(-)$$

Introduction Hopf algebras Constructions W-construction 000000

Outlook

Nontechnical version

Nontechnical version for graphs

Glue together cubes. One *n*-cube for each graph with *n* edges. There are two boundaries per edge. Contract or mark. Glue along these edges.

Remark (Kreimer)

This is exactly what happens in Cutkosky rules. Only instead of marking edge as fixed, forget (aka. cut) the edge.

Pictures for an algebra restriction

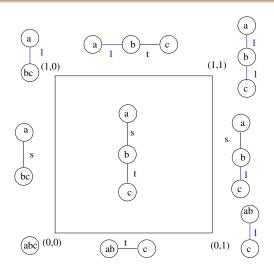


Figure: The cubical structure in the case of n = 3. One can think of the edges marked by 1 as cut.

Other interpretations of the same picture

Remark

The cubical structure also becomes apparent if we interpret $[n] = 0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \rightarrow n$ as the simplex.

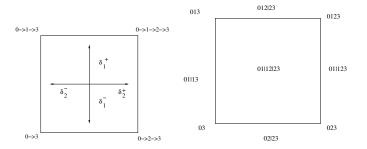


Figure: Two other renderings of the same square. Note: $0 \xrightarrow{a} 1 \xrightarrow{b} 2 \xrightarrow{c} 3$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Cubical decomposition of associahedra

$\overline{W(Ass)}$

The associative operad $Ass(n) = regular(\mathbb{S}_n)$. W(Ass)(n) is a cubical decomposition of the associahedron.

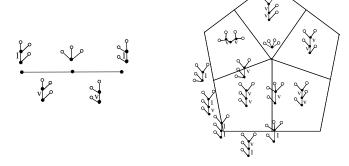


Figure: The cubical decomposition for K_3 and K_4 , v indicates a variable height.

	Feynman categories			
Techni	cal Details			

The category $w(\mathfrak{F}, Y)$, for $Y \in \mathcal{F}$ Objects:

Objects are the set $\coprod_n C_n(X, Y) \times [0, 1]^n$, where $C_n(X, Y)$ are chains of morphisms from X to Y with n degree ≥ 1 maps modulo contraction of isomorphisms.

An object in $w(\mathfrak{F}, Y)$ will be represented (uniquely up to contraction of isomorphisms) by a diagram

$$X \xrightarrow[f_1]{t_1} X_1 \xrightarrow[f_2]{t_2} X_2 \to \cdots \to X_{n-1} \xrightarrow[f_n]{t_n} Y$$

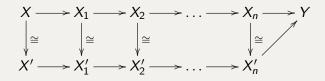
where each morphism is of positive degree and where t_1, \ldots, t_n represents a point in $[0, 1]^n$. These numbers will be called weights. Note that in this labeling scheme isomorphisms are always unweighted.

Setup: quadratic Feynman category \mathfrak{F}

Feynman categories Hopf algebras

Introduction

- The category $w(\mathfrak{F}, Y)$, for $Y \in \mathcal{F}$ Morphisms:
 - 1. Levelwise commuting isomorphisms which fix Y, i.e.:



Constructions

W-construction

0000000

Geometry

Extras

Outlook

- 2 Simultaneous \mathbb{S}_n action.
- S Truncation of 0 weights: morphisms of the form $(X_1 \xrightarrow{0} X_2 → \cdots → Y) \mapsto (X_2 → \cdots → Y).$
- Oecomposition of identical weights: morphisms of the form
 (··· → X_i ^t → X_{i+2} → ...) ↦ (··· → X_i ^t → X_{i+1} ^t → X_{i+2} →
 ...) for each (composition preserving) decomposition of a
 morphism of degree ≥ 2 into two morphisms each of degree
 ≥ 1.

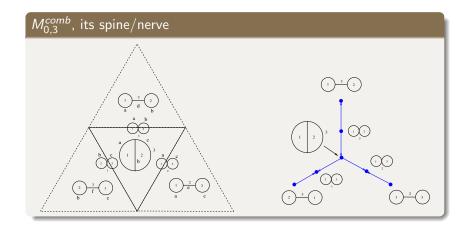
Models for moduli spaces and push-forwards

The square revisited

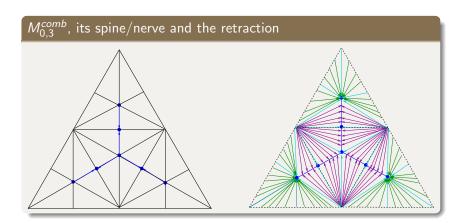
Work with C. Berger

 Wi_{*}(CycAss) = (*g,n) = Cone(M^{K/P}_{g,n}) ⊃ M^{K/P}_{g,n} ⊃ M_{g,n}, metric almost ribbon graphs (emtpy graph is allowed).
 i^{cycAss}_{*}(WT)(*g,s,S₁II···IIS_b) ≃ M_{g,s},S₁II···IIS_b. This is a generalization of Igusa's theorem M_{g,n} = Nerve(IgusaCat)
 FT_{M^{¬Σ}}(T)(*g,s,S₁,...,S_b) = CC_{*}(M^{K/P}_{g,s},S₁II···IIS_b).

	Feynman categories			Extras 000000	
<i>M</i> _{0,3}					



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●



Cutkosky/Outer space, w/ C. Berger

The cube complex $j_*(W(CycAss))(*_S)$

Is the complex whose cubical cells are indexed by pairs (Γ,τ), where

- Γ is a graph with S–labelled tails and au is a spanning forest.
- The cell has dimension |E(au)|
- the differential ∂_e^- contracts the edge
- ∂_e^+ , removes the edge from the spanning forest.

Remark

This complex and the differential are not defined by hand, but automatic!

Introduction Feynman categories Hopf algebras Constructions W-construction Geometry October Oc

Blow-ups/Compactifications w/ J.J. Zuniga

Claim

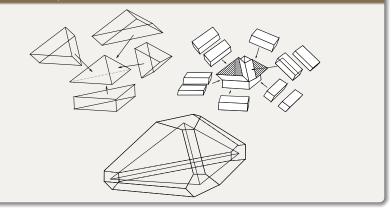
- There is a natural blow-up of the W-construction above, which is induced by the cubical structure of the Feynman category. This leads to new compactification of the moduli space.
- ⊘ There is a sequence of blow–downs which terminates in the final blow–down $\overline{M}_{g,n}^{KSV} \to \overline{M}_{g,n}^{DM} \to \overline{M}_{g,n}^{comb}$.
- This can be modeled on both the analytic/algebraic side and the combinatorial side, giving the desired orbircell decomposition to all spaces.

Remark

This is driven by master-equations [KWZn15] and is directly related to the Jewels of Vogtman et. al. and the truncations in QFT (Kreimer group).

Relative truncation/blow-up pictures

Blow-up the simplex to a cyclohedron to prove the A_{∞} Deligne conjecture. W/ R. Schwell



(日) (日) (日) (日) (日) (日) (日)

Theorem

If \mathcal{T} is a terminal object for \mathcal{F} - $\mathcal{O}ps$ and forget : $\mathcal{F}_{dec\mathcal{O}} \to \mathcal{F}$ is the forgetful functor, then forget^{*}(\mathcal{T}) is a terminal object for $\mathcal{F}_{dec\mathcal{O}}$ - $\mathcal{O}ps$. We have that forget_{*}forget^{*}(\mathcal{T}) = \mathcal{O} .

Definition

We call a morphism of Feynman categories $i: \mathfrak{F} \to \mathfrak{F}'$ a minimal extension over \mathcal{C} if \mathfrak{F} - $\mathcal{O}ps_{\mathcal{C}}$ has a a terminal/trivial functor \mathcal{T} and $i_*\mathcal{T}$ is a terminal/trivial functor in \mathfrak{F}' - $\mathcal{O}ps_{\mathcal{C}}$.

Proposition

If $f : \mathfrak{F} \to \mathfrak{F}'$ is a minimal extension over \mathcal{C} , then $f^{\mathcal{O}} : \mathfrak{F}_{dec\mathcal{O}} \to \mathfrak{F}'_{decf_*(\mathcal{O})}$ is as well.

Factori	ization				
	Feynman categories				

Theorem (w/ C. Berger)

Any morphisms of Feynman $f : \mathfrak{F} \to \mathfrak{F}'$ categories factors and a minimal extension followed by a decoration cover.



(日) (日) (日) (日) (日) (日) (日)

Theorem/Definition [paraphrased]

 \mathfrak{F}^+ - $\mathcal{O}ps_{\mathcal{C}}$ are the enrichments of \mathcal{F} (over \mathcal{C}). Given $\mathcal{O} \in \mathfrak{F}^+$ - $\mathcal{O}ps_{\mathcal{C}}$ we denote by $\mathfrak{F}_{\mathcal{O}}$ the enrichment of \mathfrak{F} by \mathcal{O} .

$$Hom_{\mathcal{F}_{\mathcal{O}}}(X,Y) = \bigoplus_{\phi \in Hom_{\mathcal{F}}(X,Y)} \mathcal{O}(\phi)$$

By definition the $\mathcal{F}_{\mathcal{O}}$ - $\mathcal{O}ps_{\mathcal{E}}$ will be the algebras (modules) over \mathcal{O} .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

00000000	Feynman categories			
Examp	les			

$Tr^+ = Surj$ (non-symmetric)/Modules

A an algebra then $\mathcal{T}r_A^+$ has objects \underline{n} with $Hom(\underline{n},\underline{n}) = A^{\otimes n}$ and hence we see that the $\mathcal{O}ps$ are just modules over A.

$\overline{\mathcal{S}\mathit{urj}^+} = \overline{\mathfrak{F}_{\mathit{May}}}/\mathsf{algebras}$ over operads

 $Hom_{Surj_{\mathcal{O}}}(\underline{n},\underline{1}) = \mathcal{O}(n).$ Composition of morphisms $\underline{n} \xrightarrow{f} \underline{k} \to \underline{1}$

$$\gamma: \mathcal{O}(k) \otimes \mathcal{O}(n_1) \otimes \cdots \otimes \mathcal{O}(n_k) \to \mathcal{O}(n)$$

where $n_i = |f^{-1}(i)|$. So $\mathcal{O}ps$ are algebras over the operad \mathcal{O} .

Feynman categories			

Master equations

General story [KWZn15]

The Feynman transform is quasi-free. An algebra over FO is dg-if and only if it satisfies an associated master equestion.

Examples [Gerstenhaber, Kapranov-Manin, Merkulov-Valette, Barannikov, KWZ]

Name of \mathcal{F} - $\mathcal{O}ps_{\mathcal{C}}$	Algebraic Structure of FO	Master Equation (ME)
operad	odd pre-Lie	$d(S) + S \circ S = 0$
cyclic operad	odd Lie	$d(S) + \frac{1}{2}[S,S] = 0$
modular operad	odd Lie $+ \Delta$	$d(S) + \frac{1}{2}[S,S] + \Delta(S) = 0$
properad	odd pre-Lie	$d(S) + S \circ S = 0$
wheeled prop-	odd pre-Lie + Δ	$d(S) + S \circ S + \Delta(S) = 0$
erad		
wheeled prop	dgBV	$d(S) + \frac{1}{2}[S,S] + \Delta(S) = 0$

	Feynman categories		Geometry 000000	
Extra	Page			

Free space

Next s	teps			
	Feynman categories			

Some things going on

. . .

- Non-connected case for bi-algebra.
- B₊ operator, many discussions with Dirk: thank you!
- Connect to Rota–Baxer, Dynkin-operators, ...
- Connect to quiver theories and to stability conditions. Wall crossing corresponds to contracting and expanding an edge. item Connect to Tannakian categories. E.g. find out the role of fibre functors or special large/small object.
- Truncation/bordification connect to old constructions.
- Understand motivic coaction in this framework more precisely.

	000000000000000000000000000000000000000	000000000	0000000	000000	000000	000000	0000	
Refere	nces							

References

- with B. Ward. Feynman categories. Astérisque 387. (2017), x+161 pages. (arXiv: 1312.1269)
- with B. Ward and J. Zuniga. The odd origin of Gerstenhaber brackets, Batalin-Vilkovisky operators and master equations. Journal of Math. Phys. 56, 103504 (2015). (arXiv: 1208.5543)
- S with J. Lucas Decorated Feynman categories. J. of Noncommutative Geometry 11 (2017), no 4, 1437–1464 (arXiv:1602.00823)
- with I. Galvez–Carrillo and A. Tonks. Three Hopf algebras and their operadic and categorical background I+II. Comm. in Numb. Th. and Physics (CNTP) 14,1 (2020) 1-90, 91–169. (arXiv:1607.00196)

	Feynman categories			Extras 000000	
Refere	nces				

References

- Swith C. Berger Comprehensive Factorization Systems. Special Issue in honor of Professors Peter J. Freyd and F.William Lawvere on the occasion of their 80th birthdays, Tbilisi Mathematical Journal, 10, no. 3,. 255-277
- is with C. Berger Derived modular envelopes and associated moduli spaces, in preparation.
- with C. Berger Feyman transforms and chain models for moduli spaces, in preparation.
- With M. Monaco Generalized Plus constructions, in preparation.
- with Y. Mo On Morphism Co/Bialgebra Structures from Categories, in preparation

	Feynman categories					Extras 000000	
The end							

Thank you!

・ロト・(型ト・(ヨト・(ヨト・)のへの

Introduction 00000000

Dennis V. Borisov and Yuri I. Manin.

Generalized operads and their inner cohomomorphisms. In *Geometry and dynamics of groups and spaces*, volume 265 of *Progr. Math.*, pages 247–308. Birkhäuser, Basel, 2008.

Imma Gálvez-Carrillo, Ralph M. Kaufmann, and Andrew Tonks.

Three Hopf Algebras from Number Theory, Physics & Topology, and their Common Background I: operadic & simplicial aspects.

Comm. in Numb. Th. and Physics, 14:1–90, 2020.

Imma Gálvez-Carrillo, Ralph M. Kaufmann, and Andrew Tonks.

Three hopf algebras from number theory, physics & topology, and their common background ii: general categorical formulation.

Comm. in Numb. Th. and Physics, 14:91–169, 2020.

Ralph M. Kaufmann.

・ロト ・ 画 ト ・ 画 ト ・ 画 ・ うへぐ

Introduction Hopf algebras Geometry Extras Outlook Constructions 0000 Feynman categories and representation theory. Contemp Math, page 85 p., 2020. to appear arXiv arXiv:1911.10169. Ralph M. Kaufmann and Benjamin C. Ward. Feynman Categories. Astérisque, (387):vii+161, 2017. arXiv:1312.1269. Ralph M. Kaufmann, Benjamin C. Ward, and J. Javier Zúñiga.

The odd origin of Gerstenhaber brackets, Batalin-Vilkovisky operators, and master equations.

イロト イボト イエト エヨー のくで

J. Math. Phys., 56(10):103504, 40, 2015.