Renormalization Hopf algebras and gauge theories

Walter D. van Suijlekom

November 16, 2020

Radboud University Nijmegen

The story begins...

- On the Hopf algebra structure of perturbative quantum field theories [Kreimer, ATMP 1998]:
"We show that the process of renormalization encapsules a Hopf algebra structure in a natural manner."
- Then quickly followed by the works of Connes and Kreimer on Renormalization Hopf algebras and Birkhoff decomposion.
- From the start, it was clear that the Hopf algebraic structure of renormalization for gauge theories is quite rich [Broadhurst-Kreimer, Kreimer-Delbourgo 1999]
- This gained in momentum with Anatomy of a gauge theory [Kreimer, 2006] containing the following closed expression for the coproduct on Green's functions in terms of the grafting operator:

$$
\Delta\left(B_{+}^{k ; r}\left(X_{k, r}\right)\right)=B_{+}^{k ; r}\left(X_{k, r}\right) \otimes \mathrm{I}+\left(\mathrm{id} \otimes B_{+}^{k ; r}\right) \Delta\left(X_{k, r}\right)
$$

- This gauge theory theorem is crucially based on Slavnov-Taylor identities, formed the basis for much research [Kreimer-Yeats 2006, vS, ...]
- Meanwhile, as a postdoc at MPI Bonn (meeting Kurusch there) I started to work on the Hopf algebra of Feynman graphs in QED [vS 2006].

- 'First contact' with Dirk, and somewhat later, I managed to prove that Slavnov-Taylor identities generate Hopf ideals, expressing compatibility of renormalization with gauge symmetries.
- For me, this was the start of a fruitful period of interaction and collaboration with Dirk...

IHÉS 2009

IHÉS 2010

Berlin!

Berlin!

The Les Houches schools

The Les Houches schools

Feynman graphs

Graphs built from a fixed set $\left\{v_{1}, \ldots, v_{k}\right\}$ of types of vertices (possibly $k=\infty[$ Bloch-Kreimer $]$) and a fixed set $\left\{e_{1}, \ldots, e_{N}\right\}$ of types of edges.

Examples:

- Scalar ϕ^{3}-theory:

and one constructs graphs such as -
- Electrodynamics:

and one constructs graphs such as
- Yang-Mills theory:

and one constructs graphs such as
- (Gravity):
 edges: eweee, ...
and one constructs graphs such as

Hopf algebra of Feynman graphs

Define:

- One-particle irreducible graphs (example not 1PI:~~~~~~)
- Residue of a graph: res $\left(\sim\right.$ and res $\left(\frac{\sqrt{3}}{\frac{1}{n}}\right)=\sim$
- M the free commutative algebra generated by all Feynman graphs (given the set R) including trees.
- $H \subset M$ the subalgebra generated by all 1PI graphs with residue in R.

Eg. a graph in M but not in H :

Consider the map $\rho: M \rightarrow H \otimes M$ defined by $\rho(\Gamma)=\sum_{\emptyset \subseteq \gamma \subseteq \Gamma} \gamma \otimes \Gamma / \gamma$ where the sum is over (disjoint unions of) 1 PI subgraphs with residue v_{i} or e_{j}.
Then

- $\Delta:=\left.\rho\right|_{H}$ and $\epsilon(\Gamma)=\delta_{\Gamma, \emptyset}$ makes H a Hopf algebra [Connes-Kreimer]
- For this coproduct, M is a left H-comodule algebra.

Examples of the coaction with $v=\prec$ and $e=-$

$$
\rho(\Gamma)=\sum_{\emptyset \subseteq \gamma \subseteq \Gamma} \gamma \otimes \Gamma / \gamma \text { and } \Delta=\left.\rho\right|_{H}
$$

$$
\Delta(-\dot{O})=-<\mathbf{Q} \otimes 1+1 \otimes \rightarrow
$$

$$
\Delta(\square)=-\mathbb{D}-\otimes 1+1 \otimes-(\mathbb{D}-+2 \longrightarrow<\otimes-\mathbb{D}-
$$

$$
+-\mathbb{<} \otimes-\bigcirc-+2-\mathbb{<} \otimes-\bigcirc
$$

$$
\rho(-\mathrm{O}-\mathrm{O})=1 \otimes-\mathrm{O}-\mathrm{O}+2-\mathrm{O}-\otimes-\mathrm{O}-+\mathrm{O}-\mathrm{O}-\otimes-
$$

not allowed:

Renormalization as a decomposition in G

- The above Hopf algebra H is the algebraic structure underlying the recursive procedure of renormalization.
- In fact, for a character $U_{z}: M \rightarrow \mathbb{C}$, there exists a character $C_{z}: H \rightarrow \mathbb{C}$ ('counterterm') defined for $z \neq 0$ as

$$
C_{z}(\Gamma)=-T\left[U_{z}(\Gamma)+\sum_{\gamma \subsetneq \Gamma} C_{z}(\gamma) U_{z}(\Gamma / \gamma)\right]
$$

with T (eg.) the projection onto the pole part, so that $R_{z}=C_{z} * U_{z}$ is finite at $z=0$ [Connes and Kreimer 2000].

- Even though C_{z} is defined only on H, the map R_{z} is defined as a map from $M \rightarrow \mathbb{C}$: it gives the renormalized Feynman rules on all Feynman graphs.

Gauge theories

- The physical (renormalized) 1PI Green's functions are given by

$$
\phi_{r}(p, \mu, \alpha, \pm, \ldots) R_{z=0}\left(G^{r}\right)(p, \mu, \alpha, \pm, \ldots)
$$

with $r=v_{i}, e_{j}$ and ϕ_{r} the corresponding formfactors (depending on momenta, Lorentz and spinor indices, chiralities et cetera) and

$$
G^{v_{i}}=1+\sum_{\operatorname{res}(\Gamma)=v_{i}} \frac{\Gamma}{|\operatorname{Aut}(\Gamma)|} \in H, \quad G^{e_{j}}=1-\sum_{\operatorname{res}(\Gamma)=e_{j}} \frac{\Gamma}{|\operatorname{Aut}(\Gamma)|} \in H
$$

- Gauge symmetries imply certain identities between these formfactors, such as in pure Yang-Mills theories:
- For renormalizability of gauge theories it is essential for these identities to hold at any loop order: the Slavnov-Taylor identities for the couplings

$$
R_{z=0}\left(G^{\times} G^{e m}\right)=R_{z=0}\left(\left(G^{-6}\right)^{2}\right), \quad \ldots
$$

- Thus, we first need an expression for the coproduct on the G^{r} 's.

Structure of H

Gradings

- Grading by loop number $I(\Gamma)=h^{1}(\Gamma)$:

$$
H=\bigoplus_{l \in \mathbb{Z} \geq 0} H^{\prime}, \quad q_{1}: H \rightarrow H^{\prime}
$$

- Multigrading by number of vertices:

$$
d_{i}(\Gamma)=\# \text { vertices } v_{i} \text { in } \Gamma-\delta_{v_{i}, \operatorname{res}(\Gamma)}
$$

with

$$
H=\bigoplus \quad H^{n_{1}, \ldots, n_{k}}, \quad p_{n_{1}, \ldots, n_{k}}: H \rightarrow H^{n_{1}, \ldots, n_{k}}
$$

- These are related via $\sum_{i=1}^{k}\left(\operatorname{val}\left(v_{i}\right)-2\right) d_{i}=21$.
N.B. Connected Hopf algebra: $H^{0}=H^{0, \ldots, 0}=\mathbb{C} 1$.

Structure of H

Hopf subalgebras
Example: scalar ϕ^{3}-theory (with one type of vertex $v=$ and one type of edge $e=-)$:

Proposition

The elements $X=G^{v}\left(G^{e}\right)^{-3 / 2}$ and G^{e} generate a Hopf subalgebra in H :

$$
\Delta(X)=\sum_{l=0}^{\infty} X^{2 l+1} \otimes q_{l}(X), \quad \Delta\left(G^{e}\right)=\sum_{l=0}^{\infty} G^{e} X^{2 l} \otimes q_{l}\left(G^{e}\right)
$$

- This is recognized as the Hopf algebra dual to (a subgroup of) the group $\mathbb{C}[[\lambda]]^{\times} \rtimes \overline{\operatorname{Diff}}(\mathbb{C}, 0)$. Namely, a character ϕ on this Hopf subalgebra defines
(1) An invertible formal power series by $\sum_{l=0}^{\infty} \phi\left(q_{l}\left(G^{e}\right)\right) \lambda^{\prime}$
(2) A formal diffeomorphism on \mathbb{C} by $\lambda \mapsto \sum_{l=0}^{\infty} \phi\left(q_{l}(X)\right) \lambda^{\prime+1}$.

Structure of H

Hopf subalgebras and ideals

- In general (vertices $\left\{v_{1}, \ldots, v_{k}\right\}$ and edges $\left\{e_{1}, \ldots, e_{N}\right\}$), we define for each vertex v

$$
x_{v}:=\left(\frac{G^{v}}{\prod_{i}\left(G^{\left.e_{j}\right)^{\operatorname{val}_{j}(v) / 2}}\right.}\right)^{1 / \operatorname{val}(v)-2}
$$

Proposition (vS 2008)
The coproduct on the Green's functions reads

$$
\Delta\left(G^{r}\right)=\sum_{n_{1}, \ldots, n_{k}} G^{r}\left(X_{v_{1}}\right)^{n_{1}\left(\operatorname{val}\left(v_{i}\right)-2\right)} \cdots\left(X_{v_{k}}\right)^{n_{k}\left(\operatorname{val}\left(v_{k}\right)-2\right)} \otimes p_{n_{1}, \ldots, n_{k}}\left(G^{r}\right)
$$

- On the elements $X_{v_{i}}$ we then have

$$
\Delta\left(X_{v}\right)=\sum_{n_{1}, \ldots, n_{k}} X_{v}\left(X_{v_{1}}\right)^{n_{1}\left(\operatorname{val}\left(v_{i}\right)-2\right)} \cdots\left(X_{v_{k}}\right)^{n_{k}\left(\operatorname{val}\left(v_{k}\right)-2\right)} \otimes p_{n_{1}, \ldots, n_{k}}\left(X_{v}\right)
$$

Thus, X_{v} and G^{e} (equivalently, G^{v} and G^{e}) for all vertices v and edges e generate a Hopf subalgebra, when restricted to each multidegree...

Structure of H

Hopf subalgebras and ideals

Theorem (vS 2008)
(1) The elements $G^{v_{i}}$ and $G^{e_{j}}$ generate a Hopf subalgebra H^{\prime} in H with dual group

$$
G:=\operatorname{Hom}_{\mathbb{C}}\left(H^{\prime}, \mathbb{C}\right) \subset\left(\mathbb{C}\left[\left[\lambda_{1}, \ldots, \lambda_{k}\right]\right]^{\times}\right)^{N} \rtimes \overline{\operatorname{Diff}}\left(\mathbb{C}^{k}\right)
$$

(2) The ideal $J:=\left\langle X_{v_{i}}-X_{v_{j}}\right\rangle$ in H^{\prime} is a Hopf ideal, i.e. H^{\prime} / J is a Hopf algebra with dual group

$$
\operatorname{Hom}_{\mathbb{C}}\left(H^{\prime} / J, \mathbb{C}\right) \subset\left(\mathbb{C}[[\lambda]]^{\times}\right)^{N} \rtimes \overline{\operatorname{Diff}}(\mathbb{C})
$$

- The relations $X_{v_{i}}=X_{v_{j}}$ in the quotient Hopf algebra H^{\prime} / J are called (generalized) Slavnov-Taylor identities for the couplings.

Hochschild cohomology of Hopf algebras

- Let H be a bialgebra and M an H-bicomodule, with cocommuting left and right coactions $\rho_{L}: M \rightarrow H \otimes M$ and $\rho_{R}: M \rightarrow M \otimes H$.
- Denote by $C^{n}(H, M)$ the space of linear maps $\phi: M \rightarrow H^{\otimes n}$
- The Hochschild coboundary map $b: C^{n}(H, M) \rightarrow C^{n+1}(H, M)$ is

$$
b \phi=(\mathrm{id} \otimes \phi) \rho_{L}+\sum_{i=1}^{n}(-1)^{n} \Delta_{i} \phi+(-1)^{n+1}(\phi \otimes \mathrm{id}) \rho_{R}
$$

where Δ_{i} denotes the application of the coproduct on the i 'th factor.

Definition

The Hochschild cohomology $H^{\bullet}(H, M)$ of the bialgebra H with values in M is defined as the cohomology of the complex $\left(C^{\bullet}(H, M), b\right)$.

Hochschild cohomology group $\mathrm{HH}_{\epsilon}^{\bullet}(\mathrm{H})$

- $M=H$ as a comodule over itself, with $\rho_{L}=\Delta$ but with $\rho_{R}=(\mathrm{id} \otimes \epsilon) \Delta$ [Connes-Kreimer 1998]
- For example, $\phi \in H H_{\epsilon}^{1}(H)$ means:

$$
\Delta \phi=(\mathrm{id} \otimes \phi) \Delta+(\phi \otimes \mathrm{I})
$$

where $(\phi \otimes \mathrm{I})(h) \equiv \phi(h) \otimes 1$ for $h \in H$

- The (suitably normalized) grafting operator $B_{+}^{\gamma}: H \rightarrow H$ inserting graphs into a primitive graph γ satisfies [Kreimer 2006, vS 2011]

$$
\Delta\left(B_{+}^{\gamma}\left(X_{k, r}\right)\right)=B_{+}^{\gamma}\left(X_{k, r}\right) \otimes \mathrm{I}+\left(\mathrm{id} \otimes B_{+}^{\gamma}\right) \Delta\left(X_{k, r}\right)
$$

where $X_{k, r}=G^{r}\left(X_{v}\right)^{2 k} \in H / J$, independent of the choice of $v=\operatorname{res} \gamma$.

Dirk's gauge theory theorem

We define a linear map $B_{+}^{k ; r}: H \rightarrow H$ by

$$
B_{+}^{k ; r}=\sum_{\substack{\gamma \operatorname{prim} \\ I(\gamma)=k, \text { res }(\gamma)=r}} \frac{1}{\operatorname{Sym}(\gamma)} B_{+}^{\gamma}
$$

Theorem (Kreimer 2005)

In the quotient Hopf algebra H / J, the following hold
(1) $G^{r}=\sum_{k=0}^{\infty} B_{+}^{k ; r}\left(X_{k, r}\right)$
(2) $\Delta\left(B_{+}^{k ; r}\left(X_{k, r}\right)\right)=B_{+}^{k ; r}\left(X_{k, r}\right) \otimes \mathrm{I}+\left(\mathrm{id} \otimes B_{+}^{k ; r}\right) \Delta\left(X_{k, r}\right)$.
(3) $\Delta\left(G_{k}^{r}\right)=\sum_{j=0}^{k} \operatorname{Pol}_{j}^{r}(G) \otimes G_{k-j}^{r}$.
where $\operatorname{Pol}_{j}^{r}(G)$ is a polynomial in the G_{m}^{r} of degree j, determined as the order j term in the loop expansion of $G^{r}\left(X_{v}\right)^{2 k-2 j}$.

Dirk's unexpected influence on NCG

- Alain Connes' noncommutative geometry is based on a (noncommutative) algebra of coordinates \mathcal{A} and a (generalization of a) Dirac operator D, both acting on a Hilbert space \mathcal{H} :

$$
(\mathcal{A}, \mathcal{H}, D)
$$

- Key example: $\left(C_{0}^{\infty}\left(\mathbb{R}^{4}\right), L^{2}\left(\mathbb{R}^{4}\right) \otimes \mathbb{C}^{4}, \not \emptyset\right)$.
- Gauge fields are derived by inner fluctuations:

$$
D \mapsto D+V ; \quad V=\sum_{j} a_{j}\left[D, b_{j}\right]
$$

- Spectral action functional :

$$
\operatorname{tr} f(D+V)
$$

- My own quest: understand its structure and renormalizability properties

Expansion of the spectral action

Ongoing work with Teun van Nuland

- It turns out that we can write [vS 2011]

$$
\operatorname{tr} f(D+V)-\operatorname{tr} f(D)=\sum_{n \geq 1} \frac{1}{n} \frac{1}{2 \pi i} \operatorname{tr} \oint f^{\prime}(z)\left(V(z-D)^{-1}\right)^{n}
$$

- Let us write this in terms of

$$
\left\langle V_{1}, V_{2}, \ldots, V_{n}\right\rangle=\frac{1}{2 \pi i} \operatorname{tr} \oint f^{\prime}(z) \prod_{j}\left(V_{j}(z-D)^{-1}\right)
$$

and then Hochschild cochains $A^{n+1} \rightarrow \mathbb{C}$:

$$
\phi_{n}\left(a^{0}, a^{1}, \ldots, a^{n}\right)=\left\langle a^{0}\left[D, a^{1}\right],\left[D, a^{2}\right], \ldots,\left[D, a^{n}\right]\right\rangle
$$

Lemma

We have $b \phi_{n}=\phi_{n+1}$ for odd n and we have $b \phi_{n}=0$ for even n.

Hochschild cocycles

- For the first few terms in the expansion we find

$$
\begin{aligned}
\langle a[D, b]\rangle & =\int_{\phi_{1}} A \\
\langle a[D, b], a[D, b]\rangle & =\int_{\phi_{2}} A^{2}+\int_{\phi_{3}} A d A \\
\langle a[D, b], a[D, b], a[D, b]\rangle & =\int_{\phi_{3}} A^{3}+\int_{\phi_{4}} A d A A+\int_{\phi_{5}} A d A d A \\
\langle a[D, b], a[D, b], a[D, b], a[D, b]\rangle & =\int_{\phi_{4}} A^{4}+\int_{\phi_{5}}\left(A^{3} d A+A d A A^{2}\right)+\cdots
\end{aligned}
$$

with $A=a d b$ the universal differential 1 -form corresponding to $a[D, b]$.

- This can be recollected as

$$
\frac{1}{2} \int_{\phi_{2}}\left(d A+A^{2}\right)+\frac{1}{4} \int_{\phi_{4}}\left(d A+A^{2}\right)^{2}+\cdots
$$

Hochschild and cyclic cocycles

- Also the remaining terms can be put in a nice form:

$$
\begin{aligned}
& \operatorname{tr}(f(D+V)-f(D))=\int_{\psi_{1}} A+\frac{1}{2} \int_{\phi_{2}}\left(d A+A^{2}\right)+\frac{1}{2} \int_{\psi_{3}}\left(A d A+\frac{2}{3} A^{3}\right) \\
& +\frac{1}{4} \int_{\phi_{4}}\left(d A+A^{2}\right)^{2}+\frac{1}{6} \int_{\psi_{5}}\left(A(d A)^{2}+\frac{3}{2} A^{3} d A+\frac{3}{5} A^{5}\right)+\frac{1}{6} \int_{\phi_{6}}\left(d A+A^{2}\right)^{3} \\
& \quad+\cdots
\end{aligned}
$$

where $V=a[D, b]$ and $A=a d b$.

- The universal curvature 2-form $F=d A+A^{2}$ appear as Yang-Mills terms F, F^{2}, F^{3}, integrated against even Hochschild cocycles $\phi_{2}, \phi_{4}, \phi_{6}$.
- We find Chern-Simons 1, 3 and 5-forms, integrated against odd cyclic cocycles $\psi_{1}, \psi_{3}, \psi_{5}$.
- An early instance of such an expression has been found for the scale-invariant part of the spectral action [Chamseddine-Connes 2006].

Hochschild and cyclic cocycles

This structure of the spectral action functional persists at all orders!
Definition
The Chern-Simons form of degree $2 n-1$ is given by

$$
\operatorname{cs}_{2 n-1}(A)=\int_{0}^{1} A\left(F_{t}\right)^{n-1} d t ; \quad F_{t}=t d A+t^{2} A^{2}
$$

Theorem

In terms of the universal curvature 2-form $F=d A+A^{2}$ of A we have

$$
\operatorname{tr}(f(D+V)-f(D)) \sim \sum_{k=0}^{\infty}\left(\int_{\psi_{2 k+1}} c s_{2 k+1}(A)+\frac{1}{2 k+2} \int_{\phi_{2 k+2}} F^{k+1}\right)
$$

where $\left(\psi_{2 k+1}\right)$ is a cyclic cocycle.

Gauge structure of the spectral action

in progress..
$\operatorname{tr}(f(D+V)-f(D)) \sim \sum_{k=0}^{\infty}\left(\int_{\psi_{2 k+1}} \operatorname{cs}_{2 k+1}(A)+\frac{1}{2 k+2} \int_{\phi_{2 k+2}} F^{k+1}\right)$

- This simple structure of the spectral action in terms of Chern-Simons and Yang-Mills forms, integrated against cyclic and Hochschild cocycles, respectively, invites for a study of the gauge structure
- BRST-analysis: gauge invariance of the counterterms
... with many thanks to Dirk for his continuing inspiration!

