Solution of ϕ_{4}^{4} on the Moyal Space

Alexander Hock, joint work with Harald Grosse and Raimar Wulkenhaar arXiv:1906.04600 and arXiv:1908.04543

Algebraic Structures in Perturbative Quantum Field Theory
November 19, 2020
wissen.leben
Research Training Group

Outline

1. Quartic matrix model and the Moyal space
2. Renormalized 2-point function
3. Nontriviality on the 4D Moyal space

Quartic Matrix Model

Let H_{N} be the space of Hermitian $(N \times N)$-matrices, $E \in H_{N}$ positive with eigenvalues $\left(E_{1}, \ldots, E_{N}\right)$. The matrix E should be understood as Laplacian in momentum space. Define the partition function

$$
\mathcal{Z}=\int_{H_{N}} d \phi \exp \left[-N \operatorname{Tr}\left(E \phi^{2}+\frac{\lambda}{4} \phi^{4}\right)\right] .
$$

Quartic Matrix Model

Let H_{N} be the space of Hermitian $(N \times N)$-matrices, $E \in H_{N}$ positive with eigenvalues $\left(E_{1}, \ldots, E_{N}\right)$. The matrix E should be understood as Laplacian in momentum space. Define the partition function

$$
\mathcal{Z}=\int_{H_{N}} d \phi \exp \left[-N \operatorname{Tr}\left(E \phi^{2}+\frac{\lambda}{4} \phi^{4}\right)\right] .
$$

The 2-point correlation function is by definition

$$
G_{p q}:=N\left\langle\phi_{p q} \phi_{q p}\right\rangle=\frac{N \int_{H_{N}} d \phi \phi_{p q} \phi_{q p} \exp \left[-N \operatorname{Tr}\left(E \phi^{2}+\frac{\lambda}{4} \phi^{4}\right)\right]}{\int_{H_{N}} d \phi \exp \left[-N \operatorname{Tr}\left(E \phi^{2}+\frac{\lambda}{4} \phi^{4}\right)\right]} .
$$

From Moyal Space to Matrix Model

The action of the noncommutative ϕ_{4}^{4} QFT on the Moyal space is

$$
S[\phi]:=\frac{1}{8 \pi} \int_{\mathbb{R}^{4}} d x\left(\frac{1}{2} \phi\left(-\Delta+\Omega^{2}\left\|2 \Theta^{-1} x\right\|^{2}+\mu^{2}\right) \phi+\frac{\lambda}{4} \phi \star \phi \star \phi \star \phi\right)(x),
$$

where Δ is the Laplacian, μ the mass, λ the coupling constant and a regulator $\Omega \in \mathbb{R}$.

From Moyal Space to Matrix Model

The action of the noncommutative ϕ_{4}^{4} QFT on the Moyal space is

$$
S[\phi]:=\frac{1}{8 \pi} \int_{\mathbb{R}^{4}} d x\left(\frac{1}{2} \phi\left(-\Delta+\Omega^{2}\left\|2 \Theta^{-1} x\right\|^{2}+\mu^{2}\right) \phi+\frac{\lambda}{4} \phi \star \phi \star \phi \star \phi\right)(x),
$$

where Δ is the Laplacian, μ the mass, λ the coupling constant and a regulator $\Omega \in \mathbb{R}$. The Moyal \star-product has a matrix base, which leads with renormalization constants to

$$
S[\phi]=N\left(\sum_{n, m=1}^{N} E_{n} Z \phi_{n m} \phi_{m n}+\frac{\lambda_{b a r e} Z^{2}}{4} \sum_{n, m, k, l=1}^{N} \phi_{n m} \phi_{m k} \phi_{k l} \phi_{l n}\right) .
$$

The eigenvalues have multiplicities $\left(E_{1}, . ., E_{N}\right)=(\underbrace{e_{1}, . ., e_{1}}_{r_{1}}, \ldots, \underbrace{e_{d}, \ldots, e_{d}}_{r_{d}})$,
where the distinct eigenvalues are $e_{n}=\frac{\mu_{\text {bare }}^{2}}{2}+\frac{n}{\sqrt{N}}$ and $r_{n}=n$

Renormalized 2-Point Dyson-Schwinger Equation

The planar 2-point function obeys in a formal N expansion the nonlinear equation

$$
\left(\mu_{\text {bare }}^{2}+\frac{p}{\sqrt{N}}+\frac{q}{\sqrt{N}}+\frac{\lambda_{\text {bare }}}{N} \sum_{m} m Z G_{p m}\right) Z G_{p q}=1+\frac{\lambda_{\text {bare }}}{N} \sum_{m} m Z \frac{G_{m q}-G_{p q}}{\frac{m}{\sqrt{N}}-\frac{p}{\sqrt{N}}} .
$$

Renormalized 2-Point Dyson-Schwinger Equation

The planar 2-point function obeys in a formal N expansion the nonlinear equation

$$
\left(\mu_{b a r e}^{2}+\frac{p}{\sqrt{N}}+\frac{q}{\sqrt{N}}+\frac{\lambda_{b a r e}}{N} \sum_{m} m Z G_{p m}\right) Z G_{p q}=1+\frac{\lambda_{\text {bare }}}{N} \sum_{m} m Z \frac{G_{m q}-G_{p q}}{\frac{m}{\sqrt{N}}-\frac{p}{\sqrt{N}}}
$$

Perform the continuum limit (a scaling limit of the N and the number of eigenvalues with constant ratio Λ^{2}) with $\frac{p}{\sqrt{N}} \mapsto x \in\left[0, \Lambda^{2}\right]$ and $G_{p q} \mapsto G(x, y)$

$$
\left(\mu_{\text {bare }}^{2}+x+y+\frac{\lambda_{\text {bare }}}{N} Z \int_{0}^{\Lambda^{2}} d t t G(x, t)\right) Z G(x, y)=1+\frac{\lambda_{\text {bare }}}{N} Z \int_{0}^{\Lambda^{2}} d t t \frac{G(x, t)-G(x, y)}{t-x}
$$

where $\mu_{\text {bare }}, \lambda_{\text {bare }}, Z$ depend on Λ^{2}, the cut-off.

Spectral Dimension

We define the spectral dimension by the asymtotic behaviour of the eigenvalues of E in the scaling limit.
More concretely, let $\varrho(x) d x$ be the the spectral measure, then

$$
D:=\inf \left\{p: \int_{0}^{\infty} d t \frac{\varrho(t)}{(1+t)^{p / 2}}<\infty\right\} .
$$

On the $D=4$ Moyal space, we have $\varrho(x)=x$
On the $D=2$ Moyal space, we have $\varrho(x)=1$

Implicit Equation on the 4D Moyal Space

Remember Raimar's talk, the solution is constructed by the implicitly defined function

$$
R(z):=z-\frac{\lambda}{N} \sum_{k=1}^{d} \frac{r_{k}}{R^{\prime}\left(\varepsilon_{k}\right)\left(z+\varepsilon_{k}\right)}, \quad e_{n}=R\left(\varepsilon_{n}\right), \quad \lim _{\lambda \rightarrow 0} \varepsilon_{n}=e_{n} .
$$

Implicit Equation on the 4D Moyal Space

Remember Raimar's talk, the solution is constructed by the implicitly defined function

$$
R(z):=z-\frac{\lambda}{N} \sum_{k=1}^{d} \frac{r_{k}}{R^{\prime}\left(\varepsilon_{k}\right)\left(z+\varepsilon_{k}\right)}, \quad e_{n}=R\left(\varepsilon_{n}\right), \quad \lim _{\lambda \rightarrow 0} \varepsilon_{n}=e_{n} .
$$

This implicit equation converges in the continuum limit on the 4D Moyal space (after renormalization) to a linear integral equation

$$
R(z)=z-\lambda z^{2} \int_{0}^{\infty} \frac{d t R(t)}{\left(\mu^{2}+t\right)^{2}\left(\mu^{2}+t+z\right)}
$$

where μ^{2} is fixed by boundary conditions.
On $D=4$ Moyal space, we observe the effective spectral measure $d \varrho_{\lambda}(t)=d t R(t)$

Solution of the Integral Equation

Compute with Hyperint the first ten orders of $R(z)=z-\lambda z^{2} \int_{0}^{\infty} \frac{d t R(t)}{\left(\mu^{2}+t\right)^{2}\left(\mu^{2}+t+z\right)}$ and guess for $f(x):=\frac{R\left(\mu^{2} x\right)}{\mu^{2} x(1+x)}$ the series expansion

$$
\begin{aligned}
f(x)= & c_{\lambda} \frac{\arcsin (\lambda \pi)}{\lambda \pi(1+x)} \sum_{n=0}^{\infty} \operatorname{Hlog}(x,[\underbrace{0,-1, \ldots, 0,-1}_{n}])\left(\frac{\arcsin (\lambda \pi)}{\pi}\right)^{2 n} \\
& -\lambda c_{\lambda} \frac{\arcsin (\lambda \pi)^{2}}{x(\lambda \pi)^{2}} \sum_{n=0}^{\infty} \operatorname{Hlog}(x,[-1, \underbrace{0,-1, \ldots, 0,-1}_{n}])\left(\frac{\arcsin (\lambda \pi)}{\pi}\right)^{2 n}
\end{aligned}
$$

where $\operatorname{Hlog}\left(x,\left[a_{1}, . ., a_{n}\right]\right)=\int_{0}^{x} \frac{d y_{1}}{y_{1}-a_{1}} \ldots \int_{0}^{y_{n-1}} \frac{d y_{n}}{y_{n}-a_{n}}$, and the boundary conditions have a natural choice $\mu^{2}=\frac{\arcsin (\lambda \pi)}{\lambda \pi}-\lambda\left(\frac{\arcsin (\lambda \pi)}{\lambda \pi}\right)^{2}$ and $c_{\lambda}=\frac{1}{\mu^{2}}$.

Solution of the Integral Equation

Identify the differential equation of second order of the power series, which is solved by

Theorem (Grosse, AH, Wulkenhaar)

The self-dual ϕ^{4} model on the 4D Moyal space (with infinite deformation parameter) has the initial solution

$$
R(x)=x_{2} F_{1}\left(\begin{array}{cc}
\alpha_{\lambda}, & 1-\alpha_{\lambda} \left\lvert\,-\frac{x}{\mu^{2}}\right. \\
2
\end{array}\right),
$$

where $\alpha_{\lambda}=\frac{\arcsin (\lambda \pi)}{\pi}$.

From $R(z)$ to $G(x, y)$

Define

$$
I(z):=-R\left(-\mu^{2}-R^{-1}(z)\right)
$$

then is for $x \in \mathbb{C} \backslash \mathbb{R}_{+}$

$$
\underbrace{\left[\mu_{\text {bare }}^{2}+x+y+\frac{\lambda_{\text {bare }}}{N} Z \int_{0}^{\Lambda^{2}} d t t\left(G(x, t)+\frac{1}{t-x}\right)\right]}_{=y+l(x)} Z G(x, y)=1+\frac{\lambda_{\text {bare }}}{N} Z \int_{0}^{\Lambda^{2}} d t t \frac{G(x, t)}{t-x} \text {. }
$$

Notice the hidden structure

$$
-I(-I(z))=R\left(-\mu^{2}-R^{-1}\left(R\left(-\mu^{2}-R^{-1}(z)\right)\right)\right) "=" z
$$

A singular integral equation remains, solution theory is known!

Example on the $D=2$ Moyal space [Panzer,Wulkenhaar '18]

Remeber on $D=2, \varrho(x)=1$, then the R-function is simply

$$
R(z)=z+\lambda \log (1+z), \quad R^{-1}(x)=\lambda W\left(\frac{e^{\frac{1+x}{\lambda}}}{\lambda}\right)-1
$$

where $W(x) e^{W(x)}=x$ is the Lambert-W function. Consequently,

$$
I(z)=-R\left(-1-R^{-1}(z)\right)=\lambda W\left(\frac{e^{\frac{1+z}{\lambda}}}{\lambda}\right)-\lambda \log \left[1-W\left(\frac{e^{\frac{1+z}{\lambda}}}{\lambda}\right)\right]
$$

Found by Panzer and Wulkenhaar on Dirk's and Spencer's conference in Les Houches 2018

Back to 4D: Exact Solution of the 2-Point Function

Solving the singular integral equation (of Carleman type) yields $G(x, y)=\frac{\mu^{2} \exp (N(x, y))}{\mu^{2}+x+y}$

$$
\begin{aligned}
N(x, y):=\frac{1}{2 \pi \mathrm{i}} \int_{-\infty}^{\infty} d t & \left\{\log \left(x-R\left(-\frac{\mu^{2}}{2}-\mathrm{i} t\right)\right) \frac{d}{d t} \log \left(y-R\left(-\frac{\mu^{2}}{2}+\mathrm{i} t\right)\right)\right. \\
& -\log \left(-R\left(-\frac{\mu^{2}}{2}-\mathrm{i} t\right)\right) \frac{d}{d t} \log \left(-R\left(-\frac{\mu^{2}}{2}+\mathrm{i} t\right)\right) \\
& -\log \left(x-\left(-\frac{\mu^{2}}{2}-\mathrm{i} t\right)\right) \frac{d}{d t} \log \left(y-\left(-\frac{\mu^{2}}{2}+\mathrm{i} t\right)\right) \\
& \left.+\log \left(-\left(-\frac{\mu^{2}}{2}-\mathrm{i} t\right)\right) \frac{d}{d t} \log \left(-\left(-\frac{\mu^{2}}{2}+\mathrm{i} t\right)\right)\right\}
\end{aligned}
$$

Spectral Dimension of ϕ_{4}^{4}

The asymptotic of the hypergeometric functions

$$
{ }_{2} F_{1}\left(\left.\begin{array}{c}
a, \\
1-a \\
2
\end{array} \right\rvert\,-x\right) \stackrel{x \rightarrow \infty}{\sim} \frac{1}{x^{a}} .
$$

Spectral Dimension of ϕ_{4}^{4}

The asymptotic of the hypergeometric functions

$$
{ }_{2} F_{1}\left(\left.\begin{array}{cc}
a, & 1-a \\
2
\end{array} \right\rvert\,-x\right) \stackrel{x \rightarrow \infty}{\sim} \frac{1}{x^{a}}
$$

The R-function defines an effective measure, which behaves asymptotically

$$
R(x)=x_{2} F_{1}\left(\left.\begin{array}{c}
\alpha_{\lambda}, \\
2
\end{array} \right\rvert\,-\frac{x}{\mu^{2}}\right) \stackrel{x \rightarrow \infty}{\sim} x^{1-\alpha_{\lambda}},
$$

where $\alpha_{\lambda}=\frac{\arcsin (\lambda \pi)}{\pi}$.
Finally, the spectral dimension D has the asymptotics $x^{\frac{D}{2}-1} \rightarrow D=4-2 \frac{\arcsin (\lambda \pi)}{\pi}$.

Why does it avoid the Triviality Problem?

The inverse R^{-1} is an essential ingredient for the exact solution! Would instead the solution be constructed by

$$
\tilde{R}(x)=x-\lambda x^{2} \int_{0}^{\infty} \frac{d \varrho_{0}(t)}{\left(\mu^{2}+t\right)^{2}\left(\mu^{2}+t+x\right)}, \quad d \varrho_{0}(t)=d t t
$$

\Rightarrow no inverse exists globally on \mathbb{R}_{+}
$\Rightarrow \tilde{R}$ has an upper bound behaving at $x_{\max }=K \cdot e^{\frac{1}{\lambda}}$

Why does it avoid the Triviality Problem?

The inverse R^{-1} is an essential ingredient for the exact solution!
Would instead the solution be constructed by

$$
\tilde{R}(x)=x-\lambda x^{2} \int_{0}^{\infty} \frac{d \varrho_{0}(t)}{\left(\mu^{2}+t\right)^{2}\left(\mu^{2}+t+x\right)}, \quad d \varrho_{0}(t)=d t t
$$

\Rightarrow no inverse exists globally on \mathbb{R}_{+}
$\Rightarrow \tilde{R}$ has an upper bound behaving at $x_{\max }=K \cdot e^{\frac{1}{\lambda}}$
The function $R(x)$ has a global inverse on \mathbb{R}_{+}!
The effective dimension drop is only visible on the level of exact solutions Not accessible with perturbation theory!

Open Questions

- The algebraic structure for finite N is in the continuum limit no longer algebraic
- (Blobbed) Topological Recursion on the 4D Moyal space (Raimar's talk)?
- Structure of generating series of iterated integrals
- (Galois) coaction on the correlation function \rightarrow closeness condition? \Rightarrow only possible with exact solutions

Thank you

MUNSTER

Back-ups

Topological Recursion

The Euler-characteristic is $\chi=2-2 g-n$. Computing meromorphic forms $\omega_{g, n}$ by

The Initial Data $\omega_{0,1}$ and $\omega_{0,2}$ gives recursively in χ all other $\omega_{g, n}$

Topological Recursion

More precisely, let $J=\left\{z_{1}, . ., z_{n-1}\right\}, \omega_{0,1}(z)=y(z) d x(z), \omega_{0,2}\left(z_{0}, z_{1}\right)$ the fundamental of the second kind and $K\left(z_{0}, z\right)$ given by $\omega_{0,1}, \omega_{0,2}$, then

$$
\omega_{g, n}\left(z_{0}, \ldots, z_{n-1}\right)=\operatorname{Res}_{\substack{ \\\operatorname{Ra}_{i}}}\left[K\left(z_{0}, z\right)\left(\omega_{g-1, n+1}\left(z, \sigma_{i}(z), J\right)+\sum_{\substack{h+h^{\prime}=g \\|\forall|^{\prime}=J}}^{\prime} \omega_{h,|| |+1}(z, \mid) \omega_{h^{\prime},\left|l^{\prime}\right|+1}\left(\sigma_{i}(z), I^{\prime}\right)\right)\right],
$$

with $d x(z)=0 \rightarrow z=a_{i}$ and $x(z)=x\left(\sigma_{i}(z)\right)$ around a_{i} with $\sigma_{i} \neq \mathrm{id}$

$$
K_{i}(z, q)=\frac{\frac{1}{2} \int_{\sigma_{i}(q)}^{q} \omega_{0,2}\left(z, q^{\prime}\right)}{\omega_{0,1}(q)-\omega_{0,1}\left(\sigma_{i}(q)\right)}
$$

$F(x, y)=0$ parametrized by $x(z), y(z)$ is called the spectral curve

Blobbed Topological Recursion

Decomposition

$$
\omega_{g, n+1}\left(z, z_{1}, \ldots, z_{n}\right)=\mathcal{H}_{z} \omega_{g, n+1}\left(z, z_{1}, \ldots, z_{n}\right)+\mathcal{P}_{z} \omega_{g, n+1}\left(z, z_{1}, \ldots, z_{n}\right)
$$

where $\mathcal{P}_{z} \omega_{g, n+1}\left(z, z_{1}, \ldots, z_{n}\right)$ is computed with the formula of TR.
We identify

$$
x(z)=R(z), \quad y(z)=-R(-z), \quad \omega_{0,2}(u, z)=d z d u\left(\frac{1}{(u-z)^{2}}+\frac{1}{(u+z)^{2}}\right)
$$

For the correlation function, one needs the inverse $z=R^{-1}(x)$.
The $\omega_{g, n}$'s are linear combinations of our renormalized correlation functions.

