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MUNSTER Solution of (bi on the Moyal Space

Outline

1. Quartic matrix model and the Moyal space
2. Renormalized 2-point function

3. Nontriviality on the 4D Moyal space
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Quartic Matrix Model

Let Hy be the space of Hermitian (N x N)-matrices, E € Hy positive with eigenvalues
(Ei, ..., EN). The matrix E should be understood as Laplacian in momentum space. Define
the partition function

A
Z = " do exp {— NTr(E¢* + qu“) :

Alexander Hock 2



—"— wwu

— MUNSTER Solution of (bi on the Moyal Space

Quartic Matrix Model

Let Hy be the space of Hermitian (N x N)-matrices, E € Hy positive with eigenvalues
(Ei, ..., EN). The matrix E should be understood as Laplacian in momentum space. Define
the partition function

A
Z = " do exp {— NTr(E¢* + 4¢4)}

The 2-point correlation function is by definition

N [y, b GpgPap exp {— NTr(E¢? + 2¢4)}

Gpq := N{(dpqPqp) =
fHN doexp { — NTr(E¢? + 2‘(]54)}

Alexander Hock 2



—"— wwu

— MUNSTER

Solution of (bi on the Moyal Space

From Moyal Space to Matrix Model

The action of the noncommutative ¢7 QFT on the Moyal space is

161 = 5 [ de(50(~0+ 21207 X +12) 6+ 36w 6w 66 ) ),

where A is the Laplacian, p the mass, A the coupling constant and a regulator Q2 € R.
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From Moyal Space to Matrix Model

The action of the noncommutative ¢7 QFT on the Moyal space is

161 = 5 [ de(50(~0+ 21207 X +12) 6+ 36w 6w 66 ) ),

where A is the Laplacian, p the mass, A the coupling constant and a regulator Q2 € R.
The Moyal x-product has a matrix base, which leads with renormalization constants to

N >\bareZ2 N
S[¢] = N( Z En Z¢nm¢mn + T Z ¢nm¢mk¢k!¢ln> .

n,m=1 n,mk,/=1
The eigenvalues have multiplicities (Ex, .., En) = (e1, .., €1, ..., €d, ..., €d),
———

2 r rd
where the distinct eigenvalues are e, = % + ﬁ and r,=n
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Renormalized 2-Point Dyson-Schwinger Equation
The planar 2-point function obeys in a formal N expansion the nonlinear equation

>\bare )\bare qu qu
et P TS G ) 2 = 1 2o Y mz S,
( vN VN - UN T YN
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Renormalized 2-Point Dyson-Schwinger Equation
The planar 2-point function obeys in a formal N expansion the nonlinear equation

2 P q >\bare )\bare qu - qu
e + ——= + —= + S mz6, >ZG —1+ N mz2ma e,
( VN VNN )T N TR

Perform the continuum limit (a scaling limit of the N and the number of eigenvalues with
constant ratio A2) with ﬁ — x € [0,A%] and Gpq — G(x,y)

)\ I( A2 )\ e A2 G t *G
(M%are+x+y+ ban/ dttG(X, t))ZG(X,y):]_—|— ban/ dtt (X’ ) (X’y)’
N 0 N 0 t—Xx

where fipare, Abare, Z depend on A2, the cut-off.
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Spectral Dimension

We define the spectral dimension by the asymtotic behaviour of the eigenvalues of E in the
scaling limit.
More concretely, let o(x)dx be the the spectral measure, then

D := inf{p : /OOO dt(li(ng < oo}

On the D = 4 Moyal space, we have g(x

) = x
On the D = 2 Moyal space, we have p(x) =1
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Implicit Equation on the 4D Moyal Space
Remember Raimar’s talk, the solution is constructed by the implicitly defined function

A d ri
R(z) ==z - N;R,—7 en = R(en),

() (z + 20) ime, = e,.

!
A—0
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Implicit Equation on the 4D Moyal Space

Remember Raimar’s talk, the solution is constructed by the implicitly defined function
A d ri

R(z):=z— N ,(2::1 m, en = R(en),

lime, = e,.
a0 "

This implicit equation converges in the continuum limit on the 4D Moyal space (after
renormalization) to a linear integral equation

0y o0 dt R(t)
Riz) =z )‘2/0 (1?4 t)2(p? + t + 2)

where 12 is fixed by boundary conditions.
On D = 4 Moyal space, we observe the effective spectral measure dp)(t) = dt R(t)
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Solution of the Integral Equation
dt R(t)

Compute with HYPERINT the first ten orders of R(z) = z — A\z2 [;° FTPzrerz) 2nd guess
for f(x) := Hf}fé‘fj)x) the series expansion
arcsm()nr arcsin()\w))zn
f(x)= Hl 0, -1 | ———=
() =g Z os(x o 1)( .
n
arcsin(Ar)? arcsin()m))2"
— — HI 1,0,-1,...,0,-1]) ( ———=
O X()\7T)2 Z Og X, [ () ]) ( T

n=0 h

where Hlog(x, [a1, .., an]) = [ yld”al I ydy” ,and the boundary conditions have a
Iy ™ 2

natural choice p? = %79) - A (%ﬁ‘)) and ¢\ = ﬁ
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Solution of the Integral Equation

Identify the differential equation of second order of the power series, which is solved by

Theorem (Grosse, AH, Wulkenhaar)

The self-dual * model on the 4D Moyal space (with infinite deformation parameter) has the
initial solution

R(X) = X2F1(a>\’ ;—Oé)\‘ - %)7

arcsin(Ar)

where o\ = =

Alexander Hock 8



—"— wwu

— MUNSTER Solution of (bi on the Moyal Space

From R(z) to G(x,y)
Define
I(2) = —R(— 12 — R7Y(2)),
then is for x € C\R
G(x,t)

t—Xx

2 Abare A2 1 )\bare N2
Hoare + X +y + TZ/O dt t(G(x, t) + t_—x) ZG(x,y) =1+ TZ/O dtt

=y+I(x)
Notice the hidden structure

—I(=1(z)) = R(— p? — R_l(R( —p? - R_l(z)))) ="z

A singular integral equation remains, solution theory is known!
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Example on the D = 2 Moyal space [Panzer,Wulkenhaar '18]

Remeber on D = 2, p(x) = 1, then the R-function is simply

1+x

R(z)=z+ Aog(1+2), R x)= AW(G; ) -1,

where W(x)e" ) = x is the Lambert-W function. Consequently,

I(z) = —R(—1— RY(2)) = )\W(ejz) — Alog [1 - W(ejz )}

Found by Panzer and Wulkenhaar on Dirk’s and Spencer’s conference in Les Houches 2018
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Back to 4D: Exact Solution of the 2-Point Function

: . . . . _ P exp(N(x,y))
Solving the singular integral equation (of Carleman type) yields G(x,y) = Zixty

1 > 2. d 2 .
Nixy) =g | dt { log (x — R(~'3 —it)) - log (y = R(~ 5 +it))

—log (— ,‘:\’(—“72 — it))i log ( — R(—%2 + it))

dt
— log (x — (—%2 — it))% log (y — (—“72 + it))
+log (— (~4 — i) G log (— (-5 +i0) ],
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Spectral Dimension of ¢}
The asymptotic of the hypergeometric functions

2/'_1(37 ;—a‘ —x) =y i

X2
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Spectral Dimension of ¢}
The asymptotic of the hypergeometric functions

2/-_1(37 ;—a‘ —x) =y i

xa’
The R-function defines an effective measure, which behaves asymptotically

R(x) = XzFl(O% ;_m‘ - %) 2,

arcsin(A7)

where ) = -

Finally, the spectral dimension D has the asymptotics x771 & D=4- 2%()‘”).
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Why does it avoid the Triviality Problem?

The inverse R~! is an essential ingredient for the exact solution!
Would instead the solution be constructed by

Y

. doo(t) =dtt
Sy e

= no inverse exists globally on R
~ 1
= R has an upper bound behaving at xn.x = K - ex
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Why does it avoid the Triviality Problem?

The inverse R~! is an essential ingredient for the exact solution!
Would instead the solution be constructed by

Y

. doo(t) =dtt
Sy e

= no inverse exists globally on R
~ 1
= R has an upper bound behaving at xn.x = K - ex

The function R(x) has a global inverse on R !
The effective dimension drop is only visible on the level of exact solutions
Not accessible with perturbation theory!
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Open Questions

» The algebraic structure for finite V is in the continuum limit no longer algebraic
> (Blobbed) Topological Recursion on the 4D Moyal space (Raimar's talk)?
» Structure of generating series of iterated integrals

» (Galois) coaction on the correlation function — closeness condition?
= only possible with exact solutions
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Thank you
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Back-ups
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Topological Recursion

The Euler-characteristic is x = 2 — 2g — n. Computing meromorphic forms w, , by

w — sk
g.n g -1,n+1 +Z K (..J

gl

b
M
s

g

The Initial Data wo 1 and wp > gives recursively in x all other w; ,
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Topological Recursion

More precisely, let J = {z1,..,zp—1}, wo,1(2) = y(z)dx(z), wo2(20, z1) the fundamental of the
second kind and K(zy, z) given by wg 1,wp 2, then

!

Sz, s 201) = Res [K(20,2) (wg-1mn (2,012 )+ 3 el )]
ht-h =
le’:Jg

with dx(z) =0 — z = a; and x(z) = x(0i(z)) around a; with o; # id

3 I3 woa(z,q)
wo,1(q) — wo,1(0i(q))
F(x,y) = 0 parametrized by x(z), y(z) is called the spectral curve

K,'(Z,q) -
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Blobbed Topological Recursion
Decomposition
wg.nt1(2,21, ..., 2n) = Hywg nt1(2, 21, ..., Zn) + Prwg.ny1(2, 21, ..., Zn),
where P,wg nt1(z, 21, ..., z5) is computed with the formula of TR.

We identify

A2) =R v(2) = —R(2), woa(u2) = dean( (2 + )

For the correlation function, one needs the inverse z = R~1(x).
The wg 5's are linear combinations of our renormalized correlation functions.
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