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Outline

1. Quartic matrix model and the Moyal space
2. Renormalized 2-point function
3. Nontriviality on the 4D Moyal space
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Solution of φ4
4 on the Moyal Space

Quartic Matrix Model
Let HN be the space of Hermitian (N × N)-matrices, E ∈ HN positive with eigenvalues
(E1, ...,EN). The matrix E should be understood as Laplacian in momentum space. Define
the partition function

Z =
∫

HN
dφ exp

[
− NTr

(
Eφ2 + λ

4φ
4)].

The 2-point correlation function is by definition

Gpq := N〈φpqφqp〉 =
N
∫

HN
dφφpqφqp exp

[
− NTr

(
Eφ2 + λ

4φ
4)]

∫
HN

dφ exp
[
− NTr

(
Eφ2 + λ

4φ
4)] .
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Solution of φ4
4 on the Moyal Space

From Moyal Space to Matrix Model
The action of the noncommutative φ4

4 QFT on the Moyal space is

S[φ] := 1
8π

∫
R4
dx
(1
2φ
(
−∆ + Ω2‖2Θ−1x‖2 + µ2

)
φ+ λ

4φ ? φ ? φ ? φ
)

(x),

where ∆ is the Laplacian, µ the mass, λ the coupling constant and a regulator Ω ∈ R.

The Moyal ?-product has a matrix base, which leads with renormalization constants to

S[φ] = N
( N∑

n,m=1
En Zφnmφmn + λbareZ 2

4

N∑
n,m,k,l=1

φnmφmkφklφln

)
.

The eigenvalues have multiplicities (E1, ..,EN) = (e1, .., e1︸ ︷︷ ︸
r1

, ..., ed , ..., ed︸ ︷︷ ︸
rd

),

where the distinct eigenvalues are en = µ2
bare
2 + n√

N and rn = n
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Solution of φ4
4 on the Moyal Space

Renormalized 2-Point Dyson-Schwinger Equation
The planar 2-point function obeys in a formal N expansion the nonlinear equation(

µ2
bare + p√

N
+ q√

N
+ λbare

N
∑
m

mZGpm

)
ZGpq = 1 + λbare

N
∑
m

mZ Gmq − Gpq
m√
N −

p√
N
.

Perform the continuum limit (a scaling limit of the N and the number of eigenvalues with
constant ratio Λ2) with p√

N 7→ x ∈ [0,Λ2] and Gpq 7→ G(x , y)

(
µ2

bare + x + y + λbare
N Z

∫ Λ2

0
dt t G(x , t)

)
ZG(x , y) = 1 + λbare

N Z
∫ Λ2

0
dt t G(x , t)− G(x , y)

t − x ,

where µbare , λbare ,Z depend on Λ2, the cut-off.
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Solution of φ4
4 on the Moyal Space

Spectral Dimension

We define the spectral dimension by the asymtotic behaviour of the eigenvalues of E in the
scaling limit.
More concretely, let %(x)dx be the the spectral measure, then

D := inf
{
p :

∫ ∞
0

dt %(t)
(1 + t)p/2 <∞

}
.

On the D = 4 Moyal space, we have %(x) = x
On the D = 2 Moyal space, we have %(x) = 1
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Solution of φ4
4 on the Moyal Space

Implicit Equation on the 4D Moyal Space
Remember Raimar’s talk, the solution is constructed by the implicitly defined function

R(z) := z − λ

N

d∑
k=1

rk
R ′(εk)(z + εk) , en = R(εn), lim

λ→0
εn = en.

This implicit equation converges in the continuum limit on the 4D Moyal space (after
renormalization) to a linear integral equation

R(z) = z − λz2
∫ ∞

0

dt R(t)
(µ2 + t)2(µ2 + t + z)

where µ2 is fixed by boundary conditions.
On D = 4 Moyal space, we observe the effective spectral measure d%λ(t) = dt R(t)
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4 on the Moyal Space

Solution of the Integral Equation
Compute with HyperInt the first ten orders of R(z) = z − λz2 ∫∞

0
dt R(t)

(µ2+t)2(µ2+t+z) and guess

for f (x) := R(µ2x)
µ2x(1+x) the series expansion

f (x) =cλ
arcsin(λπ)
λπ(1 + x)

∞∑
n=0

Hlog(x , [0,−1, ..., 0,−1︸ ︷︷ ︸
n

])
(arcsin(λπ)

π

)2n

− λcλ
arcsin(λπ)2

x(λπ)2

∞∑
n=0

Hlog(x , [−1, 0,−1, ..., 0,−1︸ ︷︷ ︸
n

])
(arcsin(λπ)

π

)2n

,where Hlog(x , [a1, .., an]) =
∫ x

0
dy1

y1−a1
...
∫ yn−1

0
dyn

yn−an
,and the boundary conditions have a

natural choice µ2 = arcsin(λπ)
λπ − λ

(
arcsin(λπ)

λπ

)2
and cλ = 1

µ2 .
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Solution of φ4
4 on the Moyal Space

Solution of the Integral Equation

Identify the differential equation of second order of the power series, which is solved by

Theorem (Grosse, AH, Wulkenhaar)
The self-dual φ4 model on the 4D Moyal space (with infinite deformation parameter) has the
initial solution

R(x) = x 2F1
(αλ, 1−αλ

2

∣∣∣− x
µ2

)
,

where αλ = arcsin(λπ)
π .
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Solution of φ4
4 on the Moyal Space

From R(z) to G(x , y)
Define

I(z) := −R
(
− µ2 − R−1(z)

)
,

then is for x ∈ C\R+[
µ2

bare + x + y + λbare
N Z

∫ Λ2

0
dt t

(
G(x , t) + 1

t − x
)]

︸ ︷︷ ︸
=y+I(x)

ZG(x , y) = 1 + λbare
N Z

∫ Λ2

0
dt t G(x , t)

t − x .

Notice the hidden structure
−I(−I(z)) = R

(
− µ2 − R−1(R

(
− µ2 − R−1(z)

)
)
)

” = ” z .
A singular integral equation remains, solution theory is known!
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Solution of φ4
4 on the Moyal Space

Example on the D = 2 Moyal space [Panzer,Wulkenhaar ’18]

Remeber on D = 2, %(x) = 1, then the R-function is simply

R(z) = z + λ log(1 + z), R−1(x) = λW
(e 1+x

λ

λ

)
− 1,

where W (x)eW (x) = x is the Lambert-W function. Consequently,

I(z) = −R(−1− R−1(z)) = λW
(e 1+z

λ

λ

)
− λ log

[
1−W

(e 1+z
λ

λ

)]
Found by Panzer and Wulkenhaar on Dirk’s and Spencer’s conference in Les Houches 2018
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Solution of φ4
4 on the Moyal Space

Back to 4D: Exact Solution of the 2-Point Function
Solving the singular integral equation (of Carleman type) yields G(x , y) = µ2 exp(N(x ,y))

µ2+x+y

N(x , y) := 1
2πi

∫ ∞
−∞

dt
{

log
(
x − R(−µ2

2 − it)
) d
dt log

(
y − R(−µ2

2 + it)
)

− log
(
− R(−µ2

2 − it)
) d
dt log

(
− R(−µ2

2 + it)
)

− log
(
x − (−µ2

2 − it)
) d
dt log

(
y − (−µ2

2 + it)
)

+ log
(
− (−µ2

2 − it)
) d
dt log

(
− (−µ2

2 + it)
)}
,
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Solution of φ4
4 on the Moyal Space

Spectral Dimension of φ44
The asymptotic of the hypergeometric functions

2F1
(a, 1−a

2

∣∣∣− x
) x→∞∼ 1

xa .

The R-function defines an effective measure, which behaves asymptotically

R(x) = x 2F1
(αλ, 1−αλ

2

∣∣∣− x
µ2

) x→∞∼ x1−αλ ,

where αλ = arcsin(λπ)
π .

Finally, the spectral dimension D has the asymptotics x D
2 −1 → D = 4− 2arcsin(λπ)

π .
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Solution of φ4
4 on the Moyal Space

Why does it avoid the Triviality Problem?
The inverse R−1 is an essential ingredient for the exact solution!
Would instead the solution be constructed by

R̃(x) = x − λx2
∫ ∞

0

d%0(t)
(µ2 + t)2(µ2 + t + x) , d%0(t) = dt t

⇒ no inverse exists globally on R+
⇒ R̃ has an upper bound behaving at xmax = K · e 1

λ

The function R(x) has a global inverse on R+!
The effective dimension drop is only visible on the level of exact solutions
Not accessible with perturbation theory!
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Solution of φ4
4 on the Moyal Space

Open Questions

I The algebraic structure for finite N is in the continuum limit no longer algebraic
I (Blobbed) Topological Recursion on the 4D Moyal space (Raimar’s talk)?
I Structure of generating series of iterated integrals
I (Galois) coaction on the correlation function → closeness condition?
⇒ only possible with exact solutions
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4 on the Moyal Space

Thank you
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4 on the Moyal Space

Back-ups
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Solution of φ4
4 on the Moyal Space

Topological Recursion
The Euler-characteristic is χ = 2− 2g − n. Computing meromorphic forms ωg ,n by

The Initial Data ω0,1 and ω0,2 gives recursively in χ all other ωg ,n

ω0,1 ↔ spectral curve F (x , y) = 0Alexander Hock 17



Solution of φ4
4 on the Moyal Space

Topological Recursion
More precisely, let J = {z1, .., zn−1}, ω0,1(z) = y(z)dx(z), ω0,2(z0, z1) the fundamental of the
second kind and K (z0, z) given by ω0,1, ω0,2, then

ωg ,n(z0, ..., zn−1) = Res
z→ai

[
K (z0, z)

(
ωg−1,n+1(z , σi (z), J) +

′∑
h+h′=g
I]I′=J

ωh,|I|+1(z , I)ωh′,|I′|+1(σi (z), I ′)
)]
,

with dx(z) = 0 → z = ai and x(z) = x(σi (z)) around ai with σi 6= id

Ki (z , q) =
1
2
∫ q
σi (q) ω0,2(z , q′)

ω0,1(q)− ω0,1(σi (q))
F (x , y) = 0 parametrized by x(z), y(z) is called the spectral curve
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Solution of φ4
4 on the Moyal Space

Blobbed Topological Recursion
Decomposition

ωg ,n+1(z , z1, ..., zn) = Hzωg ,n+1(z , z1, ..., zn) + Pzωg ,n+1(z , z1, ..., zn),

where Pzωg ,n+1(z , z1, ..., zn) is computed with the formula of TR.

We identify

x(z) = R(z), y(z) = −R(−z), ω0,2(u, z) = dz du
( 1

(u − z)2 + 1
(u + z)2

)
.

For the correlation function, one needs the inverse z = R−1(x).
The ωg ,n’s are linear combinations of our renormalized correlation functions.
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