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Main Idea:

The Connes-Kreimer Hopf algebras of rooted trees and
Feynman graphs, and many other combinatorial Hopf
algebras arise as Hall algebras.

Hall algebras have structure coefficients that count
extensions in a category.

I will describe a Hall algebra construction which attaches
to a projective toric variety XΣ a Hopf algebra
HT
X ' U(nTX ).
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Outline:

Hall algebras of finitary abelian categories (”traditional
setting”)

Hall algebras in the non-additive setting

Monoid schemes

The Hall algebra of T -sheaves on XΣ and examples.
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Hall algebras of finitary abelian categories
(”traditional” setting)

Definition

An abelian (or exact) category A is called finitary if
Hom(M,N) and Ext1(M,N) are finite sets for any pair of
objects M,N ∈ A.

Example

A = Rep(Q,Fq), where Q is a quiver.

A = Coh(X ), where X is a projective variety over Fq.
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HA := {f : Iso(A)→ Q|f has finite support }

with convolution product

f • g([M]) =
∑
N⊂M

f ([M/N])g([N])
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It’s easy to see that

δ[M] • δ[N] =
∑

gK
M,Nδ[K ]

where
gK
M,N = |{L ⊂ K |L ' N,K/L ' M}|

gK
M,N |Aut(M)||Aut(N)| counts the number of isomorphism

classes of short exact sequences

0→ N → K → M → 0.
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One can also consider a twist H̃A of HA by the multiplicative
Euler form

〈M,N〉m :=

√√√√ ∞∏
i=0

|Exti (M,N)|(−1)i

New multiplication:

f ? g([M]) =
∑
N⊂M

:= 〈M/N,N〉mf ([M/N])g([N])

Theorem (Ringel, Green)

Let A be a finitary abelian category. Then HA, H̃A are
associative algebras.
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Bialgebra structures

When A is hereditary (gldim(A) ≤ 1), H̃A can be equipped
with a co-product ∆A and antipode SA (there are some
subtleties here), such that (HA,∆A,SA) is a Hopf algebra.

Hall algebras of Fq-linear finitary abelian categories are
interesting quantum-group type objects.
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Theorem (Ringel, Green)

Let Q be a quiver, with associated Kac-Moody algebra gQ ,
There is an embedding

U+√
q(gQ) ↪→ H̃Rep(Q,Fq)

This is an isomorphism in types A,D,E.

Theorem (Kapranov, Kassel-Baumann)

There is an embedding

U+√
q(ŝl2) ↪→ H̃Coh(P1

Fq )
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Work of Burban-Schiffmann relates Hall algebras of elliptic
curves over Fq to spherical DAHA etc.

Study of Hall algebras of coherent sheaves on smooth
projective curves over Fq is closely related to the theory of
automorphic forms over function fields ( Kapranov )

Extensive body of work by Kapranov, Schiffmann,
Vasserot, and others.

Little is known about the structure of these Hall algebras
for higher genus curves and even less for
higher-dimensional projective varieties X when
dim(X ) > 1.
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Basic observation: the algebra structure on HA:

f • g([M]) =
∑
N⊂M

f ([M/N])g([N])

does not use the fact that A is additive !

In fact, one can define Hall algebras of certain non-additive
categories.
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Proto-Exact categories

A very flexible framework for working with Hall algebras is
provided by proto-exact categories, due to
Dyckerhoff-Kapranov.

These are a (potentially non-additive) generalization of
Quillen exact category.

One can define algebraic K-theory of proto-exact
categories via the Waldhausen construction.
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Theorem (Dyckerhoff-Kapranov)

If C is a proto-exact category such that Hom(X ,Y ) and
ExtC(X ,Y ) are finite sets ∀X ,Y ∈ C, then one can define an
associative Hall algebra HC as before (i.e. by counting short
exact sequences).
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Examples of proto-exact categories

Any exact or abelian category is proto-exact, but there are a
number of non-additive examples, often of a ”combinatorial”
nature:

Pointed sets Set•
If A is a monoid, the category of A-modules ( pointed sets
with A-action)

Rep(Q,Set•) where Q is a quiver.

Pointed matroids

Rooted trees

Feynman graphs

Coh(X ) - the category of coherent sheaves on a monoid
scheme X .
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Goal:

Let X be a projective variety over Fq. We want to compute the
”classical limit”

lim
q→1

HCoh(X )

hoping it will shed some light on the structure of HCoh(X ),
especially when dim(X ) > 1.
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Philosphy of F1 - the ”field” of one element

It’s an old observation that many calculations performed over
Fq have meaningful combinatorial limits as q → 1

Example

|Gr(k , n)Fq | =

[
n
k

]
q

where

[
n
k

]
q

is the q-binomial coefficient (rational function in q

). We have

lim
q→1

[
n
k

]
q

=

(
n

k

)

This leads to the idea that ”a pointed set is a vector space over
F1”.
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An observation of Tits is that if G is a simple algebraic group
then

lim
q→1
|G (Fq)| = |W (G )|

where W (G ) is the Weyl group of G .

This leads to the idea that ”G (F1) = W (G )”.



Toric Hall
algebras and

infinite-
dimensional
Lie algebras

Matt Szczesny

The ”F1 dictionary” should go something like this:

Vector spaces over F1 ↔ Set•
Algebra over F1 ↔ monoid A

F1-Algebra module ↔ pointed set with A-action

Scheme over F1 ↔ monoid scheme
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From this perspective, the proto-exact categories on the list
below can be viewed as F1-linear:

Pointed sets Set• = VectF1

If A is a monoid, the category of A-modules ( pointed sets
with A-action)

Rep(Q,VectF1) where Q is a quiver.

Pointed matroids

Feynman graphs

Coh(X ) - the category of coherent sheaves on a monoid
scheme X .
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are finite), the Hall algebra HC can be equipped with a simple
co-commutative co-multiplication

∆ : HC 7→ HC ⊗ HC

∆(f )(M,N) = f (M ∨ N)

(HC ,∆) is a co-commutative bialgebra, and since it’s graded
(by K+

0 (C)) and connected, a co-commutative Hopf algebra.
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The Milnor-Moore theorem tells us that HC ' U(nC) where nC
is the Lie algebra of primitive elements, which correspond to
δM , where M is indecomposable (M cannot be written
non-trivially as M = K ∨ L).
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Examples of Hall algebras in the non-additive
setting

Let 〈t〉 be the free monoid on one generator t - i.e.
〈t〉 = {0, 1, t, t2, t3 · · · }. Then H〈t〉−mod is isomorphic to
the (dual of) the Connes-Kreimer Hopf algebra of rooted
trees.

Let Q be a quiver. Viewing the underlying un-oriented
graph of Q as a Dynkin diagram, we obtain a Kac-Moody
algebra

gQ = n−Q ⊕ hQ ⊕ n+
Q .

Theorem (S)

HRep(Q,VectF1
) ' U(nQ)/I

where I is a certain ideal, which is trivial in type A.
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HFeynmanGraphs is isomorphic to the dual of
Connes-Kreimer’s Hopf algebra of Feynman graphs.

Hpointedmatroids is isomorphic to the dual of Schmitt’s
matroid-minor Hopf algebra

All of these categories have a (complicated) K-theory. For
instance, K•(VectF1) computes the stable homotopy groups of
spheres !
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Monoid schemes (Deitmar, Soule, Kato,
Connes-Consani ...)

An ordinary scheme is obtained by gluing prime spectra of
rings

If A is a commutative monoid, we can define ideals and
prime ideals in the obvious way ( I ⊂ A is an ideal if
aI ⊂ I , ∀a ∈ A, p ⊂ A is prime if it’s proper and
ab ∈ p⇒ a ∈ p, or b ∈ p).

We can equip Spec(A) := {p ⊂ A|p is prime } with the
Zariski topology as in the case of rings.

We can glue affine monoid schemes {Spec(Ai )} to get
general monoid schemes (X ,OX ). OX is now a sheaf of
commutative monoids.

We think of monoid schemes as ”schemes over F1”.
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Example

If k is a field, A1
k = Spec(k[t]). A1

F1
= Spec(〈t〉). A1

F1
has

one closed point (t) and a generic point (0).

Similarly, An
F1

= Spec〈t1, · · · , tn〉. Primes correspond to
subsets of {t1, · · · , tn} - ”coordinate subspaces”.

We have monoid inclusions:

〈t〉 ↪→ 〈t, t−1〉 ←↩ 〈t−1〉.

Taking spectra, and denoting by
U0 = Spec 〈t〉,U∞ = Spec 〈t−1〉, we obtain the diagram

A1
F1
' U0 ←↩ U0 ∩ U∞ ↪→ U∞ ' A1

F1
.

Gluing we get P1
F1

. It has two closed points 0,∞, and a
generic point.
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From fans to monoid schemes

A fan Σ ⊂ Rn (in the sense of toric geometry) gives rise to a
monoid scheme XΣ

Each cone σ ∈ Σ yields a monoid Sσ.

The fan gives gluing data for the Spec(Sσ)’s as in the
construction of toric varieties.
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The projective plane P2
F1

, as a monoid scheme, arises from the
following fan:

σ0

σ1

σ2

The fan Σ for P2
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From σi , one obtains the following three affine monoid
schemes:

1 Xσ0 = Spec(〈x1, x2〉) = A2
F1

,

2 Xσ1 = Spec(〈x−1
1 , x−1

1 x2〉) = A2
F1

,

3 Xσ2 = Spec(〈x1x
−1
2 , x−1

2 〉) = A2
F1

.

which can be glued to form P2
F1

.
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Coherent sheaves

If A is a commutative monoid, and M is an A-module,
then we can form a quasicoherent sheaf M̃ on SpecA as in
the case of rings (localization works the same way).

Such M̃’s can be glued on an affine cover to yield
quasicoherent sheaves on a monoid scheme X (for
coherent we would take the M’s to be finitely generated).

Proposition

Let X be a monoid scheme. The categories Qcoh(X ),Coh(X )
are proto-exact. So is the category Coh(X )Z of sheaves with
prescribed set (resp. scheme)-theoretic support Z ⊂ X .
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Problem: finitarity fails in the monoid scheme
setting

Even when Σ is the fan of a smooth projective toric variety,
and F ,F ′ ∈ Coh(XΣ), we may have |Ext(F ,F ′)| =∞.

There is therefore no way to define HCoh(XΣ).
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T-sheaves

To resolve the problem of infinite Ext’s, we pass to a
sub-category CohT (XΣ) of Coh(XΣ) - the category of
T -sheaves.

On Spec(Sσ), a T -sheaf corresponds to an Sσ-module M such
that

1 M admits an Sσ-grading.

2 For m,m′ ∈ M, and s ∈ Sσ,

sm = sm′ 6= 0⇔ m = m′

Theorem

An indecomposable T -sheaf on An
F1
' Spec(〈x1, · · · , xn〉)

corresponds to a (possibly infinite) connected n-dimensional
skew shape (convex connected sub-poset of Zn

≥0).
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Example - torsion T-sheaf on A2 supported at the
origin

Let n = 2. To the skew shape S below, we can associate a
module MS over the monoid 〈x1, x2〉. x1 (resp. x2) act on MS
by moving one box to the right (resp. one box up) until
reaching the edge of the diagram, and 0 beyond that. A
minimal set of generators for MS is indicated by the black dots:

•
•

Note that m3 ·MS = 0, where m is the maximal ideal (x1, x2).
M̃S is therefore a torsion sheaf supported at the origin in A2

F1
.
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Example - torsion T-sheaf supported on the union
of coordinate axes in A2

...
...

• · · ·
• · · ·
• · · ·
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Example - torsion-free T-sheaf on A2

...
...
...
...
...
... . .

.

· · ·
· · ·
· · ·
· · ·
· · ·
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Example - torsion sheaf on A3 supported on union
of coordinate axes
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If XΣ is smooth, projective, and n-dimensional, then for
each maximal cone σ ∈ Σ, Spec(Sσ) ' An. A T -sheaf on
XΣ can therefore be thought of as being glued together
from n-dimensional skew shapes.
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Theorem (J - S)

Let Σ be the fan of projective toric variety. Then the category
CohT (XΣ) of coherent T -sheaves on XΣ has the structure of
finitary proto-abelian category. Its Hall algebra HCoh(XΣ)T has
the structure of a co-commutative Hopf algebra isomorphic to
U(nX ), where nX has as basis the indecomposable coherent
T -sheaves on XΣ.

The theorem also holds for categories CohT (XΣ)Z of
T -sheaves supported in a closed subset/subscheme Z ⊂ X ..
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Example - multiplying two torsion sheaves in Hall
algebra HCohT (A2)0

Let n = 2. By abuse of notation, we identify the skew shape λ
with the delta-function of the corresponding coherent sheaf.
Let

S = T =

We have

S • T = s
s s t t

+ t t
s
s s

+ s
s s

⊕ t t

T • S = s
s s
t t

+ s
s s

t t

+ t t s
s s

+ s
s s

⊕ t t

where for each skew shape we have indicated which boxes
correspond to S and T .
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By identifying connected, finite, n-dimensional skew shapes
with CohT (An)0, we obtain a Lie bracket on these, defined by

[S, T ] = S • T − T • S

This Lie algebra has all structure constants ±1, 0.
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Example: CohT (P1)

Theorem

HCohT (P1) ' U(gl+2 [t, t−1]) where

gl+2 [t, t−1] '
(
a(t) b(t)

0 c(t)

)
with a(t), c(t) ∈ Q[t], b(t) ∈ Q[t, t−1].

(classical limit of Kapranov’s and Baumann-Kassel’s result).
Here

T0,r →
(
tr 0
0 0

)
, T∞,s →

(
0 0
0 −ts

)
,O(n)→

(
0 tn

0 0

)
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Example: Second formal neighborhood of 0 in A2

Consider the sub-scheme Y = Spec(〈x1, x2〉/m2) of A2, where
m = (x1, x2). Indecomposable T -sheaves on Y are one of the
following types:

...

A

...

B

...

C

...

D



Toric Hall
algebras and

infinite-
dimensional
Lie algebras

Matt Szczesny

These are skew shapes not containing one of the following
”disallowed” diagrams:

Theorem

HCohT (Y ) ' U(k), where k is the Lie subalgebra of gl2[t]:(
d(t) a(t)
b(t) c(t)

)
where a(t), b(t) are odd polynomials, with
deg(a(t)) ≥ 3, deg(b(t)) ≥ 1, and c(t), d(t) are even
polynomials with deg(c(t)) ≥ 2, deg(d(t)) ≥ 4.
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Example - CohT (P2)

We can visualize P2 as follows:

p0 p1

p2

l02 l12

l01

where pi are torus fixed-points, and the l ’s the torus-fixed P1’s
connecting them.
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These are (roughly) of three types:

1 These are point sheaves supported at pi , i = 0, 1, 2 - each
generates a copy of CohT (A2)0.

2 Sheaves supported along the triangle of P1’s
3 Torsion-free sheaves of rank 1.

The Lie algebra nP2 is very large, and seems difficult to
relate to anything explicit.
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Let p denote the Lie subalgebra of nP2 generated by Oij(n),
where the latter is the degree n line bundle supported on lij . By
looking at how p acts on vector bundles on P2, can show there
is a surjection

p � gl−∞

where gl∞ is the Lie algebra of infinite matrices Ei ,j , i , j ∈ Z,
and gl−∞ is the lower-triangular part, where i > j .


