Matt Szczesny

Toric Hall algebras and infinite-dimensional Lie algebras Joint work with Jaiung Jun arXiv:2008.11302

Matt Szczesny

Boston University www.math.bu.edu/people/szczesny

Matt Szczesn

Humboldt-Stiftung/David Ausserhofer

Happy Birthday Dirk !

Main Idea:

Toric Hall algebras and infinitedimensional Lie algebras

Matt Szczesny

- The Connes-Kreimer Hopf algebras of rooted trees and Feynman graphs, and many other combinatorial Hopf algebras arise as *Hall algebras*.
- Hall algebras have structure coefficients that count extensions in a category.
- I will describe a Hall algebra construction which attaches to a projective toric variety X_{Σ} a Hopf algebra $H_X^T \simeq U(\mathfrak{n}_X^T)$.

Outline:

Toric Hall algebras and infinitedimensional Lie algebras

Matt Szczesny

- Hall algebras of finitary abelian categories ("traditional setting")
- Hall algebras in the non-additive setting
- Monoid schemes
- The Hall algebra of T-sheaves on X_{Σ} and examples.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Hall algebras of finitary abelian categories ("traditional" setting)

Toric Hall algebras and infinitedimensional Lie algebras

Matt Szczesny

Definition

An abelian (or exact) category \mathcal{A} is called *finitary* if Hom(M, N) and Ext¹(M, N) are finite **sets** for any pair of objects $M, N \in \mathcal{A}$.

Example

- $\mathcal{A} = \operatorname{Rep}(Q, \mathbb{F}_q)$, where Q is a quiver.
- $\mathcal{A} = \operatorname{Coh}(X)$, where X is a projective variety over \mathbb{F}_q .

Matt Szczesny

Given a finitary abelian category $\mathcal{A},$ we may define

 $H_{\mathcal{A}} := \{f : Iso(\mathcal{A}) \to \mathbb{Q} | f \text{ has finite support } \}$

with convolution product

$$f \bullet g([M]) = \sum_{N \subset M} f([M/N])g([N])$$

It's easy to see that

 $\delta_{[M]} \bullet \delta_{[N]} = \sum g_{M,N}^{K} \delta_{[K]}$

where

$$g_{M,N}^{K} = |\{L \subset K | L \simeq N, K/L \simeq M\}|$$

 $g_{M,N}^{K}|Aut(M)||Aut(N)|$ counts the number of isomorphism classes of short exact sequences

$$0 \to N \to K \to M \to 0.$$

(日) (日) (日) (日) (日) (日) (日) (日)

Matt Szczesny

One can also consider a twist $\widetilde{H}_{\mathcal{A}}$ of $H_{\mathcal{A}}$ by the multiplicative Euler form

$$\langle M,N\rangle_m := \sqrt{\prod_{i=0}^{\infty} |\operatorname{Ext}^i(M,N)|^{(-1)^i}}$$

New multiplication:

$$f \star g([M]) = \sum_{N \subset M} := \langle M/N, N \rangle_m f([M/N])g([N])$$

Theorem (Ringel, Green)

Let \mathcal{A} be a finitary abelian category. Then $H_{\mathcal{A}}, H_{\mathcal{A}}$ are associative algebras.

Bialgebra structures

Toric Hall algebras and infinitedimensional Lie algebras

Matt Szczesny

When \mathcal{A} is *hereditary* (gldim(\mathcal{A}) \leq 1), $\widetilde{H}_{\mathcal{A}}$ can be equipped with a co-product $\Delta_{\mathcal{A}}$ and antipode $S_{\mathcal{A}}$ (there are some subtleties here), such that ($H_{\mathcal{A}}, \Delta_{\mathcal{A}}, S_{\mathcal{A}}$) is a Hopf algebra.

Hall algebras of \mathbb{F}_q -linear finitary abelian categories are interesting quantum-group type objects.

Matt Szczesny

Theorem (Ringel, Green)

Let Q be a quiver, with associated Kac-Moody algebra $\mathfrak{g}_Q,$ There is an embedding

$$U^+_{\sqrt{q}}(\mathfrak{g}_Q) \hookrightarrow \widetilde{H}_{\operatorname{{\it Rep}}(Q,\mathbb{F}_q)}$$

This is an isomorphism in types A, D, E.

Theorem (Kapranov, Kassel-Baumann)

There is an embedding

$$U^+_{\sqrt{q}}(\widehat{\mathfrak{sl}}_2) \hookrightarrow \widetilde{H}_{Coh(\mathbb{P}^1_{\mathbb{F}_q})}$$

Matt Szczesny

- Work of Burban-Schiffmann relates Hall algebras of elliptic curves over 𝔽_q to spherical DAHA etc.
- Study of Hall algebras of coherent sheaves on smooth projective curves over \mathbb{F}_q is closely related to the theory of automorphic forms over function fields (Kapranov)
- Extensive body of work by Kapranov, Schiffmann, Vasserot, and others.
- Little is known about the structure of these Hall algebras for higher genus curves and even less for higher-dimensional projective varieties X when dim(X) > 1.

Matt Szczesny

Basic observation: the algebra structure on H_A :

$$f \bullet g([M]) = \sum_{N \subset M} f([M/N])g([N])$$

does not use the fact that \mathcal{A} is additive !

In fact, one can define Hall algebras of certain non-additive categories.

Proto-Exact categories

Toric Hall algebras and infinitedimensional Lie algebras

Matt Szczesny

- A very flexible framework for working with Hall algebras is provided by proto-exact categories, due to Dyckerhoff-Kapranov.
- These are a (potentially non-additive) generalization of Quillen exact category.

 One can define algebraic K-theory of proto-exact categories via the Waldhausen construction.

Matt Szczesny

Theorem (Dyckerhoff-Kapranov)

If C is a proto-exact category such that Hom(X, Y) and $Ext_{\mathcal{C}}(X, Y)$ are finite sets $\forall X, Y \in C$, then one can define an associative Hall algebra $H_{\mathcal{C}}$ as before (i.e. by counting short exact sequences).

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Examples of proto-exact categories

Toric Hall algebras and infinitedimensional Lie algebras

Matt Szczesny

Any exact or abelian category is proto-exact, but there are a number of non-additive examples, often of a "combinatorial" nature:

- Pointed sets Set.
- If A is a monoid, the category of A-modules (pointed sets with A-action)
- $Rep(Q, Set_{\bullet})$ where Q is a quiver.
- Pointed matroids
- Rooted trees
- Feynman graphs
- Coh(X) the category of coherent sheaves on a monoid scheme X.

Goal:

Toric Hall algebras and infinitedimensional Lie algebras

Matt Szczesny

Let X be a projective variety over $\mathbb{F}_q.$ We want to compute the "classical limit"

 $\lim_{q \to 1} H_{Coh(X)}$

hoping it will shed some light on the structure of $H_{Coh(X)}$, especially when dim(X) > 1.

Philosphy of \mathbb{F}_1 - the "field" of one element

Toric Hall algebras and infinitedimensional Lie algebras

Matt Szczesny

It's an old observation that many calculations performed over \mathbb{F}_q have meaningful combinatorial limits as $q\to 1$

Example

$$|Gr(k,n)_{\mathbb{F}_q}| = \begin{bmatrix} n \\ k \end{bmatrix}_q$$

where $\begin{bmatrix} n \\ k \end{bmatrix}_q$ is the *q*-binomial coefficient (rational function in *q*). We have $\lim_{q \to 1} \begin{bmatrix} n \\ k \end{bmatrix}_q = \binom{n}{k}$

This leads to the idea that "a pointed set is a vector space over \mathbb{F}_1 ".

Matt Szczesny

Example

An observation of Tits is that if G is a simple algebraic group then

$$\lim_{q\to 1} |G(\mathbb{F}_q)| = |W(G)|$$

(日) (日) (日) (日) (日) (日) (日) (日)

where W(G) is the Weyl group of G.

This leads to the idea that " $G(\mathbb{F}_1) = W(G)$ ".

Matt Szczesny

- The " \mathbb{F}_1 dictionary" should go something like this:
 - Vector spaces over $\mathbb{F}_1 \leftrightarrow \mathcal{S}et_{\bullet}$
 - Algebra over $\mathbb{F}_1 \leftrightarrow \mathsf{monoid} \ A$
 - \mathbb{F}_1 -Algebra module \leftrightarrow pointed set with A-action

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 $\blacksquare \text{ Scheme over } \mathbb{F}_1 \leftrightarrow \text{monoid scheme}$

Matt Szczesny

From this perspective, the proto-exact categories on the list below can be viewed as \mathbb{F}_1 -linear:

- Pointed sets $Set_{\bullet} = Vect_{\mathbb{F}_1}$
- If A is a monoid, the category of A-modules (pointed sets with A-action)
- $Rep(Q, Vect_{\mathbb{F}_1})$ where Q is a quiver.
- Pointed matroids
- Feynman graphs
- Coh(X) the category of coherent sheaves on a monoid scheme X.

Matt Szczesny

When C is one of these categories, and finitary (Hom and Ext are finite), the Hall algebra H_C can be equipped with a simple co-commutative co-multiplication

$$\Delta: H_{\mathcal{C}} \mapsto H_{\mathcal{C}} \otimes H_{\mathcal{C}}$$

$$\Delta(f)(M,N)=f(M\vee N)$$

 $(H_{\mathcal{C}}, \Delta)$ is a co-commutative bialgebra, and since it's graded (by $K_0^+(\mathcal{C})$) and connected, a co-commutative Hopf algebra.

Matt Szczesny

The Milnor-Moore theorem tells us that $H_{\mathcal{C}} \simeq U(\mathfrak{n}_{\mathcal{C}})$ where $\mathfrak{n}_{\mathcal{C}}$ is the Lie algebra of primitive elements, which correspond to δ_M , where M is indecomposable (M cannot be written non-trivially as $M = K \vee L$).

Examples of Hall algebras in the non-additive setting

Toric Hall algebras and infinitedimensional Lie algebras

Matt Szczesny

- Let $\langle t \rangle$ be the free monoid on one generator t i.e. $\langle t \rangle = \{0, 1, t, t^2, t^3 \cdots \}$. Then $H_{\langle t \rangle - mod}$ is isomorphic to the (dual of) the Connes-Kreimer Hopf algebra of rooted trees.
- Let Q be a quiver. Viewing the underlying un-oriented graph of Q as a Dynkin diagram, we obtain a Kac-Moody algebra

$$\mathfrak{g}_Q = \mathfrak{n}_Q^- \oplus \mathfrak{h}_Q \oplus \mathfrak{n}_Q^+.$$

Theorem (S)

$$H_{Rep(Q,Vect_{\mathbb{F}_1}}) \simeq U(\mathfrak{n}_Q)/\mathcal{I}$$

where \mathcal{I} is a certain ideal, which is trivial in type A.

Matt Szczesny

- *H_{FeynmanGraphs}* is isomorphic to the dual of Connes-Kreimer's Hopf algebra of Feynman graphs.
- *H*_{pointedmatroids} is isomorphic to the dual of Schmitt's matroid-minor Hopf algebra

All of these categories have a (complicated) K-theory. For instance, $K_{\bullet}(Vect_{\mathbb{F}_1})$ computes the stable homotopy groups of spheres !

Monoid schemes (Deitmar, Soule, Kato, Connes-Consani ...)

Toric Hall algebras and infinitedimensional Lie algebras

Matt Szczesny

- An ordinary scheme is obtained by gluing prime spectra of rings
- If A is a commutative monoid, we can define ideals and prime ideals in the obvious way (*I* ⊂ A is an ideal if a*I* ⊂ *I*, ∀a ∈ A, p ⊂ A is prime if it's proper and ab ∈ p ⇒ a ∈ p, or b ∈ p).
- We can equip Spec(A) := {p ⊂ A|p is prime } with the Zariski topology as in the case of rings.
- We can glue affine monoid schemes {Spec(A_i)} to get general monoid schemes (X, O_X). O_X is now a sheaf of commutative monoids.
- We think of monoid schemes as "schemes over \mathbb{F}_1 ".

Matt Szczesny

Example

- If k is a field, A¹_k = Spec(k[t]). A¹_{F1} = Spec(⟨t⟩). A¹_{F1} has one closed point (t) and a generic point (0).
- Similarly, Aⁿ_{𝔅1} = Spec⟨t₁, · · · , t_n⟩. Primes correspond to subsets of {t₁, · · · , t_n} "coordinate subspaces".
- We have monoid inclusions:

$$\langle t \rangle \hookrightarrow \langle t, t^{-1} \rangle \longleftrightarrow \langle t^{-1} \rangle.$$

Taking spectra, and denoting by $U_0 = Spec \langle t \rangle, U_\infty = Spec \langle t^{-1} \rangle$, we obtain the diagram

$$\mathbb{A}^1_{\mathbb{F}_1}\simeq U_0 \hookleftarrow U_0\cap U_\infty \hookrightarrow U_\infty\simeq \mathbb{A}^1_{\mathbb{F}_1}.$$

Gluing we get $\mathbb{P}^1_{\mathbb{F}_1}$. It has two closed points $0, \infty$, and a generic point.

From fans to monoid schemes

Toric Hall algebras and infinitedimensional Lie algebras

Matt Szczesny

A fan $\Sigma \subset \mathbb{R}^n$ (in the sense of toric geometry) gives rise to a monoid scheme X_{Σ}

• Each cone $\sigma \in \Sigma$ yields a monoid S_{σ} .

The fan gives gluing data for the Spec(S_σ)'s as in the construction of toric varieties.

Matt Szczesny

The projective plane $\mathbb{P}^2_{\mathbb{F}_1}$, as a monoid scheme, arises from the following fan:

The fan Σ for \mathbb{P}^2

Matt Szczesny

From σ_i , one obtains the following three affine monoid schemes:

 $X_{\sigma_0} = \text{Spec}(\langle x_1, x_2 \rangle) = \mathbb{A}^2_{\mathbb{F}_1},$ $X_{\sigma_1} = \text{Spec}(\langle x_1^{-1}, x_1^{-1}x_2 \rangle) = \mathbb{A}^2_{\mathbb{F}_1},$ $X_{\sigma_2} = \text{Spec}(\langle x_1x_2^{-1}, x_2^{-1} \rangle) = \mathbb{A}^2_{\mathbb{F}_1}.$ which can be glued to form $\mathbb{P}^2_{\mathbb{F}_1}.$

Coherent sheaves

Toric Hall algebras and infinitedimensional Lie algebras

Matt Szczesny

- If A is a commutative monoid, and M is an A-module, then we can form a quasicoherent sheaf M on Spec A as in the case of rings (localization works the same way).
- Such M's can be glued on an affine cover to yield quasicoherent sheaves on a monoid scheme X (for coherent we would take the M's to be finitely generated).

Proposition

Let X be a monoid scheme. The categories Qcoh(X), Coh(X) are proto-exact. So is the category $Coh(X)_Z$ of sheaves with prescribed set (resp. scheme)-theoretic support $Z \subset X$.

Problem: finitarity fails in the monoid scheme setting

Toric Hall algebras and infinitedimensional Lie algebras

Matt Szczesny

Even when Σ is the fan of a smooth projective toric variety, and $\mathcal{F}, \mathcal{F}' \in Coh(X_{\Sigma})$, we may have $|\operatorname{Ext}(\mathcal{F}, \mathcal{F}')| = \infty$.

• There is therefore no way to define $H_{Coh(X_{\Sigma})}$.

T-sheaves

Toric Hall algebras and infinitedimensional Lie algebras

Matt Szczesny

To resolve the problem of infinite Ext's, we pass to a sub-category $Coh^{T}(X_{\Sigma})$ of $Coh(X_{\Sigma})$ - the category of T-sheaves.

On $Spec(S_{\sigma})$, a *T*-sheaf corresponds to an S_{σ} -module *M* such that

- **1** *M* admits an S_{σ} -grading.
- **2** For $m, m' \in M$, and $s \in S_{\sigma}$,

$$sm = sm' \neq 0 \Leftrightarrow m = m'$$

Theorem

An indecomposable *T*-sheaf on $\mathbb{A}_{\mathbb{F}_1}^n \simeq \operatorname{Spec}(\langle x_1, \cdots, x_n \rangle)$ corresponds to a (possibly infinite) connected n-dimensional skew shape (convex connected sub-poset of $\mathbb{Z}_{>0}^n$).

Example - torsion T-sheaf on \mathbb{A}^2 supported at the origin

Toric Hall algebras and infinitedimensional Lie algebras

Matt Szczesny

Let n = 2. To the skew shape S below, we can associate a module M_S over the monoid $\langle x_1, x_2 \rangle$. x_1 (resp. x_2) act on M_S by moving one box to the right (resp. one box up) until reaching the edge of the diagram, and 0 beyond that. A minimal set of generators for M_S is indicated by the black dots:

Note that $\mathfrak{m}^3 \cdot M_S = 0$, where \mathfrak{m} is the maximal ideal (x_1, x_2) . \widetilde{M}_S is therefore a torsion sheaf supported at the origin in $\mathbb{A}^2_{\mathbb{F}_1}$.

Example - torsion T-sheaf supported on the union of coordinate axes in \mathbb{A}^2

Matt Szczesny

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Example - torsion-free T-sheaf on $\mathbb{A}^{2^{1}}$

Matt Szczesny

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example - torsion sheaf on \mathbb{A}^3 supported on union of coordinate axes

Matt Szczesny

Matt Szczesny

 If X_Σ is smooth, projective, and *n*-dimensional, then for each maximal cone σ ∈ Σ, Spec(S_σ) ≃ Aⁿ. A T-sheaf on X_Σ can therefore be thought of as being glued together from *n*-dimensional skew shapes.

Matt Szczesny

Theorem (J - S)

Let Σ be the fan of projective toric variety. Then the category $Coh^{T}(X_{\Sigma})$ of coherent T-sheaves on X_{Σ} has the structure of finitary proto-abelian category. Its Hall algebra $H_{Coh(X_{\Sigma})^{T}}$ has the structure of a co-commutative Hopf algebra isomorphic to $U(\mathfrak{n}_{X})$, where \mathfrak{n}_{X} has as basis the indecomposable coherent T-sheaves on X_{Σ} .

The theorem also holds for categories $Coh^T(X_{\Sigma})_Z$ of T-sheaves supported in a closed subset/subscheme $Z \subset X$..

Example - multiplying two torsion sheaves in Hall algebra $H_{Coh^{T}(\mathbb{A}^{2})_{0}}$

Toric Hall algebras and infinitedimensional Lie algebras

Matt Szczesny

Let n = 2. By abuse of notation, we identify the skew shape λ with the delta-function of the corresponding coherent sheaf. Let _____

$$S =$$
 $T =$

We have

where for each skew shape we have indicated which boxes correspond to S and T.

Matt Szczesny

By identifying connected, finite, *n*-dimensional skew shapes with $Coh^{T}(\mathbb{A}^{n})_{0}$, we obtain a Lie bracket on these, defined by

$$[\mathcal{S},\mathcal{T}] = \mathcal{S} \bullet \mathcal{T} - \mathcal{T} \bullet \mathcal{S}$$

This Lie algebra has all structure constants $\pm 1, 0$.

Example: $Coh^{T}(\mathbb{P}^{1})$

Toric Hall algebras and infinitedimensional Lie algebras

Matt Szczesny

Theorem

 $H_{Coh^{ au}(\mathbb{P}^1)}\simeq U(\mathfrak{gl}_2^+[t,t^{-1}])$ where

$$\mathfrak{gl}_2^+[t,t^{-1}]\simeq egin{pmatrix} \mathfrak{a}(t) & b(t)\ 0 & c(t) \end{pmatrix}$$

with
$$a(t), c(t) \in \mathbb{Q}[t], b(t) \in \mathbb{Q}[t, t^{-1}].$$

(classical limit of Kapranov's and Baumann-Kassel's result). Here

$$\mathcal{T}_{0,r} \to \begin{pmatrix} t^r & 0 \\ 0 & 0 \end{pmatrix}, \mathcal{T}_{\infty,s} \to \begin{pmatrix} 0 & 0 \\ 0 & -t^s \end{pmatrix}, \mathcal{O}(n) \to \begin{pmatrix} 0 & t^n \\ 0 & 0 \end{pmatrix}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Example: Second formal neighborhood of 0 in \mathbb{A}^2

Toric Hall algebras and infinitedimensional Lie algebras

Matt Szczesny

Consider the sub-scheme $Y = Spec(\langle x_1, x_2 \rangle / \mathfrak{m}^2)$ of \mathbb{A}^2 , where $\mathfrak{m} = (x_1, x_2)$. Indecomposable *T*-sheaves on *Y* are one of the following types:

◆□> ◆□> ◆豆> ◆豆> □目

Matt Szczesny

These are skew shapes not containing one of the following "disallowed" diagrams:

Theorem

 $H_{Coh^{T}(Y)} \simeq U(\mathfrak{k})$, where \mathfrak{k} is the Lie subalgebra of $\mathfrak{gl}_{2}[t]$:

$$\begin{pmatrix} d(t) & a(t) \\ b(t) & c(t) \end{pmatrix}$$

where a(t), b(t) are odd polynomials, with $deg(a(t)) \ge 3, deg(b(t)) \ge 1$, and c(t), d(t) are even polynomials with $deg(c(t)) \ge 2, deg(d(t)) \ge 4$.

Example - $Coh^T(\mathbb{P}^2)$

Matt Szczesny

We can visualize \mathbb{P}^2 as follows:

where p_i are torus fixed-points, and the *l*'s the torus-fixed \mathbb{P}^1 's connecting them.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Matt Szczesny

- We can classify all indecomposable *T*-sheaves on \mathbb{P}^2 . These are (roughly) of three types:
 - These are point sheaves supported at p_i, i = 0, 1, 2 each generates a copy of Coh^T(A²)₀.

- 2 Sheaves supported along the triangle of \mathbb{P}^{1} 's
- **3** Torsion-free sheaves of rank 1.
- The Lie algebra $\mathfrak{n}_{\mathbb{P}^2}$ is very large, and seems difficult to relate to anything explicit.

Matt Szczesny

Let \mathfrak{p} denote the Lie subalgebra of $\mathfrak{n}_{\mathbb{P}^2}$ generated by $\mathcal{O}_{ij}(n)$, where the latter is the degree *n* line bundle supported on I_{ij} . By looking at how \mathfrak{p} acts on vector bundles on \mathbb{P}^2 , can show there is a surjection

$$\mathfrak{p}\twoheadrightarrow\mathfrak{gl}_\infty^-$$

where \mathfrak{gl}_{∞} is the Lie algebra of infinite matrices $E_{i,j}, i, j \in \mathbb{Z}$, and \mathfrak{gl}_{∞}^- is the lower-triangular part, where i > j.