
Random loops and T -algebras

M. Hairer

Imperial College London
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Stochastic quantisation

Basic idea: Consider discrete approximation to “Euclidean QFT” e−βS(ϕ) Dϕ so
ϕ belongs to finite-dimensional vector space. This is invariant for stochastic
evolution

dϕ = −∇S(ϕ) dt+
√

2/β dW ,

for W a Brownian motion with covariance structure adapted to the metric
determining the gradient ∇.

Hope: Maybe one can pass to the limit for the dynamic?

1D σ-model: Field configurations given by loops on Riemannian manifold:
u : S1 →M, S(u) =

∫
S1 gu(∂xu, ∂xu) dx, usual Dirichlet energy.
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Formal Gibbs measure

Brownian loop measure on manifold (M, g) formally given (for some c) by

P(Du) ∝ exp
(
−
∫
S1

(1

2
gu(∂xu, ∂xu)− cR(u)

)
dx
)

“Du” .

Scalar curvature

Formally invariant for SPDE

∂tu = ∇∂xu∂xu+ c∇R(u) +
√

2g(u)ξ .

In local coordinates

(∂t − ∂2
x)u

α = Γαβγ(u) ∂xu
β∂xu

γ + cgαβ(u)∂βR(u) +
√

2σαi (u)ξi ,

with σαi σ
β
i = gαβ, Γ Christoffel symbols for Levi-Civita.
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A general result

Given H ∈ C∞(Rd,Rd), write U ε(Γ, σ,H) for some (formal) ε-approximation to

(∂t − ∂2
x)u

α = Γαβγ(u) ∂xu
β∂xu

γ +Hα(u) + σαi (u)ξi ,

RST yields a collection S = { , , , , , , , , . . .} of 54 symbols
and a valuation map ΥΓ,σ : S → C∞(Rd,Rd) s.t.:

Theorem A (H., Bruned, Chandra, Chevyrev, Zambotti): For every choice
of Γ, σ,H and every truncation of heat kernel there exist constants Cbphz

ε ∈ 〈S〉
such that

U(Γ, σ,H) = lim
ε→0

U ε(Γ, σ,H + ΥΓ,σC
bphz

ε ) .

Cbphz
ε do depend on approximation procedure, limit does not.
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bras, allowing to recenter in probability
space (renormalisation) and in real space
(Taylor-like expansions).
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Continuous in all arguments!



Preservation of symmetries

Metatheorem: If, for some approximation procedure, U ε satisfies a symmetry,
then one can find constants Cε such that

U sym(Γ, σ,H) = lim
ε→0

U ε(Γ, σ,H + ΥΓ,σCε)

also satisfies the symmetry in question. (Also Cε − Cbphz
ε → const.)

Choice only unique up to S sym ⊂ 〈S〉, symmetric counterterms.

1. Yields equivariant (‘Stratonovich’) solution theories U geo parametrised by a
15-dimensional affine subspace Sgeo of vector fields.

2. Yields (‘Itô’) solution theories U Itô satisfying Itô isometry (law depends only
on σαi σ

β
i = gαβ) parametrised by a 19-dimensional affine subspace S Itô.



Preservation of symmetries

Metatheorem: If, for some approximation procedure, U ε satisfies a symmetry,
then one can find constants Cε such that

U sym(Γ, σ,H) = lim
ε→0

U ε(Γ, σ,H + ΥΓ,σCε)

also satisfies the symmetry in question. (Also Cε − Cbphz
ε → const.)

Choice only unique up to S sym ⊂ 〈S〉, symmetric counterterms.

1. Yields equivariant (‘Stratonovich’) solution theories U geo parametrised by a
15-dimensional affine subspace Sgeo of vector fields.
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Itô = Stratonovich!

Theorem (Bruned, Gabriel, H., Zambotti): There exists a two-parameter
family of solution theories U satisfying both symmetries simultaneously. All of
them coincide with existing notions of solution in all previously studied cases.

Recall solution given by

U sym(Γ, σ,H) = lim
ε→0

U ε(Γ, σ,H + ΥΓ,σCε) .

Expect
(
ΥΓ,σCε

)
(u) = 0 whenever Γ(u) = 0 and (∂σ)(u) = 0 (pointwise).

Theorem: There exists a one-parameter family of solution theories U satisfying
‘equivariance / Stratonovich’, ‘Itô isometry’, and ‘minimality’.
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Back to geometry

In geometric case when Γ are Christoffel symbols for Levi-Civita, all elements in
that one-parameter family coincide! Yields completely natural notion of solution.

However, ‘Minimality’ could depend on approximation procedure (but is the same
for many natural ones, like all mollifications). Different choices differ by multiples
of gradient of scalar curvature.

Explains previously observed fact that different approximations to Brownian
bridge measure are of form

exp
(
−1

2

∫ (
gu(∂xu, ∂xu) + cR(u)

)
dt
)
Du

for different c’s: Onsager-Machlup (−1
6
), DeWitt (1

6
,−1

4
), Dekker (1

4
), Inoue,

Maeda (−1
6
), Andersson, Driver (0,−1

3
), etc. Our choice suggests c = −1

4
.
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Main step in the proof

One shows that ‘geometric’ and ‘Itô’ solutions differ by a counterterm in Sboth:
terms τ ∈ 〈S〉 such that

(
ΥΓ,σ −ΥΓ,σ̄

)
τ is a vector field. One obviously has

S Itô + Sgeo ⊂ Sboth. Non-trivial fact:

Sboth = S Itô + Sgeo .

For SDEs, S = { } and Υσ = σiDσi, so S Itô = Sgeo = 0. But(
Υσ −Υσ̄

)
= ∇σiσi −∇σ̄iσ̄i, so Sboth = S!

For SPDEs, one has S(2) = { , } and

S Itô

(2) = 〈 〉 , Sgeo

(2) = 〈 + 〉 , Sboth

(2) = S(2) .

Much harder to check at level 4, requires systematic approach.
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T -algebras

Motivation: abstraction of functions with multiple ‘upper’ and ‘lower’ indices.

Definition: A T -algebra is a bigraded vector space V =
⊕
{Vu` : u, ` ≥ 0} with

I An action of Sym(u, `) = Sym(u)× Sym(`) on each Vu` .

I An associative product Vu1`1 × V
u2
`2
→ Vu1+u2

`1+`2
satisfying

B • A = Su1,u2`1,`2
(A • B) , α1A • α2B = (α1 · α2)(A • B) .

I A trace tr : Vu+1
`+1 → Vu` with tr(A • B) = A • trB (if degB ≥ (1, 1)) and

α trA = tr
(
(α · id1

1)A
)

, tr2A = tr2
(
(idu` · S

1,1
1,1)A

)
.
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Examples

Canonical example: Given a vector space V , set

V [V ]u` = (V ∗)⊗` ⊗ V u .

Natural product and action of permutations. Trace pairs up last factors.

Functions: Given V , set W [V ]u` = C∞(V,V [V ]u` ).

Additional structure: derivation ∂ : Vu` → Vu`+1 via

L(V,V [V ]u` ) ' V ∗ ⊗ V [V ]u` ' V [V ]u`+1 ,

if V finite-dimensional. Satisfies ∂2A = (S1,1 · idu` ) ∂2A, plus Leibniz rule and
natural interaction with trace and symmetric group.
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Free T -algebras

Given by ‘T -graphs’ with nodes decorated by generators.

Given W =
⊕
{W u

` : u, ` ≥ 0} with action of symmetric group, generates a
T -algebra Tr(W ). Every T -graph g yields a subspace Trg(W ) ⊂ Tr(W ).



Non-degeneracy result

Fix W =
⊕
{W u

` : u, ` ≥ 0} locally finite-dimensional with action of symmetric
group, Ŵ u

` ⊂ W u
` invariant, and finite collection G of connected anchored

T -graphs.

Theorem: There exists V finite-dimensional, Φ, Φ̄ ∈ Hom(Tr(W ),V [V ])
injective on TrG(W ) such that, for τ ∈ TrG(W ), Φτ = Φ̄τ if and only if
τ ∈ Tr(Ŵ ).

If W (and therefore Tr(W )) admits a derivation, same holds with V [V ] replaced
by W [V ] and Φ, Φ̄ ∈ Hom∂(Tr(W ),W [V ]).

Remark: Φ certainly cannot be injective on all of Tr(W ) since dim Tr(W )u` =∞
but dim V [V ]u` <∞!
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` ⊂ W u
` invariant, and finite collection G of connected anchored

T -graphs.

Theorem: There exists V finite-dimensional, Φ, Φ̄ ∈ Hom(Tr(W ),V [V ])
injective on TrG(W ) such that, for τ ∈ TrG(W ), Φτ = Φ̄τ if and only if
τ ∈ Tr(Ŵ ).
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Some open questions

I Minimal dimension required for V in non-degeneracy result?

I More intrinsic “geometric” formulation of solution theory?

I Behaviour in sub-Riemannian case, notion of hypoellipticity?

I Large deviations between closed geodesics?

I Long time control of solutions?

Thank you for your attention!
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