Bogoliubov type recursions for renormalisation in Regularity Structures

Yvain Bruned
University of Edinburgh
(joint work with Kurusch Ebrahimi-Fard)

"Algebraic Structures in Perturbative Quantum Field Theory", A conference in honour of Dirk Kreimer's 60th birthday, IHES, 16 November 2020

Singular SPDEs

We consider a singular SPDE of the form:

$$
\partial_{t} u-\Delta u=F(u, \nabla u, \xi), \quad(t, x) \in \mathbf{R}_{+} \times \mathbf{R}^{d}
$$

where ξ is a space-time noise. Local expansion of the solution u :

$$
u(y)=u(x)+\sum_{\tau \in \mathcal{T}_{\text {eq }}} \Upsilon[\tau](x)\left(\Pi_{x} \tau\right)(y)+R(x, y)
$$

where Π_{x} : Decorated trees \rightarrow recentered iterated integrals.

- Π_{x} is a recentering map. With $\Gamma_{x y}$ such that $\Pi_{x} \Gamma_{x y}=\Pi_{y}$, (Π, Γ) is a model.
- $\Pi_{x} \tau$ could be ill-defined: renormalisation maps M such that $\Pi_{x}^{M}=\Pi_{x} M$.

Dispersive PDEs

We consider nonlinear dispersive equations of the form

$$
\begin{aligned}
& i \partial_{t} u(t, x)+\mathcal{L} u(t, x)=p(u(t, x), \bar{u}(t, x)) \\
& u(0, x)=v(x), \quad(t, x) \in \mathbb{R}_{+} \times \mathbf{T}^{d}
\end{aligned}
$$

where \mathcal{L} is a differential operator and p is a polynomial nonlinearity.
Resonance scheme U_{k}^{r} of order r :

$$
U_{k}^{r}(t, v)=\sum_{\tau \in \mathcal{V}_{k}^{r}} \Upsilon[\tau](v)\left(\hat{\Pi}^{r} \tau\right)(t)
$$

where \mathcal{V}_{k}^{r} are decorated trees of order r, $\hat{\Pi}^{r}$: Decorated trees \rightarrow approximation of iterated integrals.

Decorated trees

- $\mathcal{T}=$ set of non-planar rooted trees.
- \mathfrak{L} finite set and $\mathcal{D}=\mathfrak{L} \times \mathbf{N}^{d+1}$.
- Decorated trees $\mathcal{T}^{\mathcal{D}}$ are elements of the form $T_{\mathfrak{e}}^{\mathfrak{n}}=(T, \mathfrak{n}, \mathfrak{e})$ with $T \in \mathcal{T}, \mathfrak{n}: N_{T} \rightarrow \mathbf{N}^{d+1}, \mathfrak{e}: E_{T} \rightarrow \mathcal{D}$. We set $\mathcal{H}=\left\langle\mathcal{T}^{\mathcal{D}}\right\rangle$

Tree product: $(T, \mathfrak{n}, \mathfrak{e}) \cdot(\bar{T}, \overline{\mathfrak{n}}, \overline{\mathfrak{e}})=(T \cdot \bar{T}, \mathfrak{n}+\overline{\mathfrak{n}}, \mathfrak{e}+\overline{\mathfrak{e}})$.

Symbolic notations

Symbols:

- Grafting operator $\mathcal{I}_{a}: \mathcal{T}^{\mathcal{D}} \rightarrow \mathcal{T}^{\mathcal{D}}, T \in \mathcal{T}^{\mathcal{D}}$, one has:

$$
\mathcal{I}_{a}(T)=\begin{gathered}
T \\
\vdots \\
\vdots
\end{gathered}
$$

- Monomial $X^{k}, k \in \mathbf{N}^{d+1}$ encodes by \bullet_{k}.

Tree product:

Degree of a tree

We suppose given $|\cdot|_{1}: \mathfrak{L} \rightarrow \mathbf{R}$ and $|\cdot|_{2}: \mathbf{N}^{d+1} \rightarrow \mathbf{R}$. Then the degree of a decorated tree $T_{\mathfrak{e}}^{\mathfrak{n}}$ is

$$
\operatorname{deg}\left(T_{\mathfrak{e}}^{\mathfrak{n}}\right)=\sum_{u \in N_{T}}|\mathfrak{n}(u)|_{2}+\sum_{e \in E_{T}}\left(\left|\mathfrak{e}_{1}(e)\right|_{1}-\left|\mathfrak{e}_{2}(e)\right|_{2}\right)
$$

We consider the space of "positive" decorated trees \mathcal{T}_{+}

$$
\mathcal{T}_{+}^{\mathcal{D}}=\left\{X^{k} \prod_{i} \mathcal{I}_{a_{i}}\left(\tau_{i}\right) \mid \operatorname{deg}\left(\mathcal{I}_{a_{i}}\left(\tau_{i}\right)\right) \geq 0\right\}
$$

with the natural projection $\pi_{+}: \mathcal{T}^{\mathcal{D}} \rightarrow \mathcal{T}_{+}^{\mathcal{D}}, \mathcal{H}_{+}=\left\langle\mathcal{T}_{+}^{\mathcal{D}}\right\rangle$.

Deformed Butcher-Connes-Kreimer coproduct

$$
\begin{gathered}
\Delta^{+} \mathbf{1}=1 \otimes 1, \quad \Delta^{+} X_{i}=X_{i} \otimes \mathbf{1}+\mathbf{1} \otimes X_{i} \\
\Delta^{+} \mathcal{I}_{a}(\tau)=\left(\mathcal{I}_{a} \otimes \mathrm{id}\right) \Delta^{+}+\sum_{\ell \in \mathbf{N}^{d+1}} \frac{X^{\ell}}{\ell!} \otimes \mathcal{I}_{a+\ell}(\tau)
\end{gathered}
$$

- Coproduct $\Delta^{+}: \mathcal{H} \rightarrow \mathcal{H} \otimes \mathcal{H}$, a bigrading is required for the infinite sum (B.-Hairer-Zambotti).
- Deformed plugging + Guin-Oudom procedure (B.-Manchon).
- Coaction $\hat{\Delta}^{+}=\left(\mathrm{id} \otimes \pi_{+}\right) \Delta^{+}: \mathcal{H} \rightarrow \mathcal{H} \otimes \mathcal{H}_{+}$, finite subtraction determined by the degree.
- Coproduct $\bar{\Delta}^{+}=\left(\pi_{+} \otimes \pi_{+}\right) \Delta^{+}: \mathcal{H}_{+} \rightarrow \mathcal{H}_{+} \otimes \mathcal{H}_{+}$.
- Other projections than π_{+}in Numerical Analysis (B.-Schratz).

Main properties

Theorem (B., Hairer, Zambotti)

- There exits an algebra morphism $\mathcal{A}_{+}: \mathcal{H} \rightarrow \mathcal{H}$ such that $\left(\mathcal{H}, \cdot, \Delta^{+}, \mathbf{1}, \mathbf{1}^{\star}, \mathcal{A}_{+}\right)$is a Hopf algebra.
- There exits an algebra morphism $\overline{\mathcal{A}}_{+}: \mathcal{H}_{+} \rightarrow \mathcal{H}_{+}$such that $\left(\mathcal{H}_{+}, \cdot, \bar{\Delta}^{+}, \mathbf{1}, \mathbf{1}^{\star}, \overline{\mathcal{A}}_{+}\right)$is a Hopf algebra.
- $\left(\mathcal{H}, \hat{\Delta}^{+}\right)$is a right-comodule for \mathcal{H}_{+}.

An important map is the twisted antipode $\tilde{\mathcal{A}}_{+}: \mathcal{H}_{+} \rightarrow \mathcal{H}$ defined by:

$$
\begin{aligned}
\tilde{\mathcal{A}}_{+} X_{i} & =-X_{i} \\
\tilde{\mathcal{A}}_{+} \mathcal{I}_{a}(\tau) & =-\sum_{|\ell|_{2} \leq \operatorname{deg}\left(\mathcal{I}_{a}(\tau)\right)} \frac{(-X)^{\ell}}{\ell!} \mathcal{M}\left(\mathcal{I}_{a+\ell} \otimes \tilde{\mathcal{A}}_{+}\right) \hat{\Delta}^{+} \tau .
\end{aligned}
$$

Framework

- Let H be a connected graded Hopf algebra with coproduct Δ.
- \hat{H} a right-comodule over H with coaction $\hat{\Delta}: \hat{H} \rightarrow \hat{H} \otimes H$. We suppose also given an injection $\iota: H \rightarrow \hat{H}$.
- char (H, A) is the set of characters from the Hopf algebra H into a commutative A.
- Rota-Baxter map $Q: A \rightarrow A$ satisfying for any $f, g \in A$:

$$
Q(f)_{A} Q(g)+Q\left(f_{A} g\right)=Q\left(Q(f)_{{ }_{A}} g+f_{A} Q(g)\right)
$$

- The algebra A splits into two subalgebras $A_{-}:=Q(A)$ and $A_{+}:=\left(\mathrm{id}_{A}-Q\right)(A): A=A_{-} \oplus A_{+}$.

Bogoliubov type recursion

For every $\varphi \in \operatorname{char}(\hat{H}, A)$, there are unique algebra morphisms $\varphi_{-}: H \rightarrow A_{-}$and $\varphi_{+}: \hat{H} \rightarrow A$ such that for every $\tau \in H:$

$$
\begin{aligned}
\varphi_{-}(\tau) & =-Q(\bar{\varphi}(\iota(\tau))) \\
\bar{\varphi}(\iota(\tau)) & =\varphi(\iota(\tau))+\sum_{(\iota(\tau))}^{\prime} \varphi\left(\iota(\tau)^{\prime}\right)_{\star} \varphi_{-}\left(\iota(\tau)^{\prime \prime}\right) \\
\varphi_{+} & =\varphi \star \varphi_{-}=m_{A}\left(\varphi \otimes \varphi_{-}\right) \hat{\Delta}
\end{aligned}
$$

where the reduced coaction is given by

$$
\hat{\Delta}^{\prime} \circ \iota(\tau)=\sum_{(\iota(\tau))}^{\prime} \iota(\tau)^{\prime} \otimes \iota(\tau)^{\prime \prime}=\hat{\Delta} \circ \iota(\tau)-\iota(\tau) \otimes \mathbf{1}-1 \otimes \iota(\tau)
$$

Moreover, the map $\varphi_{+} \circ \iota: H \rightarrow A$ takes values in A_{+}.

Applications

The previous recursion is enough in two cases:

- Renormalisation of the model: Q is given by $\mathbb{E}(\cdot)$.
- Numerical analysis: Q projects according to the frequencies.

The Hopf algebra \mathcal{H}_{+}is not connected because of X^{k}. One needs to find the reduced coaction.

Cointeraction between renormalisation and recentering corresponds to two Bogoliubov recursions in "cointeraction".

Reduced coaction

Classical reduced coproduct $\tilde{\Delta}$:

$$
\tilde{\Delta} \tau=\Delta \tau-\tau \otimes \mathbf{1}-\mathbf{1} \otimes \tau
$$

The reduced coaction $\hat{\Delta}_{\text {red }}^{+}$is given for $\tau=X^{k} \prod_{i=1}^{n} \mathcal{I}_{a_{i}}\left(\tau_{i}\right)$ by

$$
\begin{aligned}
\hat{\Delta}_{\mathrm{red}}^{+} \tau & =\hat{\Delta}^{+} \tau-\tau \otimes \mathbf{1} \\
& -\sum_{\substack{\ell_{1}, \ldots, \ell_{n} \\
\ell_{i}, k \in N^{d+1}}}\left(\prod_{i=1}^{n} \frac{1}{\ell_{i}!}\right)\binom{k_{0}}{k} X^{k+\sum_{i} \ell_{i}} \otimes X^{k_{0}-k} \prod_{i=1}^{n} \pi_{+} \mathcal{I}_{a_{i}+\ell_{i}}\left(\tau_{i}\right)
\end{aligned}
$$

One has $\Delta_{\text {red }}^{+} X^{k}=0$.

Splitting and Rota-Baxter maps

We consider $A=\mathcal{C}^{\infty}\left(\mathbf{R}^{d+1}, \mathbf{R}\right)$. We fix $x \in \mathbf{R}^{d+1}$, then

$$
A=A_{x}^{+} \oplus A_{x}^{-}
$$

where A_{x}^{+}contains the functions vanishing at x and A_{x}^{-}consists of polynomial functions whose coefficients are functions of x.

We set for $\alpha \in \mathbf{R}_{+}, x, y \in \mathbf{R}^{d+1}$ and $f \in A$

$$
\mathrm{T}_{\alpha, x, y} f \stackrel{\text { def }}{=} \sum_{\substack{\ell \in \mathrm{R}^{d+1} \\|\in|_{2}<\alpha}} \frac{(y-x)^{\ell}}{\ell!}\left(D^{\ell} f\right)(x) .
$$

For $f, g \in A$, one has the Rota-Baxter identity:

$$
\left(\mathrm{T}_{\alpha, x, \cdot}\right)\left(\mathrm{T}_{\beta, x, \cdot}\right)=\mathrm{T}_{\alpha+\beta, x, \cdot}\left[\left(\mathrm{~T}_{\alpha, x, \cdot} \cdot f\right) g+f\left(\mathrm{~T}_{\beta, x, \cdot}\right)-f g\right] .
$$

Bogoliubov type recursion

We suppose given $\mathcal{F}=\left(\varphi_{\bar{x}}\right)_{\bar{x} \in \mathbf{R}^{d+1}}, \varphi_{\bar{x}} \in \operatorname{char}(\mathcal{H}, A)$, the Bogoliubov recursion is given for $x, y \in \mathbf{R}^{d+1}$ by

$$
\begin{aligned}
\bar{\varphi}_{x, \bar{x}, y}(\tau) & =\varphi_{\bar{x}, y}(\tau)+\sum_{(\tau)}^{+} \varphi_{\bar{x}, y}\left(\tau^{\prime}\right) \varphi_{x, \bar{x}, \bar{x}}^{-}\left(\tau^{\prime \prime}\right) \\
\varphi_{x, \bar{x}, y}^{-}(\tau) & =-\mathrm{T}_{\operatorname{deg}(\tau), x, y}\left(\bar{\varphi}_{x, \bar{x}, \cdot}(\tau)\right) \\
\varphi_{x, \bar{x}}^{+} & =\varphi_{\bar{x}} \star \varphi_{x, \bar{x}, \cdot \mid \bar{x}}^{-}=\left(\varphi_{\bar{x}} \otimes \varphi_{x, \bar{x}, \cdot \mid \bar{x}}^{-}\right) \hat{\Delta}^{+} .
\end{aligned}
$$

where \sum^{+}are the Sweedler's notation for $\hat{\Delta}_{\text {red }}^{+}$.

Main theorems

Assumption on $\mathcal{F}=\left(\varphi_{\bar{x}}\right)_{\bar{x} \in \mathbf{R}^{d+1}}$:

$$
\varphi_{\bar{x}, y}\left(X_{i}\right)=y_{i}-\bar{x}_{i}, \quad \varphi_{\bar{x}, \cdot}\left(\mathcal{I}_{a+\ell}(\tau)\right)=D^{\ell} \varphi_{\bar{x}, \cdot}\left(\mathcal{I}_{a}(\tau)\right) .
$$

Theorem (B.,Ebrahimi-Fard)

- The map $\varphi_{x, \bar{x}}^{-}$is a character from \mathcal{H}_{+}into A_{x}^{-}.
- The map $\varphi_{x, \bar{x}}^{+}$is a character from \mathcal{H} into A.
- On has $\varphi_{x, \bar{x}, \bar{x}}^{-}=\varphi_{\bar{x}, x} \tilde{\mathcal{A}}_{+}$.
- One has for every $\tau \in \mathcal{H}$:

$$
\varphi_{\bar{x}, x, y}^{+}(\tau)=\left(\bar{\varphi}_{x, \bar{x}, y}-\mathrm{T}_{\operatorname{deg}(\cdot), x, y}\left(\bar{\varphi}_{x, \bar{x}}\right)\right)(\tau)
$$

Main Theorems

Extra assumption on $\mathcal{F}=\left(\varphi_{\bar{x}}\right)_{\bar{x} \in \mathbf{R}^{d+1}}$:

$$
\varphi_{\bar{x}, y}\left(\mathcal{I}_{(\mathrm{l}, k)}(\tau)\right)=\int_{\mathbf{R}^{d+1}} D^{k} K_{\mathrm{l}}(y-z) \varphi_{\bar{x}, z}(\tau) d z
$$

where $\left(K_{\mathfrak{l}}\right)_{\mathfrak{l} \in \mathfrak{L}}$ is a family of smooth kernels.

Theorem (B.,Ebrahimi-Fard)

- One has \bar{x}-invariance for $\varphi_{x, \bar{x}}^{+}: \varphi_{x, 0}^{+}:=\varphi_{x, \bar{x}}^{+}$.
- The preparation map $\bar{\varphi}_{x, \bar{x}}$ is \bar{x}-invariant on planted trees:

$$
\bar{\varphi}_{x, \bar{x}, y}\left(\mathcal{I}_{(\mathrm{l}, \mathrm{k})}(\tau)\right)=\left(D^{k} K_{\mathrm{l}} * \varphi_{x}^{+}(\tau)\right)(y)
$$

- The map $\varphi_{x, \bar{x}}^{-}$is \bar{x}-invariant on trees with zero node decoration at the root.

Application to Regularity Structures

We consider the character $\boldsymbol{\Pi}^{(\bar{x})}$ given by: $\boldsymbol{\Pi}^{(\bar{x})}=\varphi_{\bar{x}}$.
The main characters used for defining the model are:

$$
f_{x}^{(\bar{x})}=\left(\Pi^{(\bar{x})} \tilde{\mathcal{A}}_{+} \cdot\right)(x), \quad \Pi_{x}^{(\bar{x})}=\left(\Pi^{(\bar{x})} \otimes f_{x}^{(\bar{x})}\right) \hat{\Delta}^{+}
$$

Theorem (B.,Ebrahimi-Fard)

One has

$$
\Pi_{x}^{(\bar{x})}=\varphi_{x, \bar{x}}^{+}, \quad f_{x}^{(\bar{x})}=\varphi_{x, \bar{x}, \bar{x}}^{-}, \quad \Pi_{x}^{(\bar{x})}=\Pi_{x}, \quad \Gamma_{x y}^{(\bar{x})}=\Gamma_{x y} .
$$

The model $(\Pi, Г)$ is \bar{x}-invariant.

