Overview of ARM-SVE gem5
simulator with “Open
parameters”

Yuetsu Kodama, Tetsuya Odajima and Mitsuhisa Satc "
RIKEN R-CCS
{yuetsu.kodama, tetsuya.odajima, msato}@riken.jp

o))
()
M Em
[|
11T 11T

2019/6/13 CEA-Riken Summer School

Open gem5-Arm-SVE Rets

e RIKEN developed a processor simulator based on gemb5 for
supercomputer Fugaku to evaluate its kernel performance.

e Since RIKEN simulator is based on parameters of A64FX, that is a
processor for Fugaku, under NDA with Fujitsu, we cannot share it
with the community.

e Gem5-riken-open is an “open” version of RIKEN simulator for
Arm-SVE by excluding the detailed parameters of A64FX.

e By co-operations with Prof. Simon in University of Bristol, we set the
“open” parameters and re-build the gem5 simulator.

e Note: “Some of parameters in this gem5 are taken from public
information about Cavium ThunderX2, but all parameters including
these parameters are not relevant to any specific hardware.”

e The gemb5 simulator provided supports the simulation of SVE instructions
on an Arm based architectural mode.

e Based on an out-of-order processor core, similar to that in a current
generation Arm HPC processor, we also implement a SVE unit, whose
default set is 512-bit.

ﬁ 2019/6/13 CEA-Riken Summer School

RIFEN

Set up on CEA (1) R

Login to our R&D cluster (inti)

$ ssh inti.ocre.cea.fr

Setup public key authentication

$ ssh-keygen # Press enter at every prompt

$ cp .ssh/id_rsa.pub .ssh/authorized_keys

Allocate a VM with 8 cores within the "sandy" partition and the "workshop"
reservation for 1 day. The "dockerenv" image has been setup with docker
and your home directory from the physical cluster will be mounted inside.
The VM disk itself is ephemeral so any data stored outside of your home will
be lost once the VM allocation is terminated.

$ pcocc alloc -p sandy -t 1-0 -c 8 --reservation=workshop dockerenv

Wait at least 30s for the VM to boot

Access the VM via ssh

$ pcocc ssh vmO

Add yourself to the docker group to allow using docker without "sudo"

$ sudo usermod -a -G docker $USER

Logout and log back in to update your groups

$ exit

2019/6/13 CEA-Riken Summer School

RIFEN

Set up on CEA (2) Rets

$ pcocc ssh vmO

Use the gem5 docker image
$ docker run -ti linaro/gem5-riken-open

Your home is shared with the physical cluster, including the ARM nodes

Assuming you have compiled ARM binaries in $HOME/arm you could use the
following command to access these binaries from /arm in your container

$ docker run -v $HOME/arm:/arm -ti linaro/gem5-riken-open

In following sample, gem5-riken-open should be replaced to linaro/gem5-riken-open.

Linaro/gem>5-riken-open may be still slightly old version where some tool’s option is
not implemented. We are now request new image to linaro, but you can copy new
image from USB stick to your terminal, and copy to the training environment.

2019/6/13 CEA-Riken Summer School

RIFEN

Sample Run RS

// [copy gem5-riken-open.tar.gz from USB memory] if you run docker on your PC
// # docker load —i gem5-riken-open.tar.gz

docker image Is

REPOSITORY TAG IMAGE ID CREATED SIZE
gem>b5-riken-open latest c4b8dach38b5 2 hours ago 3.07 GB
docker run -it -u r-sim -w /home/r-sim gem>5-riken-open

$ cp /opt/samples/daxpy_C.c daxpy.c

$ make -f /opt/samples/Makefile_C daxpy.axf

$ time gemb5-03 -c daxpy.axf -n 1

gem>5 Simulator System. http://gem>5.org

command line: /opt/gem5/fs_sim_riken/build/ARM/gem5.opt
/opt/gemb5/fs_sim_riken/configs/example/se.py --cpu-type=03_ARM_riken_3 --
caches --12cache -c daxpy.axf -n 1 -e omp1.txt

This time is measured in kernel part between
I'm O of 1. get_dtime() in program.]
time = 0.028237 ms, 7.252895 GFLOPS, dummy = 306900.000000

Exiting @ tick 71442840 because exiting with last active thread context

real 0m3.614s
$ exit

In this case, total time is 0.071 ms on simulator (tick is ps),

so gemb5 is 50K times slower than real chip.
2019/6/13 CEA-Riken Summer School

RIFEN

Compare SVE vs NOSVE

$ cp /opt/samples/Makefile_C Makefile.nosve
[edit Makefile.nosve]

$ diff Makefile.nosve /opt/samples/Makefile_C

4c4
< CFLAGS = -03 -march=armv8-a -fopenmp -static --sysroot=$(ARM_SYSROOT)
> CFLAGS = -03 -march=armv8-a+sve -fopenmp -static --sysroot=$(ARM_SYSROOT)

$ In —s daxpy.c daxpy-nosve.c
$ make —-f Makefile.nosve daxpy-nosve.axf

$ time gem5-03 -c daxpy-nosve.axf -n 1

I'mOof 1.

time = 0.088619 ms, 2.311017 GFLOPS, dummy = 306900.000000
Exiting @ tick 133136724 because exiting with last active thread context
real O0m5.309s

$ exit

Using SVE is 3.2 time faster than nosve.

2019/6/13 CEA-Riken Summer School

@ |||
RCCS

Compare SVE between vector length Qu

$ gem5-03 -c daxpy.axf-n 1 -v 128

[-v[128 | 256 | 512 | 1024 | 2048] // set vector length

I'mOof 1.
time = 0.064803 ms, 3.160348 GFLOPS, dummy = 306900.000000
Exiting @ tick 10972038 because exiting with last active thread context

$ exit [SVE supports Vector Length Agnostic programming, so
same binaries are available for different vector Iength.

No sve 2.31 0.73
-v 128 3.16 1.00
-v 256 5.08 1.61
-v 512 7.25 2.29
-v 1024 11.38 3.60
-v 2048 13.72 4.34

RINEN 2019/6/13 CEA-Riken Summer School

Stats.txt &

$ gem5-03 —c daxpy.axf -n 1

time = 0.028237 ms, 7.252895 GFLOPS, dummy = 306900.000000
Exiting @ tick 71442840 because exiting with last active thread context
$ less m5out/stats.txt

---------- Begin Simulation Statistics ----------
sim_seconds 0.000071 # Number of seconds simulated

sim_ticks 71441840 # Number of ticks simulated

Stats.txt incudes simulation statistics from start to end of

t daxpy. : - isti
$cat daxpye simulation, but we want to know statistics about kernel

time = get_dtime(); region.
for (i = 0; i < iteration; i++) {
#pragma omp for nowait
for j =0;j < N; j++) {
y[il += alpha * x[j]; In program, the kernel part is enclosed by two get_dtime ()
} to measure kernel execution time.

b

time = get_dtime() - time;

2019/6/13 CEA-Riken Summer School

Run-pa Rets

$ run-pa daxpy.axf T1 Run-pa is a script to get simulation statistics in the region]

Running 1pass specified by two get_dtime().
Running 2pass

run-pa completed
stats-T1-all.txt: PA information in all section
stats-T1.txt: PA information between 27856472 and 55993308 ticks
$ run-pa --help
usage: run-pa {binary} {tag} [-p|--print-stdout]
positional arguments:
binary Your binary file
tag New stats name
optional arguments:
-h, --help show this help message and exit
-n NUM_THREADS, --num_threads NUM_THREADS
Number of OpenMP threads
-p, --print-stdout Show all stdout/stderr

RINZH 2019/6/13 CEA-Riken Summer School

Gemb-pa Rets

$ gem5-pa stats-T1.txt
===Use double precision. Vector length :512bit===
Whole information
Execution Time : 2.8e-05 [sec]
FLOP : 204800

GFLOPS : 7.31 -a option shows information of all CPUS,

Number of instructions : 93062 | For other options, please run gem5-pa --help.
cpu information

Number of committed instructions on cpu : 93062 (100.0 %)
Number of L1D misses : 154

L1D Miss rate : 0.2 [%]

committed_insts_per_cycle::0 27.50 [%]

Gemb-pa is a script to display the compatible profile data
of Fujitsu system from the stats.txt file.

committed_insts_per_cycle::1 2.68 [%]
committed_insts_per_cycle::2 2.27 [%]
committed_insts_per_cycle::3 32.10 [%]
committed_insts_per_cycle::4 35.45 [%]

Waiting memory : 12.02 [%] (N\
Waiting decode : 10.23 [%] Waiting ** shows the reason why 0 instruction
Waiting microOp : 0.39 [%] committed. Waiting memory is a case that the
Waiting squash : 0.0 [%] top of the reorder buffer is a memory instruction.
\ J

Waiting calculation : 4.86 [%]

ﬁ 2019/6/13 CEA-Riken Summer School

RIFEN

$ diff Makefile /opt/sample/Makefile_C
16,18d15
< %.s: %.c

Look an assembler list

< $(CC) $(CFLAGS) -S -0 $@ $<

<

$ make daxpy.s

$ less daxpy.s

.L5:
idid
Idid
fmla
stid
incd

z0.d, p0/z, [x1, xO0, Isl 3]
z1.d, p0/z, [x3, x0, Isl 3]
z0.d, p1/m, z1.d, z2.d
z0.d, pO, [x1, x0, Isl 3]
x0

whilelo p0.d, x0, x2

bne

.L5

@ |||
RCCS

r
Search Id1, then this field are shown.

This is an assembler list of kernel part of daxpy.
These are vector length agnostic coding.

.

2019/6/13 CEA-Riken Summer School

RIFEN

Multithread execution o

$ gem5-03 —c daxpy.axf —n 2 -n 2 specifies the two thread execution.
I'm O of 2. But in this case, performance does not increased
I'm 1 of 2. because of too small execution time.

time = 0.029529 ms, 6.935555 GFLOPS, dummy = 306900.000000
Exiting @ tick 72668540 because exiting with last active thread context
$ gem5-03 —c daxpy.axf -n 1 -0 1000

time = 0.144212 ms, 14.201315 GFLOPS, dummy = 3069000.000000
$ gem5-03 —-c daxpy.axf -n 2 -0 1000

time = 0.105838 ms, 19.350328 GFLOPS, dummy = 3069000.000000

-0 specifies the arguments to the program.
In the case that argument is 1000, two thread
execution is 1.36 times faster than 1 thread.

2019/6/13 CEA-Riken Summer School

Current parameter overview >

SVE

512bit Cache L1D/core 32KB 8way
Pipeline Decode 4 L2/shared 8MB/bank
stage . 8way/bank
width Dispatch 6 abank
issue 8 Bus width 32B
commit 4 Cache line 64B

Exec Int 1/2

o *
units complex/ Memory DDR4-2400 1281MZB(l;/c:
simple 9.2GB/c

8ch

Float 2

Load 2
(*) memory model is 1GB/ch but for

Store 1

docker with small memory we limited
the total memory to 1GB.

ﬁ 2019/6/13 CEA-Riken Summer School

