
HPC Compilers
and Libraries

George Steed
Senior Software Engineer, Arm Performance Libraries

2

Arm’s solution for HPC application development and porting
Commercial tools for aarch64, x86_64, ppc64 and accelerators

Cross-platform Tools Arm Architecture Tools

DDT MAP
FORGE

PERFORMANCE
REPORTS

C/C++ & FORTRAN
COMPILER

PERFORMANCE
LIBRARIES

3

Arm’s solution for HPC application development and porting
Commercial tools for aarch64, x86_64, ppc64 and accelerators

Cross-platform Tools Arm Architecture Tools

DDT MAP
FORGE

PERFORMANCE
REPORTS

C/C++ & FORTRAN
COMPILER

PERFORMANCE
LIBRARIES

Arm HPC Compiler

5

Arm’s commercially-supported C/C++/Fortran compiler

Tuned for Scientific Computing, HPC and Enterprise workloads
• Processor-specific optimizations for various server-class Arm-based platforms
• Optimal shared-memory parallelism using latest Arm-optimized OpenMP runtime

Linux user-space compiler with latest features
• C++ 14 and Fortran 2003 language support with OpenMP 4.5
• Support for Armv8-A and SVE architecture extension
• Based on LLVM and Flang, leading open-source compiler projects

Commercially supported by Arm
• Available for a wide range of Arm-based platforms running leading Linux

distributions – RedHat, SUSE and Ubuntu

Compilers tuned for Scientific
Computing and HPC

Latest features and
performance optimizations

Commercially supported
by Arm

6

C/C++
Frontend

Fortran
Frontend

Optimizer Armv8-A
code-gen

SVE
code-gen

Clang based LLVM based

PGI Flang based

Enhanced optimization for
Armv8-A and SVE

C/C++ Files
(.c/.cpp)

Fortran Files
(.f/.f90)

Arm C/C++/Fortran Compiler

Armv8-A
binary

SVE
binary

LLVM IR LLVM IR
IR Optimizations

Auto-vectorization

LLVM based

LLVM based

Language specific frontend Architecture specific backendLanguage agnostic optimization

Arm Compiler is built on LLVM, Clang and Flang

7

Arm Compiler for HPC: Front-end
Clang and Flang

C/C++

• Clang front-end
• C11 including GNU11 extensions and C++17
• Arm’s 10-year roadmap for Clang is routinely

reviewed and updated to respond to customers

• C11 with GNU11 extensions and C++17
• Auto-vectorization for NEON and SVE
• OpenMP 4.5

Fortran

• Flang front-end
• Extended to support GNU Fortran (gfortran) flags

• Fortran 2003 with some 2008
• Auto-vectorization for NEON and SVE
• OpenMP 3.1
• Transition to F18

• Extensible front-end written in C++17
• Complete Fortran 2008 support
• OpenMP 4.5 support
• 4+2 engineers allocated + community

8 © 2018 Arm Limited

Arm Compiler for HPC: Back-end
LLVM7

• Arm pulls all relevant cost models and optimizations into the downstream codebase.
• Vendors have committed to upstreaming their cost models to LLVM.

• Auto-vectorization via LLVM vectorizers:
• Use cost models to drive decisions about what code blocks can and/or should be vectorized.
• As of October 2018, two different vectorizers from LLVM: Loop Vectorizer and SLP Vectorizer.

• Loop Vectorizer support for SVE:
• Loops with unknown trip count
• Runtime checks of pointers
• Reductions
• Inductions
• “If” conversion

• Pointer induction variables
• Reverse iterators
• Scatter / gather
• Vectorization of mixed types
• Global structures alias analysis

https://llvm.org/docs/Vectorizers.html
https://llvm.org/docs/Vectorizers.html

9

LLVM Loop Vectorizer
LLVM7 Vectorizer with SVE Optimizations

Loop Vectorizer support for SVE
• Loops with unknown trip count
• Runtime checks of pointers
• Reductions
• Inductions
• If conversion
• Pointer induction variables
• Reverse iterators
• Scatter / gather
• Vectorization of mixed types
• Global structures alias analysis

Optimizations for specific vector lengths

• Partial unrolling during vectorization
• 256-bit and 512-bit optimizations

10

LLVM Optimization Remarks
Let the compiler tell you how to improve vectorization

Flag Description

-Rpass=<regexp> What was optimized.

-Rpass-analysis=<regexp> What was analyzed.

-Rpass-missed=<regexp> What failed to optimize.

For each flag, replace <regexp> with an expression for the type of remarks you wish to view.
Recommended <regexp> queries are:

• -Rpass=\(loop-vectorize\|inline\)
• -Rpass-missed=\(loop-vectorize\|inline\)
• -Rpass-analysis=\(loop-vectorize\|inline\)

where loop-vectorize will filter remarks regarding vectorized loops, and inline for remarks regarding
inlining.

To enable optimization remarks, pass the following -Rpass options to armclang:

11

LLVM Optimization Remarks example

example.c:8:18: remark: hoisting zext
[-Rpass=licm]

for (int i=0;i<K; i++)
^

example.c:8:4: remark: vectorized loop (vectorization width: 4, interleaved count: 2)
[-Rpass=loop-vectorize]

for (int i=0;i<K; i++)
^ example.c:7:1: remark: 28 instructions in function

armclang -O3 -Rpass=.* -Rpass-analysis=.* example.c

armflang -O3 -Rpass=loop-vectorize example.F90 -gline-tables-only
example.F90:21: vectorized loop (vectorization width: 2, interleaved count: 1)
[-Rpass=loop-vectorize]

END DO

12

Arm Compiler for HPC: OpenMP Support
OpenMP 4.5 in C/C++ and OpenMP 3.1 in Fortran

Supported Features

• C/C++: OpenMP support from Clang
• OpenMP 4.5

– Target offloading to host is supported,
– Target offloading to remote targets not

supported.

• Fortran: OpenMP support from Flang
• OpenMP 3.1 with some 4.0 and 4.5

– 4.5: taskloop, if-clause, affinity query,
lock hints

– 4.0: taskgroup, affinity policies, cancellation,
atomic capture/swap

C/C++ Fortran

OpenMP 4.0

C/C++ Array Sections n/a

Thread affinity policies
"simd" construct Partial [1]

"declare simd" construct
Device constructs
Task dependencies
"taskgroup" construct
User defined reductions
Atomic capture swap
Atomic seq_cst
Cancellation
OMP_DISPLAY_ENV

OpenMP 4.5

doacross loop nests with ordered
"linear" clause on loop construct
"simdlen" clause on simd construct
Task priorities
"taskloop" construct
Extensions to device support
"if" clause for combined constructs
"hint" clause for critical construct
"source" and "sink" dependence types
C++ Reference types in data sharing attribute clauses n/a

Reductions on C/C++ array sections n/a

"ref", "val", "uval" modifiers for linear clause
Thread affinity query functions
Hints for lock API

13 © 2018 Arm Limited

Arm’s Optimized OpenMP Runtime
Arm actively optimizes OpenMP runtime libraries for high thread counts

• Large System Extension (LSE) atomic update instructions
• Atomics dramatically reduce runtime overhead, especially at high thread counts.

• Used extensively in the OpenMP runtime shipped with the Arm HPC Compiler.
• Also available in GNU’s runtime.

• Synchronization constructs optimized for high thread counts.
• Designed with hundreds of threads in mind.
• Uses hardware features whenever available.

Zo
ne

s p
er

 S
ec

on
d

Number of threads

Lulesh – size 40

armclang 18.0 gcc 7.1

14

GCC is a major compiler in the Arm ecosystem
Arm the second largest contributor to the GCC project

On Arm, GCC is a first class compiler
alongside commercial compilers.
• GCC ships with Arm Compiler for HPC

SVE support since GCC 8.0

NEON, LSE, and others well supported

15 © 2018 Arm Limited

What’s New in the Compiler

• Enhanced integration between ArmPL and Arm Compiler
• -armpl flag simplifies compile/link line

• Improved performance of basic math functions through libamath
• Linked in by default, no change to build process

• Improved performance of string.h functions (memcpy, memset) through libastring
• Linked in by default, no change to build process

• Fortran
• Submodules (F2008)
• Directives: IVDEP, NOVECTOR, VECTOR ALWAYS
• NINT and DNINT performance

• Improved documentation

Arm Performance
Libraries

17

Optimized BLAS, LAPACK and FFT

Commercial 64-bit Armv8-A math libraries
• Commonly used low-level math routines - BLAS, LAPACK and FFT
• Provides FFTW compatible interface for FFT routines
• Batched BLAS support

Best-in-class serial and parallel performance
• Generic Armv8-A optimizations by Arm
• Tuning for specific platforms like Cavium ThunderX2 in collaboration with silicon

vendors

Validated and supported by Arm
• Available for a wide range of server-class Arm-based platforms
• Validated with NAG’s test suite, a de-facto standard
• Available for Arm compiler or GNU

Best in class performance

Validated with
NAG test suite

Commercially supported
by Arm

18

What does all this mean in practice?

Commercial 64-bit Armv8 math libraries

These libraries are provided only as part of the paid-for Arm HPC compilers product

We are what is known as “the vendor maths library”
• This means we should always be the end user’s best option for the highest performing implementations of the

functionality of the architecture

• Other examples are Intel MKL (on x86) and IBM’s ESSL (on POWER)

• Some systems integrators will also provide their own, e.g. Cray’s libsci

Common open source alternatives are OpenBLAS and ATLAS

Note that the Arm Performance Libraries are for 64-bit Armv8 systems only

19

Alternative library choices

If you weren’t using Arm Performance Libraries, what can you use?

BLIS
• BLAS + LAPACK

PLASMA
• BLAS + LAPACK

MAGMA (for nVidia GPUs)
– BLAS + LAPACK

cuBLAS (for nVidia GPUs)
– Non-standard BLAS + LAPACK

§ Intel MKL (x86 only)
§ BLAS + LAPACK + FFT
§ + sparse solvers
§ + machine learning
§ + random number generators

§ OpenBLAS
§ BLAS + selected LAPACK

§ ATLAS
§ BLAS + LAPACK

§ FFTW
§ FFT

20

Validated with NAG’s test suite

NAG, the Numerical Algorithms Group are a company from
Oxford, UK, specialising in developing mathematical routines

They have been around for almost 50 years and have been
involved with almost all vendor maths libraries

They provided us with their validation test suite
• This enables us to test every build of the library to ensure that all changes we make still provide numerical accuracy

to the end-user

NAG are also under contract with us to provide support if we discover any issues with
code they have supplied

They also provide us updated code-drops when new versions of the base libraries are
released

21

Commonly used low-level math routines

The libraries we include are known as BLAS, LAPACK and FFT

Most routines come in a four varieties (where appropriate)

– Single precision real : Routines prefixed by ‘S’

– Double precision real : Routines prefixed by ‘D’

– Single precision complex : Routines prefixed by ‘C’

– Double precision complex : Routines prefixed by ‘Z’

• The rest of the name (normally) describes something about what the routine does

– E.g. the matrix-matrix multiplication routine DGEMM is a

§ D – Double precision
§ GE – Matricies given in GEneral format
§ MM – Matrix-Matrix multiplication is performed

22

BLAS

BLAS, the Basic Linear Algebra Subroutines, is a standard API
• It is provided on all systems, used by a wealth of scientific codes for vector and matrix maths

• It was designed for Fortran, but is callable from all languages

These routines are come in three levels
• BLAS level 1 – vector-vector operations, e.g. DCOPY, DAXPY, DDOT

• BLAS level 2 – matrix-vector operations, e.g. DGEMV, DTRMV, DGER

• BLAS level 3 – matrix-matrix operations, e.g. DGEMM, DTRMM, DTRSM

42 BLAS routines in total

Providing incredibly high performing versions of these routines is the team’s main work

23

LAPACK

LAPACK, the Linear Algebra Package, is a another standard API
• It is provided on all systems, used by a wealth of scientific codes for solving equation systems

• It was designed for Fortran, but is callable from all languages

• We currently support LAPACK 3.7.0

The routines in LAPACK are normally build on BLAS routines so work we do on BLAS
routines increases performance of particular LAPACK routines, too

There are now around 1700 LAPACK routines
• Most we do not touch, just using the reference version from Netlib

• Certain ones are very widely used, and these are where we focus our attention

• The key names to look out for are:

– Cholesky factorization : ?POTRF
– LU factorization : ?GETRF
– QR factorization : ?GETQR

24

Fast Fourier Transforms

• FFTs are very commonly used in a wide variety of applications. They allow some hard
problems to be transformed into a way that can be solved much more easily.

• We ship an implementation compatible with FFTW3, the most popular interface
currently available.
• Including our own version of the FFTW3 header

• Includes half-precision support as of 19.2.

• Support for Basic, Advanced, Guru and MPI interfaces

25

Sparse Matrix-Vector Multiply

• No standard interface for SpMV, but closely matches Intel’s inspector-executor model.

• Support CSC, CSR, COO matrix formats.

• Much faster than alternatives on AArch64 (e.g. Eigen)

26

Choices in which library version users want

Unfortunately there are a few fundamental choices that users can make which mean that
we cannot just ship a single library.
• OpenMP

– Users may want the maths library they are using to take advantage of all cores available, or they may not want
any OpenMP done by our library.

• Having 32-bit or 64-bit integers

– This issue confuses everyone at some stage. If you need to run a code with very large counts of something
then it is necessary to use 64-bit integers

• Compiler choice

– Users must now also choose to have the library match a GCC or and Arm Compiler build

§ This is necessary as the Fortran ABI differs for complex functions (of which we have two) and there are also
different levels of OpenMP support

27

Micro-architectural tuning

In order to achieve the best performance possible on all partner systems we need to do
different micro-architectural tuning

All BLAS kernels are handwritten in assembly code in order to maximise overall
performance

Different micro-architectures sometimes need fundamental differences in the instruction
ordering – or even the instructions used

At run-time this work should all be transparent to the user

However multiple packages are typically available for users to choose from, and they need
to load the appropriate module to set up their paths

Currently available are versions for:
§ A72 § Cavium ThunderX2 § Generic AArch64

28 © 2018 Arm Limited

Benchmarking

• Included with our NAG validation suite is a less comprehensive timing suite
• In total we benchmark around 140 routines
• For a full coverage every routine needs testing at a variety of :

• problem sizes
• matrix shapes
• thread counts

• We compare our results to
open source alternatives
on AArch64

• …as well as some comparisons
against MKL

29

DGEMM performance
Excellent serial and parallel performance

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000 6000 7000 8000
Pe

rc
en

ta
ge

 o
f p

ea
k

pe
rf

or
m

an
ce

Problem size

Arm PL 19.0 DGEMM parallel performance improvement
for Cavium ThunderX2 using 56 threads

ArmPL 18.4.2 ArmPL 19.0

Achieving very high performance at the node
level leveraging high core counts and large
memory bandwidth

Single core performance at
95% of peak for DGEMM (not shown)

Parallel performance at 90% of peak
Improved parallel performance for small
problem sizes

30

LAPACK performance

Improved load balance for
xPOTRF, xGEQR and xGETRF
(Cholesky, QR and LU
factorization, respectively)
when using many threads.

Chart shows Cholesky
factorization routines SPOTRF
and DPOTRF.

0

0.5

1

1.5

2

2.5

3

1000 2000 4000 8000 16000

Pe
rf

or
m

an
ce

 sp
ee

du
p

fa
ct

or
 v

s.
 A

rm
 P

L
18

.4
.2

Problem Size

Arm PL 19.0 POTRF parallel performance improvement
for Cavium ThunderX2 using 56 threads

SPOTRF DPOTRF

5.4x

31

Math Routine Performance

Normalised runtime

0

0.2

0.4

0.6

0.8

1

1.2

WRF Cloverleaf OpenMX Branson

GCC Arm Arm + libamath

Arm PL provides libamath

• With Arm PL module loaded, include
-lamath in the link line.

• Algorithmically better performance than
standard library calls

• No loss of accuracy
• single and double precision implementations of:

exp(), pow(), and log()
• single precision implementations of:

sin(), cos(), sincos(), tan()

Distribution of https://github.com/ARM-software/optimized-routines

32 © 2018 Arm Limited

Improvements in 19.2

• Faster libamath
• vectorized versions of sin, cos, exp and log in both single and double precision.

• Introduction of libastring
• Optimised versions of common string.h functions (memcpy, memset).

• Faster FFTs
• Half precision FFTs and GEMM

33 © 2018 Arm Limited

Improvements in 19.2: Faster libamath

34 © 2018 Arm Limited

Improvements in 19.2: Libastring

35 © 2018 Arm Limited

Improvements in 19.2: Faster FFTs

• Competitive with FFTW for key workloads, faster in many cases.

36 © 2018 Arm Limited

Improvements in 19.2: Half-precision FFTs and GEMM
• Will transparently use half-precision instructions if available (v8.2), else fall back to

upcasting to single-precision.
• Similar to the existing FFT3 and GEMM function signatures.
1 /* Include Arm Performance Libraries FFT interface. */
2 #include "fftw3.h"
3
4 /* Declare half-precision arrays to be used */
5 __fp16 *in = ...;
6 fftwh_complex *out = ...;
7
8 /* Plan, execute and destroy */
9 fftwh_plan plan = fftwh_plan_many_dft_r2c(...);

10 fftwh_execute(plan);
11 fftwh_destroy_plan(plan);

void hgemm_(const char *transa, const char *transb,
const armpl_int_t *m, const armpl_int_t *n, const armpl_int_t *k,
const __fp16 *alpha, const __fp16 *a, const armpl_int_t *lda,
const __fp16 *b, const armpl_int_t *ldb,
const __fp16 *beta, __fp16 *c, const armpl_int_t *ldc);

37

Open source libraries for improved performance

Arm Optimized Routines
https://github.com/ARM-software/optimized-routines

These routines provide high performing
versions of many math.h functions
• Algorithmically better performance than

standard library calls

• No loss of accuracy

SLEEF library
https://github.com/shibatch/sleef/

Vectorized math.h functions

• Provided as an option for use in Arm Compiler

Perf-libs-tools
https://github.com/ARM-software/perf-libs-tools

Understanding an application’s needs for
BLAS, LAPACK and FFT calls

• Used in conjunction with Arm Performance
Libraries can generate logging info to help profile
applications for specific case breakdowns

Example
visualization:
DGEMM
cases called

38

Community Libraries
https://gitlab.com/arm-hpc/packages/wikis/

• Over 54 packages in
Arm’s Package Wiki

• Trilinos, PETSc, Hypre,
SuperLU, ScaLAPACK,
NetCDF, HDF5, etc.
• Tested; works well with

Arm and GNU compilers

• Soon tested at scale on
Astra

Package Support

Multiple partners making
ThunderX2 available to
open source projects for
CI/CD
• packet.net, Verne Global

Arm support:
• Part of broader NRE and

commercial projects

• Currently providing reactive
support to users at over 40 HPC
sites worldwide

Testing and Development Resourcing

39

Arm HPC Ecosystem Guides

https://developer.arm.com/solutions/hpc

More in depth guides on how to build some
packages, e.g. FFTW.

https://developer.arm.com/solutions/hpc

Practical usage

41

Read the docs

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-
tools/arm-allinea-studio

• Getting started

• Fortran and C/C++ language reference guides

• Usage guides for users of other compilers (GNU, Intel, PGI)

• Best practice (mostly pragmas and compiler flags) to encourage auto-vectorization

• Optimization remarks

• Fortran and OpenMP support levels

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio

42

How to use ArmPL

Three decisions

Decision 1: which microarchitecture?

Decision 2: OpenMP?

Decision 3: 32-bit or 64-bit integers?

What this gives

• ArmPL
• BLAS
• LAPACK
• FFTs
• Sparse

• Libamath
• Optimised scalar math
• Optimised vector math

• Libastring
• Optimised string.h routines

43

How to use ArmPL

Arm Compiler for HPC

-mcpu=native -armpl

GNU

module load <Architecture>

-mcpu=native

-I $ARMPL_INCLUDES

-larmpl

Basic usage (Native architecture, 32-bit integers, serial ArmPL)

44

How to use ArmPL
Decision 1: Which micro-architecture?

Arm Compiler for HPC

-mcpu=native

GNU

-mcpu=native

45

How to use ArmPL
Decision 2: OpenMP?

Arm Compiler for HPC

To use serial ArmPL

-armpl (defaults to no OpenMP)

(or -armpl=nomp)

To use parallel ArmPL

-armpl –fopenmp

(or -armpl=mp)

GNU

To use serial ArmPL

-I $ARMPL_INCLUDES

–larmpl

To use parallel ArmPL

-I $ARMPL_INCLUDES_MP

–larmpl_mp

46

How to use ArmPL
Decision 3: 32-bit or 64-bit integers?

Arm Compiler for HPC

To use 32-bit integers

-armpl (defaults to 32-bit)

(or -armpl=lp64)

To use 64-bit integers

-armpl –i8

(or -armpl=ilp64)

GNU

To use 32-bit integers

-I $ARMPL_INCLUDES

–larmpl

To use 64-bit integers

-I $ARMPL_INCLUDES_ILP64 –DINTEGER64

–larmpl_ilp64

47

Text 30pt sentence case

Compiler options - general
armclang --help

-o <file> Write output to <file>.

-c Only run preprocess, compile, and assemble steps.

-g Generate source-level debug information.

-Wall Enable all warnings.

-w Suppress all warnings.

-fopenmp Enable OpenMP.

-On Level of optimization to use (0, 1, 2, 3).

-Ofast Enables aggressive optimization of floating point operations.

-ffp-contract=(fast|on|off) Allow fused floating point operations (eg FMAs).
-Rpass=\(loop-vectorize\|inline\)
-Rpass-missed=\(loop-vectorize\|inline\)
-Rpass-analysis=\(loop-vectorize\|inline\)

Optimization Remarks is a feature of LLVM compilers that provides you
with information about the choices made by the compiler.

48

Text 30pt sentence case

Compiler options - Fortran
armclang --help

-cpp Preprocess Fortran files. Default for .F, .F90, .F95,…

-module <path> Specifies a directory to place, and search for, module files.

-Mallocatable=(95|03)

95: Use preFortran 2003 standard semantics for assignments to allocatables
03: Use Fortran 2003 standard semantics for assignments to allocatables

-fconvert=<setting>

Set format for unformatted file access to numerical data to big-endian, little-endian, swap
or native

-r8

Sets default KIND for real and complex declarations, constants, functions, and intrinsics
to 64bit (i.e. real (KIND=8)). Unspecified real kinds are evaluated as KIND=8.

-i8 Set the default kind for INTEGER and LOGICAL to 64bit (i.e. KIND=8).

49

Pragmas to control vectorization

#pragma clang loop vectorize(assume_safety)
• Allows the compiler to assume that there are no aliasing issues in a loop

#pragma clang loop unroll_count(_value_)

• Forces a scalar loop to unroll by a given factor

#pragma clang loop interleave_count(_value_)

• Forces a vectorized loop to be interleaved by a given factor

50

Fortran directives to control vectorization

!dir$ ivdep

• Allows the compiler to assume that there are no aliasing issues in a loop

!dir$ vector always

• Always vectorize, if it’s safe to do so

!dir$ novector

• Disable vectorization

51

OpenMP

OpenMP is a shared memory parallelism paradigm

It enables a program to use multiple computational cores in order to complete a
calculation quicker

Arm Performance Libraries users can control the number of threads used by setting the
environment variable OMP_NUM_THREADS
• This normally defaults to the number of cores on your system

We strongly recommend users to also set OMP_PROC_BIND to “true”, “close” or
“spread” depending on their needs

• If unset the threads are not pinned to cores and may migrate around the system

Users may also choose to do “nested parallelism” wanting multi-threaded functions from
within an already parallel environment
• Use of OMP_DYNAMIC=true and OMP_NESTED=true is necessary

52

Porting to Arm Performance Libraries

Most users should be able to port without issues since all calls should be the same as they
have used on previous systems

The only change that may be necessary will be including “armpl.h”
(as opposed to e.g. “mkl.h”)

53

BLAS and LAPACK guidance

We still do not have BLAS and LAPACK routines documented on developer.arm.com but
recommend www.netlib.org/lapack/explore-html

All users should take note of the required inputs and their sizes
• Also of note is any values that may be overwritten during computation

subroutine dgemm (character TRANSA,

character TRANSB,

integer M,

integer N,

integer K,

double precision ALPHA,

double precision,
dimension(lda,*) A,

integer LDA,

double precision,
dimension(ldb,*) B,

integer LDB,

double precision BETA,

double precision,
dimension(ldc,*) C,

integer LDC

)

http://www.netlib.org/lapack/explore-html

54

BLAS and LAPACK guidance

We still do not have BLAS and LAPACK routines documented on developer.arm.com but
recommend www.netlib.org/lapack/explore-html

All users should take note of the required inputs and their sizes
• Also of note is any values that may be overwritten during computation

http://www.netlib.org/lapack/explore-html

55

FFT instructions

We implement the majority of the FFTW3 interface, so the best place to start is their own
documentation: http://www.fftw.org/fftw3_doc/FFTW-Reference.html

For half-precision FFTs, make sure you include the correct fftw3.h header!

http://www.fftw.org/fftw3_doc/FFTW-Reference.html

5656

Thank You!
Danke!
Merci!
谢谢!
ありがとう!
Gracias!
Kiitos!

Confidential © Arm 2017 Limited

