
Optimization for Arm SVE and
Post-K

RIKEN R-CCS
Yuetsu Kodama (yuetsu.kodama@riken.jp)

Outline
 Introduction of RIKEN simulator
 Accuracy Improvement of Memory System Simulation

for the Post-K gem5 simulator
 Optimization point for SVE
 SVE vectorization
 Software pipeline
 …

RIKEN Center for Computational Science 2

 It is a processor simulator of A64FX.
 It currently enables simulation of 1CMG, where 12 cores with OpenMP

execution is available.
 It is developed based on open source general purpose processor

simulator, gem5.
 Initially RIKEN developed O3 (out-of-order) mode for SVE, but currently

moved to the version developed by Arm.
 RIKEN continues to extend cache and memory system for HPC.

 It can simulate binaries generated by an Arm SVE compliant
compiler (such as Fujitsu prototype compiler or Arm compiler) in an
out-of-order execution pipeline.
 You should generate single static binary including the library.
 Currently, it supports only Fujitsu and Gcc OpenMP library, not ARM

(LLVM) library and any MPI program.
 It is aimed to estimate the execution time with accuracy that can be

used for performance evaluation and tuning.

RIKEN Simulator (Overview)

2019/4/16 ARM‐SVE Break‐Out‐Session in JLESC

 Open source general purpose processor simulator
 Refer http://gem5.org for details
 Tutorial: ISCA2011, ASPLOS2017, …

 Multiple ISAs
 Alph, Arm, SPARC, MIPS, Power, x86, GPU, RISC-V, …

 Multiple System mode
 FS (Full System) mode, SE (System Emulation) mode

 Several CPU execution model
 Atomic, in-order, out-of-order(o3), …
 The O3 pipeline architecture is based on Alpha
 Detailed parameters such as out-of-order resource size, the number of

function unit, etc. can be set
 License

 Berkely-style、free to use as long you as leave our copyright on it.

gem5

2019/4/16 ARM‐SVE Break‐Out‐Session in JLESC

 Tuning detailed parameters such as o3 resource size according to
A64FX
 The size of Reservation station, reorder buffer, rename register, etc.
 Latency of each pipeline, number of simultaneously issued instructions,

etc.
 Number, latency and throughput of computing units, etc.
 Latency and throughput for each instruction group
 L1 / L2 cache size, number of ways, latency, throughput, cache line

size, etc.
 Differences between gem5 and A64FX

 The number of reservation station (Fused or Distributed)
 Memory address calculation (In memory unit or Independent unit)
 Function unit for Instruction (single units or multiple units)

RIKEN Simulator（Details１）

2019/4/16 ARM‐SVE Break‐Out‐Session in JLESC

 Expand the new functions
 L1 cache: 1 port SRAM, access across lines without overhead
 L2 cache: high throughput by multiple banks
 Memory: support HBM2, interleave and bank schedule for A64FX
 Bus: asymmetric throughput at input and output
 Software prefetch: store prefetch, target L2 prefetch
 Hardware prefetch: K-Computer compliant prefetch, target L2

prefetch (store prefetch)
 Usability improvement

 Get statistical information of simulation execution (execution time,
cache miss, etc.) in a specified region

 Get statistical information compatible with Fujitsu detailed profiles.
 Counting floating operations taking into account predicates.

RIKEN Simulator（Details２）

We are considering to release these extensions separately from the parameter
s of A64FX.

2019/4/16 ARM‐SVE Break‐Out‐Session in JLESC

 It is important to evaluate and confirm the difference between the
RIKEN simulator and the actual A64FX.

 Target: A64FX test chip
 Compiler: Fujitsu compiler prototype in 2019/03
 Evaluated program:

 Arithmetic pipeline: various kernel loops
 L2 cache throughput: Stream benchmark for L2 size
 Memory throughput: Stream benchmark for over L2 size

Evaluations

2019/4/16 ARM‐SVE Break‐Out‐Session in JLESC

Evaluation of kernel loops

subroutine calc01_add_r8(n, iter, dist, y, x1,
x2)
real*8 y(n), x1(n), x2(n)
integer n, iter, i, j, dist

do j = 1, iter
do i = 1, n
y(i) = x1(i) + x2(i)

end do
enddo

end subroutine calc01_add_r8

 A total of 28 types of kernels that repeat the same
operation are evaluated for data that fits on L1 cache.

 In the real machine, iter is repeated 1,000,000 times, but in
the simulator it is 1000 times. It is because the simulator is
very slow, but the timer is enough accurate.

2019/4/16 ARM‐SVE Break‐Out‐Session in JLESC

List of 28 kernel loops
Name Type Size Statement

Basic Arithmetic

Add Addition 2048 y(i) = x1(i) + x2(i)

Sub Subtraction 2048 y(i) = x1(i) ‐ x2(i)

Mul Multiplication 2048 y(i) = x1(i) * x2(i)

Fma Sum of products 3072 y(i) = y(i) + c0 * x1(i)

Div Division 2048 y(i) = x1(i) / x2(i)

Rev Reciprocal 3072 y(i) = 1 / x1(i)

Sqrt Square root 3072 y(i) = sqrt(x1(i))

Type Conversion

F2d Float to double 4096 y_r8(i) = dble(x1_r4(i))

I2d Integer to double 4096 y_r8(i) = dble(x1_i4(i))

D2f Double to float 4096 y_r4(i) = real(x1_r8(i))

D2i Double to integer 4096 y_i4(i) = int(x1_r8(i))

Aint Aint conversion 3072 y_r8(i) = aint(x1_r8(i))

Nint Nint conversion 4096 y_i4(i) = nint(x1_r8(i))

Anint Anint conversion 3072 y_r8(i)=anint(x1_r8(i))

Name Type Size Statement

Numeric Function

Abs Absolute value 3072 y(i) = abs(x1(i))

Max Maximum value 2048 y(i) = max(x1(i),x2(i))

Min Minimum value 2048 y(i) = min(x1(i),x2(i))

Mod Remainder 2048 y(i) = mod(x1(i),x2(i))

Sign Sign 2048 y(i) = sign(x1(i))

Mathematical Function

Atan Atan 3072 y(i) = atan(x1(i))

Atan2 Atan2 2048 y(i) = atan2(x1(i),x2(i))

Cos Cos 3072 y(i) = cos(x1(i))

Sin Sin 3072 y(i) = sin(x1(i))

Exp Exp 3072 y(i) = exp(x1(i))

Exp10 Exp10 3072 y(i) = exp10(x1(i))

Log Log 3072 y(i) = log(x1(i))

Log10 Log10 3072 y(i) = log10(x1(i))

Pwr Power 2048 y(i) = x1(i)**x2(i)

2019/4/16 ARM‐SVE Break‐Out‐Session in JLESC

Results of kernel loop

‐100%
‐80%
‐60%
‐40%
‐20%
0%
20%
40%
60%
80%
100%

0
1
2
3
4
5
6
7
8
9

10

ad
d

su
b

m
ul

fm
a

di
v

re
v

sq
rt

f2
d

i2
d

d2
f

d2
i

ai
nt

ni
nt

an
in
t

ab
s

m
ax

m
in

sig
n

ra
tio

 o
f e

xe
c
tim

e
di
ff

cy
cl
e
/ 8

SI
M
D

throughput

ratio of exec time diff

‐100%
‐80%
‐60%
‐40%
‐20%
0%
20%
40%
60%
80%
100%

0
10
20
30
40
50
60
70
80
90

100

m
od

at
an

at
an

2
co
s

sin ex
p

ex
p…

lo
g

lo
g1
0

pw
r

ra
tio

 o
f e

xe
c
tim

e
di
ff

cy
cl
e/
8S
IM

D

 In 23/28 kernels (80％), the difference in execution time
between the RIKEN simulator and the A64FX is 10% or less.

 The average of absolute difference is 6.6%, and the largest is
15.7%, which is considered to be enough for evaluation.

 The difference in d2f and d2i seems to be because merge in
write buffer is not implemented in RIKEN simulator.

11.5 15.6 15.7

‐14.5 ‐10.1

http://arxiv.org/abs/1904.06451 16 Apr 2019 cs.DC
Evaluation of the RIKEN Post‐K Processor Simulator

2019/4/16 ARM‐SVE Break‐Out‐Session in JLESC

Results of L2 Stream benchmark
 Measure the total L2 throughput by changing the number of

threads from 1 to 12 using software prefetch.
 In the RIKEN simulator, the throughput is saturated with 8

threads, while in the A64FX test chip, the throughput has been
improved to 12 threads.

 The difference is large with 10 threads or more.
 We plan to service requests from each core fairly in L2.
 We consider improving bus performance between L1/L2.

‐80%

‐60%

‐40%

‐20%

0%

20%

40%

60%

80%

0

128

256

384

512

640

768

896

1024

1 2 4 6 8 10 12

ra
tio

 o
f e

xe
c
tim

e
di
ff

L2
 th

ro
ug

hp
ut
 (G

B/
s)

num of threads

throughput

ratio of exec time diff

2019/4/16 ARM‐SVE Break‐Out‐Session in JLESC

Results of Memory Stream benchmark
 Measure the total memory throughput by changing the

number of threads from 1 to 12 using hardware prefetch.
 Up to 6 threads achieve scalable throughput, and above that

achieves maximum performance.
 There is a large difference in execution time between the

RIKEN simulator and the A64FX test chip in 1-2 threads.
 Since hardware prefetch for store access is not implemented in the RIKEN

simulator, it will be reevaluated after implementation.

‐80%

‐60%

‐40%

‐20%

0%

20%

40%

60%

80%

0

32

64

96

128

160

192

224

256

1 2 4 6 8 10 12

ra
tio

 o
f e

xe
c
tim

e
di
ff

m
em

or
y
th
ro
ug

hp
ut
 (G

B/
s)

num of threads

throughput

ratio of exec time diff

2019/4/16 ARM‐SVE Break‐Out‐Session in JLESC

 Stream triad
for (i=0; i<N; i++) {

y[i] = x1[i] + c * x2[i];
}

 Memory access
Since the store instruction writes to part of the cache line, it is necessary to read
the cache line from memory before writing to maintain cache line consistency.
Therefore, the actual memory access is 3 read 1.
Therefore, when Stream throughput is 150 GB/s, the memory throughput achieves
200 GB/s.

 ZFILL Optimization
However, when writing to all cache lines as in Stream, it is not necessary to preload
from memory. Therefore, the Fujitsu compiler provides the ZFILL option. ZFILL
uses a 'DC ZVAʻ instruction that zero-fills a cache line. As a result, the A64FX test
chip achieves 200 GB/s in Stream throughput.

Memory access in Stream benchmark

2 read 1 store

2019/4/16 ARM‐SVE Break‐Out‐Session in JLESC

Results of ZFILL optimization
 The RIKEN simulator also implemented the DC ZVA

instruction, and evaluated the ZFILL optimization using
software prefetch with 10 times larger data than previous
evaluation.
 The RIKEN simulator also confirmed Stream throughput of 200 GB/s,

which is almost same as the throughput of the A64FX test chip. (currently
continue to test the effect of prefetch distance)

 When the number of threads is large, the values are somewhat different.
We plan re-evaluation after implementing fairness access in L2 cache.

‐80%

‐60%

‐40%

‐20%

0%

20%

40%

60%

80%

0

32

64

96

128

160

192

224

256

1 2 4 6 8 10 12

ra
tio

 o
f e

xe
c
tim

e
di
ff

m
em

or
y
th
ro
ug

hp
ut
 (G

B/
s)

number of threads

throughput
ratio of exec time diff

2019/4/16 ARM‐SVE Break‐Out‐Session in JLESC

 We developed a RIKEN simulator that can perform cycle-level
processor simulation as an evaluation environment until the
Post-K system can be used.

 From the evaluation with Kernel loop, L2 Stream, Memory
Stream, many results showed that the differences between the
RIKEN simulator and the A64FX test chip are about 10% or
less.

 There were some cases where the difference was large, but we
will continue to develop RIKEN simulator.

 In the future, we plan to evaluate application kernels those
are closer to the actual application.

Conclusion

2019/4/16 ARM‐SVE Break‐Out‐Session in JLESC

Outline
 Introduction of RIKEN simulator
 Accuracy Improvement of Memory System Simulation

for the Post-K gem5 simulator
 Optimization point for SVE
 SVE vectorization
 Software pipeline
 …

RIKEN Center for Computational Science 16

SVE vectorization
 Vectorization by SVE is the key to get high performance.
 Not yet summarize how to vectorization if the software

cannot be vectorization, but the key is to keep compiler
friendly description (it may be required rewriting programs).
 Simple consecutive loop
 Not element wise description, but loop description

 Notes: Following example is only checked by Fujitsu
compiler, and how to optimization is heavily depend on the
compiler and the version.

→
void mycopy_with_restrict(double * restrict x, double * restrict y, int n)
{
int i;

for (i = 0; i < n; i++)
y[i] = x[i];

}

A Pitfall
void mycopy(double *x, double *y, int n)
{
int i;

for (i = 0; i < n; i++)
y[i] = x[i];

}

It is very simple loop, but it cannot be vectorized
Because *x and *y may be overlap.

Can be vectorized with restrict attribute.

Simple Linpack
m = n % 4;

for (i = 0; i < m; i++) {

dy[i] = dy[i] + da * dx[i];

}

for (i = m; i < n; i = i + 4) {

dy[i] = dy[i] + da * dx[i];

dy[i+1] = dy[i+1] + da * dx[i+1];

dy[i+2] = dy[i+2] + da * dx[i+2];

dy[i+3] = dy[i+3] + da * dx[i+3];

}

RIKEN Center for Computational Science 19

In daxpy code, there is a hand unrolled code !!
And it cannot be vectorized.

→

for (i = 0; i < n; i++) {

dy[i] = dy[i] + da * dx[i];

}

Simple loop will be vectorized automatically.

Simple Linpack(2)
for (j = k+1; j <= n; j++) {

t = a[l-1+(j-1)*lda];

if (l != k) {

a[l-1+(j-1)*lda] = a[k-1+(j-1)*lda];

a[k-1+(j-1)*lda] = t;

}

daxpy (n-k, t, a+k+(k-1)*lda, a+k+(j-1)*lda);

}

…

void daxpy (int n, double da, double dx[], double dy[restrict])

RIKEN Center for Computational Science 20

It uses 1d vector not 2d array, so compiler
cannot detect independence of two vector.

→

void daxpy (int n, double da, double dx[restrict], double dy[restrict])

Compiler message for optimize
 In Fujitsu compiler, you can check whether the loop is

vectorized or not by compiler messages.

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING
<<< PREFETCH(HARD) Expected by compiler :
<<< x2, x1, y
<<< Loop-information End >>>

RIKEN Center for Computational Science 21

software pipeline
 Software pipeline was the key optimization for in-order

processor, but even for out-of-order processor, since o3
resources are limited and for the loops of large (or not
small) body, instructions of next loop cannot be entered to
instruction queue, software pipeline is effective.

 In fujitsu compiler –Kfast includes swp,unroll,SVE
 -Kfast,noswp,nounroll,NOSVE
 -Kfast,noswp,nounroll
 -Kfast

Effect of SVE

Effect of software pipeline

Loop split
 Software pipeline requires many registers to keep

values between loops, but it caused register spill in
large loop body or many loop overlapping.
 In K and FX100, 128 vector registers support it, while

arm SVE has 32 vector registers.
 Loop splitting is one of optimizations for loop with large

body.
 Fujitsu compiler will support auto loop splitting, but

currently user should manually specify the loop split point.
 #pragma statement fission_point
 -Kocl

fdiv and fsqrt
 fdiv is an non-pipeline instruction with long latency (depends

on vector length and element size, for example, more than
100 cycles for 8 double SIMD).

 frecpe/frecps are pipeline instruction for reciprocal
operaiotns with same latency of fma.

 In fujitsu compiler with –Kfast, fdiv is inlined with
frecpe/frecps and equivalent to 12 flop for double, and 7 flop
for float.

 fsqrt is inlined with frsqrte/frsqrts and equivalent to 18 flop
for double, and 8 flop for float.

Data alignment
 Using wide SIMD, the alignment of cache access

becomes more important in general.
 For example, cache line size = 64 bytes, and consecutive

access by 8byte access. Even if the vector is unaligned,
unaligned access is only 1/8.

 For the 256bit SIMD case, ½ access becomes unalined.

RIKEN Center for Computational Science 25

A64FX L1 cache throughput

RIKEN Center for Computational Science 26

 In gem5, unaligned access divided to two cache access, but
gm5-riken supports the behavior of A64FX.

From slides of hotchips 2018

Gather load
 The throughput of gather load is depend on each processorʼs

microarchitecture.
 In gem5, gather load is implemented by micro operations

that access each element.
 For example, 512bit SIMD with 8 byte element, gather load

takes 8 memory access, and the throughput is limited in
8bytes/cycle, while that of contiguous load is
64bytes/cycle.

A64FX Gather load

From slides of hotchips 2018

Gather load vs predicate

for (i=0; i<SIZE; i+=2) {
c[i] = a[i] + b[i];

}

for (i=0; i<SIZE; i++) {
if (i%2 == 0)
c[i] = a[i] + b[i];

}

In Fujitsu compiler generates gather load

In Fujitsu compiler generates predicate

 For following program that loads selectively, gather load or
predicate load are available, and which is used is compiler-
dependent.

Vector length
 In fujitsu compiler –Ksimd_regsize=512 by default
 -Kfast
 -Kfast,-Ksimd_regsize=agnostic

Gem5 can change vector length by --arm-sve-vl, and gem5-
o3 also can change by –v option.
-v 1024 (same as --arm-sve-vl=8): 1024bit
-v 512 (same as --arm-sve-vl=4): 512bit
-v 256 (same as --arm-sve-vl=2) : 256bit
-v 128 (same as --arm-sve-vl=1) : 128bit

