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 It is a processor simulator of A64FX.
 It currently enables simulation of 1CMG, where 12 cores with OpenMP 

execution is available.
 It is developed based on open source general purpose processor 

simulator, gem5.
 Initially RIKEN developed O3 (out-of-order) mode for SVE, but currently 

moved to the version developed by Arm.
 RIKEN continues to extend cache and memory system for HPC.

 It can simulate binaries generated by an Arm SVE compliant 
compiler (such as Fujitsu prototype compiler or Arm compiler) in an 
out-of-order execution pipeline.
 You should generate single static binary including the library.
 Currently, it supports only Fujitsu and Gcc OpenMP library, not  ARM 

(LLVM) library and any MPI program.
 It is aimed to estimate the execution time with accuracy that can be 

used for performance evaluation and tuning.

RIKEN Simulator (Overview)
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 Open source general purpose processor simulator
 Refer http://gem5.org for details
 Tutorial: ISCA2011, ASPLOS2017, …

 Multiple ISAs
 Alph, Arm, SPARC, MIPS, Power, x86, GPU, RISC-V, …

 Multiple System mode
 FS (Full System) mode, SE (System Emulation) mode

 Several CPU execution model
 Atomic, in-order, out-of-order(o3), …
 The O3 pipeline architecture is based on Alpha 
 Detailed parameters such as out-of-order resource size, the number of 

function unit, etc. can be set
 License

 Berkely-style、free to use as long you as leave our copyright on it.

gem5
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 Tuning detailed parameters such as o3 resource size according to 
A64FX
 The size of Reservation station, reorder buffer, rename register, etc.
 Latency of each pipeline, number of simultaneously issued instructions, 

etc.
 Number, latency and throughput of computing units, etc.
 Latency and throughput for each instruction group
 L1 / L2 cache size, number of ways, latency, throughput, cache line 

size, etc.
 Differences between gem5 and A64FX

 The number of reservation station (Fused or Distributed)
 Memory address calculation (In memory unit or Independent unit)
 Function unit for Instruction (single units or multiple units)

RIKEN Simulator（Details１）
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 Expand the new functions
 L1 cache: 1 port SRAM, access across lines without overhead
 L2 cache: high throughput by multiple banks
 Memory: support HBM2, interleave and bank schedule for A64FX
 Bus: asymmetric throughput at input and output
 Software prefetch: store prefetch, target L2 prefetch
 Hardware prefetch: K-Computer compliant prefetch, target L2 

prefetch (store prefetch)
 Usability improvement

 Get statistical information of simulation execution (execution time, 
cache miss, etc.) in a specified region

 Get statistical information compatible with Fujitsu detailed profiles.
 Counting floating operations taking into account predicates.

RIKEN Simulator（Details２）

We are considering to release these extensions separately from the parameter
s of A64FX.
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 It is important to evaluate and confirm the difference between the 
RIKEN simulator and the actual A64FX.

 Target: A64FX test chip
 Compiler: Fujitsu compiler prototype in 2019/03
 Evaluated program:

 Arithmetic pipeline: various kernel loops
 L2 cache throughput: Stream benchmark for L2 size
 Memory throughput: Stream benchmark for over L2 size

Evaluations
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Evaluation of kernel loops

subroutine calc01_add_r8(n, iter, dist, y, x1, 
x2)
real*8 y(n), x1(n), x2(n)
integer n, iter, i, j, dist

do j = 1, iter
do i = 1, n
y(i) = x1(i) + x2(i)

end do
enddo

end subroutine calc01_add_r8

 A total of 28 types of kernels that repeat the same 
operation are evaluated for data that fits on L1 cache.

 In the real machine, iter is repeated 1,000,000 times, but in 
the simulator it is 1000 times. It is because the simulator is 
very slow, but the timer is enough accurate. 
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List of 28 kernel loops
Name Type Size Statement

Basic Arithmetic

Add Addition 2048 y(i) = x1(i) + x2(i)

Sub Subtraction 2048 y(i) = x1(i) ‐ x2(i)

Mul Multiplication 2048 y(i) = x1(i) * x2(i)

Fma Sum of products 3072 y(i) = y(i) +  c0 * x1(i)

Div Division 2048 y(i) = x1(i) / x2(i)

Rev Reciprocal 3072 y(i) = 1 / x1(i) 

Sqrt Square root 3072 y(i) = sqrt(x1(i))

Type Conversion

F2d Float to double 4096 y_r8(i) = dble(x1_r4(i))

I2d Integer to double 4096 y_r8(i) = dble(x1_i4(i))

D2f Double to float 4096 y_r4(i) = real(x1_r8(i))

D2i Double to integer 4096 y_i4(i) = int(x1_r8(i))

Aint Aint conversion 3072 y_r8(i) = aint(x1_r8(i))

Nint Nint conversion 4096 y_i4(i) = nint(x1_r8(i))

Anint Anint conversion 3072 y_r8(i)=anint(x1_r8(i))

Name Type Size Statement

Numeric Function

Abs Absolute value 3072 y(i) = abs(x1(i))

Max Maximum value 2048 y(i) = max(x1(i),x2(i))

Min Minimum value 2048 y(i) = min(x1(i),x2(i))

Mod Remainder 2048 y(i) = mod(x1(i),x2(i))

Sign Sign 2048 y(i) = sign(x1(i))

Mathematical Function

Atan Atan 3072 y(i) = atan(x1(i))

Atan2 Atan2 2048 y(i) = atan2(x1(i),x2(i))

Cos Cos 3072 y(i) = cos(x1(i))

Sin Sin 3072 y(i) = sin(x1(i))

Exp Exp 3072 y(i) = exp(x1(i))

Exp10 Exp10 3072 y(i) = exp10(x1(i))

Log Log 3072 y(i) = log(x1(i))

Log10 Log10 3072 y(i) = log10(x1(i))

Pwr Power 2048 y(i) = x1(i)**x2(i)
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Results of kernel loop
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 In 23/28 kernels (80％), the difference in execution time 
between the RIKEN simulator and the A64FX is 10% or less.

 The average of absolute difference is 6.6%, and the largest is 
15.7%, which is considered to be enough for evaluation.

 The difference in d2f and d2i seems to be because merge in 
write buffer is not implemented in RIKEN simulator.

11.5 15.6 15.7

‐14.5 ‐10.1

http://arxiv.org/abs/1904.06451 16 Apr 2019 cs.DC
Evaluation of the RIKEN Post‐K Processor Simulator
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Results of L2 Stream benchmark
 Measure the total L2 throughput by changing the number of 

threads from 1 to 12 using software prefetch.
 In the RIKEN simulator, the throughput is saturated with 8 

threads, while in the A64FX test chip, the throughput has been 
improved to 12 threads.

 The difference is large with 10 threads or more.
 We plan to service requests from each core fairly in L2.
 We consider improving bus performance between L1/L2.
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Results of Memory Stream benchmark
 Measure the total memory throughput by changing the 

number of threads from 1 to 12 using hardware prefetch.
 Up to 6 threads achieve scalable throughput, and above that 

achieves maximum performance.
 There is a large difference in execution time between the 

RIKEN simulator and the A64FX test chip in 1-2 threads.
 Since hardware prefetch for store access is not implemented in the RIKEN 

simulator, it will be reevaluated after implementation.
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 Stream triad
for (i=0; i<N; i++) {

y[i] = x1[i] + c * x2[i];
}

 Memory access
Since the store instruction writes to part of the cache line, it is necessary to read 
the cache line from memory before writing to maintain cache line consistency. 
Therefore, the actual memory access is 3 read 1.
Therefore, when Stream throughput is 150 GB/s, the memory throughput achieves 
200 GB/s.

 ZFILL Optimization
However, when writing to all cache lines as in Stream, it is not necessary to preload 
from memory. Therefore, the Fujitsu compiler provides the ZFILL option. ZFILL 
uses a 'DC ZVAʻ instruction that zero-fills a cache line. As a result, the A64FX test 
chip achieves 200 GB/s in Stream throughput.

Memory access in Stream benchmark

2 read 1 store
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Results of ZFILL optimization
 The RIKEN simulator also implemented the DC ZVA 

instruction, and evaluated the ZFILL optimization using 
software prefetch with 10 times larger data than previous 
evaluation. 
 The RIKEN simulator also confirmed Stream throughput of 200 GB/s, 

which is almost same as the throughput of the A64FX test chip. (currently 
continue to test the effect of prefetch distance)

 When the number of threads is large, the values are somewhat different. 
We plan re-evaluation after implementing fairness access in L2 cache.
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 We developed a RIKEN simulator that can perform cycle-level 
processor simulation as an evaluation environment until the 
Post-K system can be used.

 From the evaluation with Kernel loop, L2 Stream, Memory 
Stream, many results showed that the differences between the 
RIKEN simulator and the A64FX test chip are about 10% or 
less. 

 There were some cases where the difference was large, but we 
will continue to develop RIKEN simulator.

 In the future, we plan to evaluate application kernels those 
are closer to the actual application.

Conclusion
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SVE vectorization
 Vectorization by SVE is the key to get high performance.
 Not yet summarize how to vectorization if the software 

cannot be vectorization, but the key is to keep compiler 
friendly description (it may be required rewriting programs).
 Simple consecutive loop
 Not element wise description, but loop description

 Notes: Following example is only checked by Fujitsu 
compiler, and how to optimization is heavily depend on the 
compiler and the version.



→
void mycopy_with_restrict(double * restrict x, double * restrict y, int n)
{
int i;

for (i = 0; i < n; i++)
y[i] = x[i];

}

A Pitfall
void mycopy(double *x, double *y, int n)
{
int i;

for (i = 0; i < n; i++)
y[i] = x[i];

}

It is very simple loop, but it cannot be vectorized
Because *x and *y may be overlap.

Can be vectorized with restrict attribute.



Simple Linpack
m = n % 4;

for ( i = 0; i < m; i++ ) {

dy[i] = dy[i] + da * dx[i];

}

for ( i = m; i < n; i = i + 4 ) {

dy[i ] = dy[i ] + da * dx[i ];

dy[i+1] = dy[i+1] + da * dx[i+1];

dy[i+2] = dy[i+2] + da * dx[i+2];

dy[i+3] = dy[i+3] + da * dx[i+3];

}
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In daxpy code, there is a hand unrolled code !!
And it cannot be vectorized.

→

for ( i = 0; i < n; i++ )  {

dy[i] = dy[i] + da * dx[i];

}

Simple loop will be vectorized automatically.



Simple Linpack(2)
for ( j = k+1; j <= n; j++ ) {

t = a[l-1+(j-1)*lda];

if ( l != k ) {

a[l-1+(j-1)*lda] = a[k-1+(j-1)*lda];

a[k-1+(j-1)*lda] = t;

}

daxpy ( n-k, t, a+k+(k-1)*lda, a+k+(j-1)*lda);

}

…

void daxpy ( int n, double da, double dx[], double dy[restrict])
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It uses 1d vector not 2d array, so compiler
cannot detect independence of two vector.

→

void daxpy ( int n, double da, double dx[restrict], double dy[restrict])



Compiler message for optimize
 In Fujitsu compiler, you can check whether the loop is 

vectorized or not by compiler messages.

<<< Loop-information Start >>>
<<<  [OPTIMIZATION]
<<<    SIMD(VL: 8)
<<<    SOFTWARE PIPELINING
<<<    PREFETCH(HARD) Expected by compiler :
<<<      x2, x1, y
<<< Loop-information  End >>>
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software pipeline
 Software pipeline was the key optimization for in-order 

processor, but even for out-of-order processor, since o3 
resources are limited and for the loops of large (or not 
small) body, instructions of next loop cannot be entered to  
instruction queue, software pipeline is effective.

 In fujitsu compiler –Kfast includes swp,unroll,SVE
 -Kfast,noswp,nounroll,NOSVE
 -Kfast,noswp,nounroll
 -Kfast

Effect of SVE

Effect of software pipeline



Loop split
 Software pipeline requires many registers to keep 

values between loops, but it caused register spill in 
large loop body or many loop overlapping.
 In K and FX100, 128 vector registers support it, while 

arm SVE has 32 vector registers.
 Loop splitting is one of optimizations for loop with large 

body.
 Fujitsu compiler will support auto loop splitting, but 

currently user should manually specify the loop split point.
 #pragma statement fission_point
 -Kocl



fdiv and fsqrt
 fdiv is an non-pipeline instruction with long latency (depends 

on vector length and element size, for example, more than 
100 cycles for 8 double SIMD).

 frecpe/frecps are pipeline instruction for reciprocal 
operaiotns with same latency of fma.

 In fujitsu compiler with –Kfast, fdiv is inlined with 
frecpe/frecps and equivalent to 12 flop for double, and 7 flop 
for float.

 fsqrt is inlined with frsqrte/frsqrts and equivalent to 18 flop 
for double, and 8 flop for float.



Data alignment
 Using wide SIMD, the alignment of cache access 

becomes more important in general. 
 For example, cache line size = 64 bytes, and consecutive 

access by 8byte access. Even if the vector is unaligned, 
unaligned access is only 1/8.

 For the 256bit SIMD case, ½ access becomes unalined.
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A64FX L1 cache throughput
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 In gem5, unaligned access divided to two cache access, but 
gm5-riken supports the behavior of A64FX.

From slides of hotchips 2018



Gather load
 The throughput of gather load is depend on each processorʼs 

microarchitecture. 
 In gem5, gather load is implemented by micro operations 

that access each element. 
 For example, 512bit SIMD with 8 byte element, gather load 

takes 8 memory access, and the throughput is limited in 
8bytes/cycle, while that of contiguous load is 
64bytes/cycle.



A64FX Gather load

From slides of hotchips 2018



Gather load vs predicate

for (i=0; i<SIZE; i+=2) {
c[i] = a[i] + b[i];

}

for (i=0; i<SIZE; i++) {
if (i%2 == 0)
c[i] = a[i] + b[i];

}

In Fujitsu compiler generates gather load

In Fujitsu compiler generates predicate

 For following program that loads selectively, gather load or 
predicate load are available, and which is used is compiler-
dependent.



Vector length
 In fujitsu compiler –Ksimd_regsize=512 by default
 -Kfast
 -Kfast,-Ksimd_regsize=agnostic

Gem5 can change vector length by --arm-sve-vl, and gem5-
o3 also can change by –v option.
-v 1024 (same as --arm-sve-vl=8): 1024bit
-v 512 (same as --arm-sve-vl=4): 512bit
-v 256 (same as --arm-sve-vl=2) : 256bit
-v 128 (same as --arm-sve-vl=1) : 128bit


