Background and trends of high performance processorsﬂ. oL

Processor trends:

e Manycore : more and more cores are integrated into a chip
. Intel Knights Landing (KNL): 60~72core

o Wide SIMD (Single Instruction Multiple Data): more and

more FPU are integrated into a core
- AVX-2 (256-bit); Intel Xeon E5 v4 (Broadwell)
- AVX512 (512-bit); Intel KNL, Xeon E5 v5 (Skylake)

No program compatibility between different SIMD length
e Re-compile is required between AVX-2 and AVX512

CEA-RIKEN HPC school (June/2019)

Advanced SIMD (NEON) extension 0 omn:

ar RCCS

e Advanced SIMD (NEON) extension introduced in the ARMv7
ISA.

e NEON instructions operate on 64 or 128-bit wide vector data
(SIMD data) held in the Advanced SIMD and FP register set.

e They perform the same operation on all data elements (SIMD)

e NEON instructions operate on 64 or 128-bit wide vectors with
e FX8/FX16/FX32/FX64 or Elements <—_: _
e FP16/FP32/FP64 I

— el wl." Source
data elements. e e Wl >~ Registers
Operation

Destination
I t ' ' | Register
L kL
e Remark Lane

e For FP16 data NEON supports only conversions between FP16 and
FP32/FP64 data.

o FP16 data operations are supported only in the Advanced SIMDv2 option.

CEA-RIKEN HPC school (June/2019) 2

ARM v8 Scalable Vector Extension (SVE) R on:

ar RCCS

e SVE is a complementary extension that does not replace NEON, and
was developed specifically for vectorization of HPC scientific
workloads.
e The new features and the benefits of SVE comparing to NEON
o Scalable vector length (VL) : Increased parallelism while allowing
implementation choice of VL

e VL agnostic (VLA) programming: Supports a programming paradigm
of write-once, run-anywhere scalable vector code

o Gather-load & Scatter-store: Enables vectorization of complex data
structures with non-linear access patterns

o Per-lane predication: Enables vectorization of complex, nested control
code containing side effects and avoidance of loop heads and tails
(particularly for VLA)

o Predicate-driven loop control and management: Reduces vectorization
overhead relative to scalar code

e Vector partitioning and SW managed speculation: Permits vectorization
of uncounted loops with data-dependent exits

o Extended integer and floating-point horizontal reductions: Allows
vectorization of more types of reducible loop-carried dependencies

CEA-RIKEN HPC school (June/2019)

ARM v8 Scalable Vector Extension (SVE) R on:

ar RCCS

e Vector Length Agnostic programming enables same binaries to
run on different vector length environment because of
programming independent of vector length

e Support 128bit~2048bit SIMD
e Each processor may support different vector length

e SVE instructions don’t have vector length information, but refer
the value of LEN implicitly.

e LEN is in system register, that specifies current vector length
LEN=1:128bit, 2:256bit, 4:512bit, 8:1024bit, 16:2048bit
LEN can be changed by kernel call.

Post-K (Fugaku) processor (A64FX) announced to support 512bit.

CEA-RIKEN HPC school (June/2019) 4

SVE registers R on

. 128
. LENx128 —
Fey V31
72 | [V2
Z1 | | Vi1
Z0 VO
 LENx16
p7 [P15
P2 P10
P1 P9
PO P8 FFR

/ZCR %EL&Q

B EL3

RINEH R'CCE

e Zn is a SVE vector register.

e Vn is a NEON SIMD register,
which is overlapped with the
SVE vector register.

e When LEN=4(512bit), it is
possible to perform the
operation to 64bit x8, 32bits
x16, 16bit x32, 8bit x64 in
parallel.

e The instruction is defined for
LEN=1~16, stored in a system
register, ZCR, which is used to
execute ISA implicitly.

e ZCR contains the vector length
for each privileged level.

e Pn is a predicate Register, used
as a mask to select active
elements for the operation.

CEA-RIKEN HPC school (June/2019)

Vector length agnostic programming s I

for (inti=0; i< N;i++)
y[il = 3.0 * x[i] + y[il];

This code runs with any

Scalar

L2:

fmov d2, 3.0e+0
mov x0,0//inti

Idr dO, [x2, x0] // x[i]
Idr d1i, [x1, x0] // yI[i]
fmadd doO, dO, d2, d1
str dO, [x1, x0] // vIil
add x0,x0,8//i++
cmp x0,x3 // i1 < N?
bne .L2

vector length
SVE

fmov z0.d, #3.00000000

whilelo p0.d, xzr, x9 // 0 < N?
.LBBO_1:

ildid z1.d, pO/z, [x10, x8, Isl #3]

Ildid z2.d, p0/z, [x11, x8, Is|l #3]

fmad z1.d, pO/m, z0.d, z2.d

stld z1.d, p1, [x11, x8, Isl #3]

incd x8 // i+=(# of elements)

whilelo p1.d, x8, x9 // i < N?

b.first .LBBO_1 // p0[O0] is true?

This SVE code correctly runs for any N iterations, even
if N is not the multiple of vector elements.

CEA-RIKEN HPC school (June/2019)

WHILELO instruction 0 on:

ar RCCS

e WHILELO instruction generates a predicate vector according
the condition on each vector elements

ex) whilelo p1.d, x8, x9

When loop continues |X8+7|X8+6|X8+5|X8+4|X8+3|X8+2|X8+1 X8

< < < < < < < <
X9 X9 X9 X9 X9 X9 X9 X9

pid | 1t] 1 1]t] 1] 1] 1]1

When loop terminates [x8+7]x8+6|x8+5|x8+4]x8+3|x8+2|x8+1] x8

> > > = < < < <
X9 X9 X9 X9 X9 X9 X9 X9

pid o Jo]Jo]Jo] 1] 1]1]1

CEA-RIKEN HPC school (June/2019)

Vector Loop Control & Branch instructions R om:

e Overload Pstate.NZCV rather than defining new set of branch
instructions
e Set as a result of vector compares and predicate logical arithmetic

Flags A64 SVE SVE
Cond Cond Interpretation
w==il EQ NOMNE Mo active elements are true
Flag SVE Set when
Z==0 MNE ANTYT An active elementis true
X Al Setiif fIrSF active preclicate Cc==1 HS/C5 NLAST The last active elementis not true
element is true
C==0 LO/CC LAST The last active elementis true
Z None | Set if no active predicate
elements are true H==1 Mi FIRST The first active element is true
C ILast clea eitila i tve H==0 PL MFRST The first active element is not true
predicate element is true V==1 V5 PLAST Copy of LNONE condition preserved by
some tests
V | Plast | Preserves (Last | | None) V==0 VC PNLST Copy of ANYNL condition preserved by
across certain flag-setting some tests
operations C==1 && HI AMNYML An active elementis true but not the last
Z==0 element
C==0 || LS LMOME The last active elementis true or none are
Z==1 true
H==V GE TCONT Scalarized loop termination not detected
(see CTERM)
H!=V LT TSTOP Scalarized loop termination detected (see
CTERM)

CEA-RIKEN HPC school (June/2019) 8

x0
(base)

7 RLX
(x0+VL*1)

z0.d

Contiguous Load instruction

Id1d z0.d, p0/z, [x0, #1 MUL VL]

0x1000

| ol 1 o 1 o 1 o -

Ox1078| 0x1070| 0x1068| 0X1060| 0X1058| 0x1050f 0x1048] 0x1040

Mread Mread Mread Mread
! { - -

L[o of 1 o [o

* Read vector data from memory by one instruction.
Only active elements are read.
e Otherwise, inactive elements are cleared (/z)

CEA-RIKEN HPC school (June/2019)

VL is 64 in byte when
vector length is
512bits.

Zeroing / Merging Predication OnE

e When a lane’s predicate bit is “inactive” the destination lane can either be:
o Merged (/m): leave the inactive lane unmodified

. Useful for building a vector result in multiple steps (e.g. if/then/else,
accumulation, serialised loops)

. Previous value of destination register is an implicit read dependency

. In a destructive encoding the previous value is already a dependency (ADD Zds1,
Zds1, Zs2)

o Zeroed (/z) : set the inactive lane to zero

. Avoids dependency on destination for constructive 3-op encodings, but value is
really “don’t care”

. A merged or computed value can also be “don’t care”, if no additional cost and no
side effects

e So:

e Most arithmetic instructions are destructive 2-op encodings with Merging
predication

o Commonly-used arithmetic instructions also have constructive 3-op Unpredicated
forms

o Most predicate-generating instructions (e.g. compare) have option for Merging or
Zeroing

CEA-RIKEN HPC school (June/2019) 10

Predicate-setting instructions

ptrue po.d
cmpgt pl.d p@/z zo.d #3

e Ptrue sets all predicates “true”.
* Pflase sets all predicates “false”.
 Cmpgt compares each elements in vector with elements in the

second vector or immediate value and set each flag of predicate.
e CMP+EQ, NE, (signed) GT, GE, LT, LE, (unsiged) HI, HS, LO, LS

CEA-RIKEN HPC school (June/2019)

p0.d
z0.d

z1.d

z0.d

Arithmetic operation with predicate mask @R om:

fadd z0.d, p0/m, z0.d, z1.d

1

of 1] of 1] of 1] o

A[7]

A6l Alsl| Aal] Azl Ai| Analf Aol
| | |

B[7]| B6]| BI5]| Bl4]| B[3]| Bl2]| Bl1]] B[O]
fadd fadd fadd fadd l
| |

| A6ll | Al4] Al2] | Al0]

e According to each value in the predicate, only

active elements are calculated.
* If “/m” specified, inactive elements are
unmodified. (“/z” for zero clear)

* The destination register must be the same as the
first operand, that is “destructive” operation

ar RCCS

This example uses “double
precision”. There are other
types; “single precision”,
“half precision”, integer
(64bit, 32bit, 16bit, 8bit)

fadd z2.d, z0.d, z1.d
“Constructive” 3 operands format
if “un-predicated”

CEA-RIKEN HPC school (June/2019) 12

p0.d
z1.d

z2.d

z0.d

FMA(floating-point multiply-add) instruction R on:

fmla z0.d, pO/m, z1.d, z2.d [Zda =Zda + Zn * Zm]

1] of 1 o 1 of 1 o

Al71| alel] Al Alal] Al Al Al Alo)

B[71] BI6]|,BI5]| Bl4l|,B3]] Bl2]| B1]] BIO]

| ci71] ciel| cis1| cra] ciz1| craif craf clog

—_—

o o
ﬁ f

¥

fadd

ciel] | cral | cla c[o]

Only active elements are calculated

Inactive elements remains (/m)

Destination register are the same as 1%t source
operand, so that destructive!

ar RCCS

Both mul and add are executed in
one instruction.

Other operations are provided:

FMAD [Zdn = Za + Zdn * Zm]
FMLS [Zda = Zda + -Zn * Zm]
FMSB [Zdn = Za + -Zdn * Zm]
FNMAD[Zdn = -Za + -Zdn * Zm]
FNMLA[Zda = -Zda + -Zn * Zm]
FNMLS[Zda = -Zda + Zn * Zm]
FNMSB[Zdn = -Za + Zdn * Zm]

These are “destructive”

CEA-RIKEN HPC school (June/2019) 13

Destructive vs Constructive (MOVPRFX instruction) @ it

e Predicated arithmetic instructions are generally destructive

ADD Zds1, Pg/M, Zds1, Zs2 => Pg: Zds1 += Zs2

o Constructivity plus predication is expensive for ISA encoding space

e Constructive operations may be achieved with instruction pair,
prefix move instruction “movprfx”

e The operation is the same as “move” instruction

o The prefix move must immediately precede the instruction and it
can be merged (the same destination, predicate, the size and
type) , then the hardware can execute these operations as one
construction operations

MOVPRFX Zd, Pg/M, Zs1 movprfx z4, p0/z, z0

ADD Zd, Pg/M, Zd, Zs2 fmla z4.d, p0/z, z1.d, z2.d
=> ADD Zd, Pg/M, Zs1, Zs2

(so long as d !=s2) =>[Zda = Zda + Zn * Zm]

4 operand instruction!

CEA-RIKEN HPC school (June/2019) 14

Uses of Predication) On

e Loops with control flow divergence (vector if-conversion)
o Each iteration of a scalar loop and hence each lane of a vector may
follow different control path
e Predication controls which elements take part in an operation (the active
elements)
e Prevents side-effects from unsafe values in inactive elements (floating-
point, load/store, accumulation)
e Loop heads/tails
e Avoid extra tests and scalar code for loop heads (alignment) and tails
(non-VL multiples)
o Predicate operations can set condition flags for loop control flow
instructions
e Vector partitioning
e Iterating through portions of a vector in response to speculative faults or
serialised loops
e Vector-length agnosticism is a special case of vector partitioning

CEA-RIKEN HPC school (June/2019)

15

IF-conversion with masking R

C
wvoid ifeve() {
long i;
for (i=0; i<256; i++){
if (b[i] !'= 0.0) {
if (c[i] = 0.0} {
dli] = a[i] + Bb[i]:
: o c[i] = d[i] + b[i]:
SVE (masking, omitting loop) }
Jf z0.d = {i, i+l, i+2,}: p0 = partition
1dild zl.d, pl0sz, [b, z0.d] JF load b[i]
fcmne pl, p0/fz, z1.d, #0.0 Jf test b[i]'=0.0
1dld z2.d, pls=z, [c, z0.d] /f load c[i] under pl
fcmeq p2, pl/fz, z2 .d, #0.0 Jf test c[i]==0.0
1dild z3.d, p2/s=z, [a, z0.d] /f load a[i] under pZ2
fTadd z3.d, p2/m, z3.d, =zl1.4d Jf a[il+b[i] under p2
stld z3.d, p2, [d, =z0.d] /f store d[i] under mask
bic 3, pl, p2 J// remaining d lanes in mem
1dld z4.d, p3/z, [d, =z0.d4] /f load org d[i] under p3
fadd zl.d, p2/m, zl.d, =z3.d Jf b[il+d[i] under pZ2
fadd zl.d, p3/m, =21.4d, z4.d /f b[il+org d[i] under p3
stld zl.d, pl, [c, z0.d] /f store c[i] under pl

CEA-RIKEN HPC school (June/2019)

16

Load instruction: Addressing mode

4 kinds of addressing modes .

Contiguous Load
1. Scalar plus immediate

ld1d z0.d, p0/z, [x0, #1, MUL VL]
2. Scalar plus scalar
ld1d z1.d, p0/z, [x0, x1, LSL #3]

Gather load
3. Scalar plus vector

a. 32bit unpacked scaled offset
ld1d z0.d, p0/z, [x0, z1.d, sxtw #3]
b. 32bit unpacked unscaled offset
ld1d z0.d, p0/z, [x0, z1.d, sxtw]
c. 64bit scaled offset
ld1d z0.d, p0/z, [x0, z1.d, Is| #3]
d. 64bit unscaled offset
ld1d z0.d, p0/z, [x0, z1.d]
4. Vector plus immediate
ld1d z0.d, p0/z, [z1.d, #8]

Example: Contiguous load

VL*1

MEM 1_> Xl"z

low * high

o [0]

Instruction mnemonic: I|d1 +
[b,h,w,d] for each data size.

Ld1 read memory data without
sign extension. Ld1s+[b,h,w,d] is
load instruction with sign-
extension.

CEA-RIKEN HPC school (June/2019)

17

x0
(base)

7 RLX
(x0+VL*1)

z0.d

Id1d z0.d, p0/z, [x0, #1 MUL VL]

Contiguous Load instruction

0x1000
1l of 1 of 1 o 1f o
Ox1078| 0x1070| 0x1068| 0x1060| 0x1058| 0x1050] 0x1048] 0x1040
Mread Mread | Mread Mread
L1 o of | o 0]

* Read vector data from memory by one instruction.
Only active elements are read.

e Otherwise, inactive elements are cleared (/z)

CEA-RIKEN HPC school (June/2019)

VL is 64 in byte when
vector length is
512bits.

18

x0
(base)

p0.d

z1.d

(index)

Address =(x0
+z1.d[n]<<3)

z0.d

A set of indices are specified by value in

Gather load instruction ® ||

ld1d z0.d, p0/z, [x0, z1.d, Isl #3] // Scalar plus vector

0x1000

1l of 1 of 1 o 1if o

14] 12 0] 8] e 4] 2 o

OX107OI OX106OI 0X1050| 0X1040| 0X1030| 0x1020f 0x1010f 0x1000

Mread Mread | Mread Mread

| o [o of 1 9

ld1d z0.d, p0/z, [z1.d, Is| #8]

vector register (z1) // Vector plus immediate
Only active elements are read from memory.
Otherwise, inactive elements are cleared (/z) The value of each element are

used as base address, and plus
constant offset.

CEA-RIKEN HPC school (June/2019)

19

Structure load instruction

Id2d {z0.d, z1.d} p0/z, [x0, #1, MUL VL]

VL*1
Complex number data

‘ RO hO ‘Rl hl ‘RZ hZ ‘R3 h3 ‘R4 h4 ‘RS 15 ‘RG hG ‘R7 h7 ‘

low
high

x0 20,21 z0.d={R7, R6, R5, R4, R3, R2, R1, RO}
z1.d={I7, 16, 15, 14, I3, 12, I1, 10}

e Structure load, LD2, LD3, LD4, and store, ST2, ST3, ST4, instructions
transfer two, three, or four vector registers from or to contiguous
structures of two, three, or four fields in memory.

* The read memory must be starting from an address that is defined by a
scalar base register plus a scalar index register or an immediate index

* Instruction mnemonic : 1d2 + [b,h,w,d] for each data size.

CEA-RIKEN HPC school (June/2019)

20

Another example

// subroutine saxpy(x,y,a,n)
// real*4 x(n),y(n),a

// do 1 = 1,n

/7 y(i) = a*x(i) + y(i)
// enddo

Whilelt: generate predicate
by comparison with index
and limit

// x0 = &[0], x1 = &y[0@], x2 = &a,

ldrsw x3, [x3] // x3=*n _ ,
mov x4, // x4=i=0 incw: increment the
whilelt pO@.s, x4, x3 // pO=while(i++< operand with vector
ldirw z0.s, po/z, [x2] // pO:z0= size
.loop:
ldiw z1.s, po/z, [x0,x4,1s =
ldlw z2.s, // pe z2=y[i]
fmla z2.s 5 // pO?z2+=x[1i]*a et :
et ’ i, x4 1s1 2] /7 pory[i]=z2 pfnst.§ranch|fthe'
incw x4 /] i+=(VL/32 first active element is
.latch: true.
whilelt ‘W 77—PO=While (i++<n
b.first .loop // more to do?
ret

CEA-RIKEN HPC school (June/2019)

21

SVE instructions (1)

Vector Set and Copy (CPY, DUP, FCPY, FDUP, FMOV, INDEX, SEL)

Constructive Prefix (MOVPRFX)

Integer Arithmetic (ABS, ADD, CNOT, MAD, MLA, MLS, MSB, MUL, NEG, SABD, SDI
V, SDIVR, SMAX, SMIN, SMULH, SQADD, SQSUB, SUB, SUBR, SXT{B/H/W/D}, UABD,
UDIV, UDIVR, UMAX, UMIN, UMULH, UQADD, UQSUB, UXT{B/H/W/D}

Integer Dot Product (SDOT, UDOT)

Integer Comparisons (CMP{EQ/GE/GT/HI/HS/LE/LO/LS/LT/NE})

Loop Control (WHILE{LE/LO/LS/LT}, BRK{A/AS/B/BS/N/NS/PA/PAS/PB/PBS})
Bitwise Logical Operations (AND, BIC, DUPM, EON, EOR, MOV, NOT, ORN, ORR)
Bitwise Shift, Permute and Count (ASR, ASRD, ASRR, CLS, CLZ, CNT, LSL, LSLR, LSR,
LSRR, RBIT)

Floating-Point Arithmetic (FABD, FABS, FADD, FDIV, FDIVR, FMAD, FMAX, FMAXN
M, FMIN, FMINNM, FMLA, FMLS, FMSB, FMUL, FMULX, FNEG, FNMAD, FNMLA, FN
MLS, FNMSB, FRECP{E/S/X}, FRSQRT{E/S}, FSCALE, FSQRT, FSUB, FSUBR)
Floating-Point Indexed Multiplies (FMLA, FMLS, FMUL)

Floating-Point Complex Arithmetic (FCADD, FCMLA)

Floating-Point Conversion (FCVT, FCVTZ{S/U}, FRINT{A/I/M/N/P/X/Z}, SCVTF, UCVT
F)

Floating-Point Comparison (FAC{GE/GT/LE/LT}, FCM{EQ/GE/GT/LE/LT/NE/UQO}
Floating-Point Transcendental Acceleration (FTMAD, MTMAD, FTSMUL, FTSSEL)

Exponential (FEXPA)
CEA-RIKEN HPC school (June/2019)

22

SVE instructions (2)

Predicate Set and Copy (MOV, MOVS, PFALSE, PFIRST, PTRUE, PTRUES, SEL)
Predicate Logical Operations (AND, ANDS, BIC, BICS, EOR, EORS, NAND, NANDS, N
OR, NORS, NOT, NOTS, ORN, ORNS, ORR, ORRS, PTEST)

Predicate Partitioning (RDFFR, RDFFRS, SETFFR, WRFFR)

Predicate Counts (CNT{B/D/H/P/W}, DEC{B/D/H/P/W}, INC{B/D/H/P/W}, SQDEC{B
/D/H/P/W}, SQINC{B/D/H/P/W}, UPDEC{B/D/H/P/W}, UPINC{B/D/H/P/W})
Permute and Shuffle (CLASTA, CLASTB, LASTA, LASTB, COMPACT, SPLICE, TBL, DUP,
EXT, INSR, MOV, REV, REV{B/H/W}, SUNPK{HI/LO}, TRN{1/2}, UUNPK{HI/LO}, UZP
{1/2}, ZIP{1/2}, PUNPK{HI/LO})

Horizontal Reduction (ANDV, EORV, FADDA, FADDV, FMAXNMV, FMAXV, FMINNM
V, FMINV, ORV, SADDV, SMAXV, SMINV, UADDV, UMAXV, UMINV)

Serialized Operations (PNEXT, CTERM{EQ/NE})

Vector Address Calculations (ADDPL, ADDVL, ADR, RDVL)

Vector Load/Store/Prefetch (LD1{B/SB/H/SH/W/SW/D}, LDFF1{B/SB/H/SH/W/SW/
D}, LDNF1{B/SB/H/SH/W/SW/D}, LDNT1{B/H/W/D}, PRF{B/H/W/D}, ST1{B/H/W/
D}, STNT1{B/H/W/D}, LD2{B/H/W/D}, LD3{B/H/W/D}, LD4{B/H/W/D}, ST2{B/H/W/
D}, ST3{B/H/W/D}, ST4{B/H/W/D}, LD1R{B/H/W/D}, LD1RQ{B/H/W/D}, LDR, STR,

CEA-RIKEN HPC school (June/2019)

23

Information about ARM v8 and SVE 3 ORI

ar RCCS

e Specification of ARMv8 and ARM SVE is available at:

e https://developer.arm.com/

e ARM SVE architecture reference manual (ARM®
Architecture Reference Manual Supplement, The Scalable
Vector Extension (SVE), for ARMv8-A)

. https://developer.arm.com/products/architecture/a-
profile/docs

e Other reference: a presentation slide at Hot Chips 2016
. https://community.arm.com/cfs-file/ key/telligent-evolution-
components-attachments/01-2142-00-00-00-01-20-49/ARMv8 2D00 A-
SVE-technology-Hot-Chips-v12.pdf

e Compiler for ARM SVE
e https://github.com/ARM-software/LLVM-SVE

CEA-RIKEN HPC school (June/2019) 24

