

Simulation and Validation of a Three-Phase Flow Model

CONTEXT

The modeling and the accurate simulation of steam explosion is an impor tant topic for nuclear safety analysis. This phenomenon may occur when some very hot liquid (molten metal for instance) flows down in a quiet liquid component such as water. In this case the heat transfer might lead to the rapid creation of large volumes of water vapour, so rapid that it can be explosive [1].

THREE-PHASE FLOW MODEL

Within each phase, $\alpha_{k} \in[0,1], \rho_{k}, m_{k}=\alpha_{k} \rho_{k}, \mathbf{U}_{k}, p_{k}$, $e_{k}\left(p_{k}, \rho_{k}\right)$ and $E_{k}=1 / 2 \rho_{k} \mathbf{U}_{k} \cdot \mathbf{U}_{k}+\rho_{k} e_{k}\left(p_{k}, \rho_{k}\right)$ represent respectively the statistical fraction, the mean density, the partial mass, the mean velocity, the mean pressure, the mean internal energy and the mean total energy of phas $k=1 \rightarrow 3$, we note $\mathbf{W}=\left(\alpha_{2}, \alpha_{3}, m_{1}, m_{2}, m_{3}, m_{1} \mathbf{U}_{1}, m_{2} \mathbf{U}_{2}, m_{3} \mathbf{U}_{3}, \alpha_{1} E_{1}, \alpha_{2} E_{2}, \alpha_{3} E_{3}\right)^{t}$ the state variable. The set of PDEs that is considered is (see [6])
$\left\{\begin{array}{l}\frac{\partial \alpha_{k}}{\partial t}+\mathbf{V}_{i}(\mathbf{W}) \cdot \nabla \alpha_{k}=S_{k}^{\alpha}(\mathbf{W}) \\ \frac{\partial m_{k}}{\partial t}+\nabla \cdot\left(m_{k} \mathbf{U}_{k}\right)=0 \\ \partial m_{n} \mathbf{U}_{k}\end{array}\right.$
$\left\{\begin{array}{l}\frac{\partial m_{k} \mathbf{U}_{k}}{\partial t}+\nabla \cdot\left(m_{k} \mathbf{U}_{k} \otimes \mathbf{U}_{k}+\alpha_{k} p_{k} \mathbf{I d}\right)+\sum_{l=1, l \neq k}^{3} \Pi_{k l}(\mathbf{W}) \nabla \alpha_{l}=\mathbf{S}_{k}^{U}(\mathbf{W}) \\ \frac{\partial \alpha_{k} E_{k}}{\partial t_{k}}+\nabla \cdot\left(\alpha_{k} E_{k} \mathbf{U}_{k}+\alpha_{k} p_{k} \mathbf{U}_{k}\right)-\sum^{3}, \prod_{k l}(\mathbf{W}) \underline{\partial \alpha_{l}}=S^{E}(\mathbf{W})\end{array}\right.$ $\left(\frac{\partial \alpha_{k} E_{k}}{\partial t}+\nabla \cdot\left(\alpha_{k} E_{k} \mathbf{U}_{k}+\alpha_{k} p_{k} \mathbf{U}_{k}\right)-\sum_{l=1, l \neq k}^{3} \Pi_{k l}(\mathbf{W}) \frac{\partial \alpha_{l}}{\partial t}=S_{k}^{E}(\mathbf{W})\right.$

The statistical fraction α_{1} complies with: $\alpha_{1}=1-\alpha_{2}-\alpha_{3}$, since phases are immiscible. We restrict here to the case where: $\mathcal{V}_{i}(\mathbf{W})=\mathbf{U}_{1}$ (phase 1 denotes the liquid metal), thus following [6]:

$$
\left\{\begin{array}{l}
\Pi_{12}(\mathbf{W})=\Pi_{21}(\mathbf{W})=\Pi_{23}(\mathbf{W})=p_{2} \tag{2}\\
\Pi_{13}(\mathbf{W})=\Pi_{31}(\mathbf{W})=\Pi_{32}(\mathbf{W})=p_{3}
\end{array}\right.
$$

Closure laws for $S_{k}^{\alpha}(\mathbf{W}), \mathbf{S}_{k}^{U}(\mathbf{W}), S_{k}^{E}(\mathbf{W})$ take the form:

$$
\left\{\begin{array}{l}
S_{k}^{\alpha}(\mathbf{W})=\sum_{l=1, l \neq k}^{3} \frac{\alpha_{k} \alpha_{l}}{\tau_{k l}(\mathbf{W}}\left(p_{k}-p_{l}\right) \tag{3}\\
\mathbf{S}_{k}^{U}(\mathbf{W})=\sum_{l=1, l \neq k}^{3} \mathbf{D}_{k l}(\mathbf{W}) \\
S_{k}^{E}(\mathbf{W})=\sum_{l=1, l \neq k}^{3} \mathbf{V}_{k l}(\mathbf{W}) \cdot \mathbf{D}_{k l}(\mathbf{W})+\sum_{l=1, l \neq k}^{3} \psi_{k l}
\end{array}\right.
$$

where $\tau_{k l}(\mathbf{W})=\tau_{l k}(\mathbf{W}), \mathbf{D}_{k l}(\mathbf{W})=e_{k l}(\mathbf{W})\left(\mathbf{U}_{l}-\mathbf{U}_{k}\right)$ with $e_{k l}(\mathbf{W})=$ $e_{l k}(\mathbf{W})$, and $\mathbf{V}_{k l}=\frac{1}{2}\left(\mathbf{U}_{k}+\mathbf{U}_{l}\right) . \tau_{k l}$ and $e_{k l}$ are positive bounded functions (see [4] for pressure relaxation time scales). The heat transfer term is given by $\psi_{k l}=\frac{a_{k}-a_{l}}{\tau_{l}}$, where $\tau_{k l}^{\psi}=\tau_{l k}^{\psi}$ is the characteristic time of heat transfer between phases k and l, and $a_{k}=\left(s_{k}\right)^{-1}\left(\frac{\partial s_{k}\left(p_{k} \rho_{k}\right)}{\partial p_{k}}\right)\left(\frac{\partial e_{k}\left(p_{k} \rho_{k}\right)}{\partial p_{k}}\right)^{-1}$. We define $s_{k}\left(p_{k}, \rho_{k}\right)$, the specific entropy of phase $k: c_{k}^{2} \frac{\partial s_{k}\left(p_{k}, \rho_{k}\right)}{\partial p_{k}}+\frac{\partial s_{k}\left(p_{k}, \rho_{k}\right)}{\partial_{p}}=0$ and also the mixture entropy $\eta(\mathbf{W})$ and the entropy flux $\mathbf{F}_{\eta}(\mathbf{W})$

$$
\left\{\begin{array}{l}
\eta(\mathbf{W})=-\sum_{k=1}^{3} m_{k} \log \left(s_{k}\right) \tag{4}\\
\mathbf{F}_{\eta}(\mathbf{W})=-\sum_{k=1}^{3} m_{k} \log \left(s_{k}\right) \mathbf{U}_{k}
\end{array}\right.
$$

Main properties:

- The homogeneous convective subset (left hand side of (1)) is hyperbolic unless $\boldsymbol{U}_{1} . \boldsymbol{n}-\boldsymbol{U}_{k} \cdot \boldsymbol{n}= \pm c_{k}$, where \boldsymbol{n} is a normal unit vector in \mathbb{R}^{3}. Its eigenvalues are:

$$
\begin{gathered}
\lambda_{1,2,3,4,5}(\mathbf{W})=\boldsymbol{U}_{1} \cdot \boldsymbol{n} ; \lambda_{6,7,8}(\mathbf{W})=\boldsymbol{U}_{2} \cdot \boldsymbol{n} ; \lambda_{9,10,11}(\mathbf{W})=\boldsymbol{U}_{3 \cdot} \cdot \boldsymbol{n} \\
\lambda_{12,13}(\mathbf{W})=\boldsymbol{U}_{1} \cdot \boldsymbol{n} \pm c_{1} ; \lambda_{14,15}(\mathbf{W})=\boldsymbol{U}_{2} \cdot \boldsymbol{n} \pm c_{2} ; \lambda_{16,17}(\mathbf{W})=\boldsymbol{U}_{3 .} \cdot \boldsymbol{n} \pm c_{2}
\end{gathered}
$$

- The entropy inequality for smooth solutions of (1) reads:

$$
\begin{equation*}
\frac{\partial \eta(\mathbf{W})}{\partial t}+\nabla \cdot \mathbf{F}_{\eta}(\mathbf{W}) \leq 0 \tag{5}
\end{equation*}
$$

- In the \boldsymbol{n}-direction, system (1) admits unique jump conditions within each wave when $\mathcal{V}_{i}(\boldsymbol{W})=\boldsymbol{U}_{1}$

NUMERICAL SCHEME

In the spirit of [2], a fractional step method is introduced to compute approximate solutions of (1) as follows:

- Step 1 - Evolution step : For a given initial condition \mathbf{W}_{i}^{n}, compute an approximate solution of \mathbf{W} at time t_{n+1}, namely $\mathbf{W}^{n+1,-}$, by solving:

$$
\left\{\begin{array}{l}
\frac{\partial \alpha_{k}}{\partial t}+\mathbf{V}_{i}(\mathbf{W}) \cdot \nabla \alpha_{k}=0 \\
\frac{\partial m_{k}}{\partial t}+\nabla \cdot\left(m_{k} \mathbf{U}_{k}\right)=0 \\
\frac{\partial m_{k} \mathbf{U}_{k}}{\partial t}+\nabla \cdot\left(m_{k} \mathbf{U}_{k} \otimes \mathbf{U}_{k}+\alpha_{k} p_{k} \boldsymbol{l d}\right)+\sum_{l=1, l \neq k}^{3} \Pi_{k l}(\mathbf{W}) \nabla \alpha_{l}=\mathbf{0} \\
\frac{\partial \partial_{k} E_{k}}{\partial t}+\nabla \cdot\left(\alpha_{k} E_{k} \mathbf{U}_{k}+\alpha_{k} p_{k} \mathbf{U}_{k}\right)+\mathbf{V}_{i}(\mathbf{W}) \cdot \sum_{l=1, l \neq k}^{3} \Pi_{k l}(\mathbf{W}) \nabla \alpha_{l}=0
\end{array}\right.
$$

- Step 2 - Relaxation step: Starting with $\mathbf{W}^{n+1,-}$, compute \mathbf{W}^{n+1} approximate solution of:

$$
\left\{\begin{array}{l}
\partial_{t} \alpha_{k}=S_{k}^{\alpha}(\mathbf{W}) \\
\partial_{t} m_{k}=0 \\
\partial_{t}\left(m_{k} \mathbf{U}_{k}\right)=\mathbf{S}_{k}^{U}(\mathbf{W}) \\
\partial_{t}\left(\alpha_{k} E_{k}\right)-\sum_{l=1, l \neq k}^{3} \Pi_{k l}(\mathbf{W}) \frac{\partial \alpha_{l}}{\partial t}=S_{k}^{E}(\mathbf{W})
\end{array}\right.
$$

This time scheme complies with the entropy inequality (5). A 3D Finite Volume scheme is built. The first evolution step - that accounts for convective effects - involves an explicit scheme (Rusanov scheme was implemented), whereas the relaxation step is implicit.

NUMERICAL RESULTS

Verification test case : Riemann problem

Figure 1: L^{1} norm of the error wit the mesh size h

Validation test case
See [3] for the experimental setup, and [2] for a barotropic approach:

Figure 3: Sketch of the experimental shock tube apparatus. Simulation results for solid droplet test case:

Figure 4: Mixture pressure on S1 (black) S2 (red) S3 (blue) S4 (green)

Figure 5: Phase 1 volume fraction in 4 time instants.

Bibliography:

G. BERTHOUD, Vapor explosions, Annual Rev. Fluid Mech., vol. 32, pp. 573-611, 2000.
[2] H. Boukili, J-M. HÉrard, Relaxation and simulation of a barotropic three-phase flow model, ESAIM: Mathematical Modelling and Numerical Analysis 2019.
[3] A. Chauvin, G. Jourdan, E. Daniel, L. Houas, and R. Tosello, Experimental investigation of the propagation of a planar shock wave through a two-phase gas-liquid medium, Physics of Fluids, 23, 113301, 2011.
[4] S. GavRilyuk, The structure of pressure relaxation terms: the one-velocity case, EDF report H-I83-2014-0276-EN, 2014.
[5] M. Hantke and S. MÜLLER, Closure conditions for a one temperature nonequilibrium multi-component model of Baer-Nunziato type, ESAIM proceedings, 2019. [6] J.M. Hérard, A three-phase flow model, Mathematical and Computer Modelling, vol. 45, pp. 732-755, 200
[7] J.M. Hérard, K. Saleh and N. Seguin, Some mathematical properties of a hyperbolic multiphase flow model. 2018. https://hal.archives-ouvertes.fr/hal-01921027/
[8] S. Müller, M. Hantke and P. Richter, Closure conditions for non-equilibrium multi-component models, Continuum Mech. Thermodyn., vol. 28, pp. 1157-1190, 2016.

