On the Resurgent WKB Analysis

IHES, 12 June 2019

David Sauzin (CNRS - IMCCE, Paris Observatory - PSL University)
Joint work with Frédéric Fauvet (Strasbourg) and Ricardo Schiappa (Lisbon)

Exact WKB method and Parametric Resurgence
A. Voros 1983, J. Écalle 1984, 1994

Delabaere-Dillinger-Pham DDP 1993

Kawai-Takei 2005, T. Koike

Gaiotto-Moore-Neitzke 2008, Kontsevich-Soibelman 2008, Pasquetti-Schiappa 2010, Garoufalidis-Its-Kapaev-Mariño 2012, Iwaki-Nakanishi 2014, Ito-Mariño-Shu 2019

Our aim: explain where resurgence comes from, using Ecalle's inductive construction of elementary non-trivial resurgent functions, for which "mould formalism" is particularly efficient.

- Ecalle's moulds help elucidate the resurgent structure
- they help establish the bridge equations behind the Stokes automorphisms and the DDP formula
- they also induce recursive constructions of n-point correlation functions in the spirit of other recursions.

$$
\begin{equation*}
-\frac{\mathrm{d}^{2} \psi}{\mathrm{~d} x^{2}}=\eta^{2} Q(x) \psi \tag{SE}
\end{equation*}
$$

originates with quantum mechanics: $\eta=1 / \hbar$ (or a complex variable $\sim \infty$) $Q(x) \in \mathbb{C}[x]$ "energy - potential" (or $\left.Q=Q_{0}(x)+\eta^{-1} Q_{1}(x)+\cdots\right)$.
Data: a meromorphic quadratic differential $Q(x) \mathrm{d} x^{2}$ on \mathbb{P}^{1}, regular on $\dot{\mathbb{C}}:=\mathbb{P}^{1} \backslash\left\{x_{1}, \ldots, x_{M}, \infty\right\}$ where x_{j}^{\prime} 's $=$ turning points $=$ zeroes of Q.
Complex curve $\dot{\mathbb{C}}_{2}:=\left\{(x, p) \in \dot{\mathbb{C}} \times \mathbb{C}^{*} \mid p^{2}=Q(x)\right\}$, double cover of $\dot{\mathbb{C}}$ on which $\lambda_{0}:=p \mathrm{~d} x$ is a square root of $Q(x) \mathrm{d} x^{2}$.
WKB method produces an \hbar-extension of λ_{0} : a formal 1-form on $\dot{\mathbb{C}}_{2}$

$$
\lambda=\mathcal{P}(x, \eta) \mathrm{d} x, \quad \mathcal{P}(x, \eta)=Q^{1 / 2}(x)+\eta^{-1} \mathcal{P}_{1}(x)+\eta^{-2} \mathcal{P}_{2}(x)+\cdots
$$

$(\mathcal{P} \mathrm{d} x$ invariant by change of coordinates, coeff. uniquely determined and holomorphic on $\dot{\mathbb{C}}_{2}$). [Definition recalled later.]
We want to study $\mathcal{P}(x, \eta)$ and its Borel transform w.r.t. parameter η

$$
\mathcal{B}_{\eta \rightarrow \xi} \mathcal{P}=\hat{\mathcal{P}}(x, \xi)=Q^{1 / 2}(x) \delta(\xi)+\sum_{k \geqslant 1} \mathcal{P}_{k}(x) \xi^{k-1} /(k-1)!
$$

Resurgence: convergent for $|\xi|$ small enough and endlessly continuable (isolated singularities).

$$
\begin{equation*}
-\frac{\mathrm{d}^{2} \psi}{\mathrm{~d} x^{2}}=\eta^{2} Q(x) \psi \tag{SE}
\end{equation*}
$$

WKB formal solutions:

$$
\psi^{+}=\mathrm{e}^{\mathrm{i} \eta \boldsymbol{A}(x)} Q^{-1 / 4}(x) \varphi^{+}(x, \eta), \quad \psi^{-}=\mathrm{e}^{-\mathrm{i} \eta \boldsymbol{A}(x)} Q^{-1 / 4}(x) \varphi^{-}(x, \eta)
$$

with $A(x)=\int_{x_{0}}^{x} Q^{1 / 2}\left(x^{\prime}\right) \mathrm{d} x^{\prime}$ multivalued on $\dot{\mathbb{C}}_{2}$ and

$$
\varphi^{ \pm}(x, \eta)=1+\eta^{-1} \varphi_{0}^{ \pm}(x)+\eta^{-2} \varphi_{1}^{ \pm}(x)+\cdots
$$

multivalued and determined up to a multiplicative x-independent factor.
We'll be interested in the Borel transforms w.r.t. parameter η

$$
\mathcal{B}_{\eta \rightarrow \xi} \varphi^{ \pm}=\hat{\varphi}^{ \pm}(x, \xi)=\delta(\xi)+\sum_{k \geqslant 0} \varphi_{k}^{ \pm}(x) \xi^{k} / k!
$$

at least for certain choices of normalization.
Resurgence: convergent for $|\xi|$ small enough and endlessly continuable (isolated singularities).

Simplest example: one turning point of multiplicity m and nothing else

$$
Q(x)=c^{2} x^{m}
$$

(TP at $x_{1}=0$, pole at $x_{\infty}=\infty$). Then one finds

$$
\psi^{ \pm}=\mathrm{e}^{ \pm i \eta A(x)} Q^{-1 / 4}(x) \varphi^{ \pm}(x, \eta)
$$

with $A(x)=c x^{\frac{m+2}{2}}$ (choosing $x_{0}=0$), $Q^{-1 / 4}(x)=c^{-1 / 2} x^{-m / 4}$, and
$\mathcal{B}\left[\eta^{-\mu-1} \varphi^{+}\right]=\frac{\xi^{\mu}}{\Gamma(\mu+1)}\left(1-\frac{\xi}{2 \mathrm{i} A(x)}\right)^{\mu}, \quad \mathcal{B}\left[\eta^{-\mu-1} \varphi^{-}\right]=\frac{\xi^{\mu}}{\Gamma(\mu+1)}\left(1+\frac{\xi}{2 \mathrm{~A}(x)}\right)^{\mu}$
with $\mu:=-\frac{1}{2} \frac{m}{m+2}$.
Resurgence: The singularity of $\mathcal{B} \varphi^{+}$at $\xi=2 \mathrm{i} A(x)$ is proportional to $\mathcal{B} \varphi^{-}$and vice-versa [blackboard].
Exercise in alien calculus:

$$
\Delta_{2 \mathrm{i} A(x)} \varphi^{+}=2 \mathrm{i} \sin (\pi \mu) \varphi^{-}, \quad \Delta_{-2 \mathrm{i} A(x)} \varphi^{-}=2 \mathrm{i} \sin (\pi \mu) \varphi^{+}
$$

[Ecalle 1981, Vol. 2]
Airy $m=1 \leadsto$ Stokes const $S=-$ i. Harm. osc. $m=2 \leadsto \triangleright S=-\mathrm{i} \sqrt{2}$.

Associated Riccati equation
Set $P=\frac{1}{\mathrm{i} \eta} \partial_{x} \log \psi$. Since $\mathrm{i} \eta P=\frac{\partial_{x} \psi}{\psi} \Rightarrow \mathrm{i} \eta \partial_{x} P=\frac{\partial_{x}^{2} \psi}{\psi}-(\mathrm{i} \eta)^{2} P^{2}$,

$$
\begin{equation*}
\frac{\partial_{x}^{2} \psi}{\psi}=(\mathrm{i} \eta)^{2} Q \quad(\mathrm{SE}) \quad \Longleftrightarrow \quad P^{2}=Q(x)+\mathrm{i} \eta^{-1} \partial_{x} P \tag{SE}
\end{equation*}
$$

There are only two formal solutions, $P_{+}(x, \eta)$ and $P_{-}(x, \eta)=P_{+}\left(x^{*}, \eta\right)$
$P_{ \pm}(x, \eta)= \pm Q^{1 / 2}(x)+\frac{i}{4} \eta^{-1} \partial_{x} \log Q(x) \pm \eta^{-2}\left(\frac{5}{32} \frac{\left(\partial_{x} Q\right)^{2}}{Q^{5 / 2}}-\frac{1}{8} \frac{\partial_{x}^{2} Q}{Q^{3 / 2}}\right)+\cdots$
from which we recover all WKB formal solutions to (SE):

$$
\psi^{ \pm}=C(\eta) \exp \left(\mathrm{i} \eta\left(\frac{\partial}{\partial x}\right)^{-1} P_{ \pm}\right)=\tilde{C}(\eta) \mathrm{e}^{ \pm \mathrm{i} \eta A(x)} Q^{-1 / 4} \varphi^{ \pm}
$$

$\lambda=\mathcal{P} \mathrm{d} x$? Define " \hbar-extended momentum" $\mathcal{P}:=\frac{1}{2}\left(P_{+}-P_{-}\right)$.

$$
P_{ \pm}= \pm \mathcal{P}+\frac{1}{2}\left(P_{+}+P_{-}\right)= \pm \mathcal{P}-\frac{1}{2 i \eta} \partial_{x} \log \mathcal{P}
$$

Help to handle normalization choices:

The coefficients of $P_{ \pm}$are uniquely determined and holomorphic on $\dot{\mathbb{C}}_{2}$, their Puiseux expansions at the x_{j} 's and at $x_{\infty}=\infty$ do not contain the term $\left(x-x_{j}\right)^{-1}$.

Choice of normalization for $\psi^{ \pm}$
$=$ selection of termwise primitive w.r.t. x for $P_{ \pm}(x, \eta)$
$=$ selection of termwise primitive w.r.t. x for $\mathcal{P}(x, \eta)$

$$
\begin{aligned}
& \mathcal{P}=Q^{1 / 2}\left(1+\frac{1}{\mathrm{i} \eta} \mathcal{Y}\right), \quad \mathcal{Y}=-\frac{1}{\mathrm{i} \eta}\left(\frac{5}{32} \frac{\left(\partial_{x} Q\right)^{2}}{Q^{3}}-\frac{1}{8} \frac{\partial_{x}^{2} Q}{Q^{2}}\right)+\cdots \\
& \quad P_{ \pm}= \pm \mathcal{P}-\frac{1}{2 i \eta} \partial_{x} \log \mathcal{P}= \pm Q^{1 / 2}(x)-\frac{1}{2 i \eta} \partial_{x} \log \mathcal{P} \pm \frac{1}{\mathrm{i} \eta} Q^{1 / 2} \mathcal{Y}
\end{aligned}
$$

" x_{j}-normalized solution" for $j \in\{1, \ldots, M, \infty\}$:

$$
\psi_{j}^{ \pm}:=\mathrm{e}^{ \pm \mathrm{i} \eta A(x)} \mathcal{P}^{-1 / 2} \exp \left(\pm\left[\frac{\partial}{\partial x}\right]_{j}^{-1}\left(Q^{1 / 2} \mathcal{Y}\right)\right)
$$

where $\left[\frac{\partial}{\partial x}\right]_{j}^{-1}$ indicates the primitive whose Puiseux expansion at x_{j} does not contain any constant term (equivalently: the average of the primitives \int_{a}^{x} for a varying along the positive cycle around x_{j} in $\dot{\mathbb{C}}_{2}$).

Alternative notation: $\left[\frac{\partial}{\partial x}\right]_{j}^{-1} g(x)=\int_{X_{i j}}^{x} g\left(x^{\prime}\right) \mathrm{d} x^{\prime}$

$$
\begin{array}{r}
=\frac{1}{2} \int_{\gamma_{j, x}} g\left(x^{\prime}\right) \mathrm{d} x^{\prime} \text { if } g\left(x^{*}\right)=-g(x) . \\
\psi_{j}^{ \pm}=\mathrm{e}^{ \pm \mathrm{i} \eta A(x)} \mathcal{P}^{-1 / 2} \exp \left(\pm \mathrm{i} \eta \int_{X_{\mathrm{X}} \mathrm{j}}^{x}\left(\lambda-\lambda_{0}\right)\right), \quad A(x)=\int_{x_{0}}^{x} \lambda_{0} .
\end{array}
$$

Connection between different normalizations: "Voros coefficients"

$$
\begin{gathered}
\psi_{k}^{+}(x, \eta)=\mathrm{e}^{\Pi_{j, k}} \psi_{j}^{+}(x, \eta), \quad \psi_{k}^{-}(x, \eta)=\mathrm{e}^{-\Pi_{j, k}} \psi_{j}^{-}(x, \eta) \\
\Pi_{j, k}(\eta)=\int_{\bigotimes_{i j}}^{\otimes_{\chi_{k}}} Q^{1 / 2} \mathcal{Y}=\frac{\mathrm{i} \eta}{2} \int_{\gamma_{j, k}}\left(\lambda-\lambda_{0}\right) \text { quantum period } \\
\Pi_{j, k}(\eta)=\Pi_{k}(\eta)-\Pi_{j}(\eta), \quad \Pi_{j}(\eta)=\mathrm{i} \eta \int_{x_{0}}^{X_{j}}\left(\lambda-\lambda_{0}\right) .
\end{gathered}
$$

For the x_{∞}-normalization, in view of the decay at ∞ of the coefficients of $Q^{1 / 2} \mathcal{Y}$, one can replace $\left[\frac{\partial}{\partial x}\right]_{\infty}^{-1}$ with usual $\int_{x_{\infty}}^{x}$.

$$
\begin{aligned}
P_{ \pm}= \pm Q^{1 / 2}(x)-\frac{1}{4 i} \partial_{x} & \log Q(x)+\frac{1}{\mathrm{i} \eta} Q^{1 / 2} Y_{ \pm} \\
& \quad \text { defines } Y_{ \pm}=\eta^{-1} Y_{0}^{ \pm}(x)+\eta^{-2} Y_{1}^{ \pm}(x)+\cdots
\end{aligned}
$$

One gets $\mathcal{Y}=\frac{1}{2}\left(Y_{+}-Y_{-}\right)$and

$$
\psi_{\infty}^{ \pm}=\mathrm{e}^{ \pm \mathrm{i} \eta A(x)} Q^{-1 / 4} \varphi_{\infty}^{ \pm}, \quad \varphi_{\infty}^{ \pm}=\exp \int_{\infty}^{x} Q^{1 / 2} Y_{ \pm}
$$

φ_{∞}^{+}and φ_{∞}^{-}are characterized by the vanishing at ∞ of all coefficients except the $0^{\text {th }}$ one.

$$
Y_{ \pm}=Q^{-1 / 2} \partial_{x} \log \varphi_{\infty}^{ \pm}
$$

Why are $Y_{ \pm}$and the $\varphi_{j}^{ \pm}$'s resurgent? Why is $\varphi_{\infty}^{ \pm}$resurgent?
We define a vector field ∂ on $\dot{\mathbb{C}}_{2}$ by the formula

$$
\partial:=Q(x)^{-1 / 2} \frac{\partial}{\partial x}
$$

(dual to the square root of the quadratic differential $Q(x) \mathrm{d} x^{2}$).
This way, under the change $\psi^{ \pm}=\mathrm{e}^{ \pm i \eta A(x)} Q^{-1 / 4} \varphi^{ \pm}$, (SE) becomes

$$
\begin{equation*}
\partial^{2} \varphi^{ \pm} \pm 2 \mathrm{i} \eta \partial \varphi^{ \pm}=K \varphi^{ \pm} \tag{SE'}
\end{equation*}
$$

with notation $H:=\partial \log Q^{1 / 2}=\frac{1}{2} \frac{\partial_{X} Q}{Q^{3 / 2}}$ and $K:=\frac{1}{2} \partial H+\frac{1}{4} H^{2}$.
Correspondingly, under $P_{ \pm}= \pm Q^{1 / 2}(x)-\frac{1}{4 i \eta} \partial_{x} \log Q(x)+\frac{1}{i \eta} Q^{1 / 2} Y_{ \pm}$,

$$
\begin{equation*}
\partial Y_{ \pm} \pm 2 \mathrm{i} \eta Y_{ \pm}=-Y_{ \pm}^{2}+K \tag{RE'}
\end{equation*}
$$

and $Y_{ \pm}=\partial \log \varphi^{ \pm}$. The " x_{∞}-normalized solution" is $\varphi_{\infty}^{ \pm}=\exp \left(\partial_{\infty}^{-1} Y_{ \pm}\right)$, where $\bar{\partial}_{\infty}^{-1}$ denotes the " x_{∞}-based" right inverse to ∂.

Compute $\varphi^{+}=\varphi_{\infty}^{+}$and $\chi^{+}=\partial \varphi_{\infty}^{+}$(note that $Y_{+}=\frac{\chi^{+}}{\psi^{+}}$)
as well as $\varphi^{-}=\varphi_{\infty}^{-}$and $\chi^{-}=(\partial-2 \mathrm{i} \eta) \varphi_{\infty}^{-}$(then $\left.Y_{-}=\frac{\chi^{-}}{\psi^{-}}+2 \mathrm{i} \eta\right)$
by Neumann series:
$\partial^{2} \varphi^{+}+2 \mathrm{i} \eta \partial \varphi^{+}=K \varphi^{+} \Leftrightarrow\left|\begin{array}{cc}\partial \varphi^{+} & =\chi^{+} \\ (\partial+2 \mathrm{i} \eta) \chi^{+} & =K \varphi^{+}\end{array} \Leftrightarrow\right| \begin{aligned} & \varphi^{+}=1+\partial_{\infty}^{-1} \chi^{+} \\ & \chi^{+}=(\partial+2 \mathrm{i} \eta)^{-1} \mathcal{K} \varphi^{+}\end{aligned}$
with operators acting on $\mathcal{O}\left(\dot{\mathbb{C}}_{2}\right)\left[\left[\eta^{-1}\right]\right]: \mathcal{K}=$ multiplication operator and

$$
\begin{gathered}
(\partial+2 \mathrm{i} \eta)^{-1}=\sum_{k \geqslant 0}(-1)^{k}(2 \mathrm{i} \eta)^{-k-1} \partial^{k} . \\
\varphi^{+}=\sum_{n \geqslant 0}\left(\partial_{\infty}^{-1}(\partial+2 \mathrm{i} \eta)^{-1} \mathcal{K}\right)^{n} 1, \quad \chi^{+}=\sum_{n \geqslant 0}(\partial+2 \mathrm{i} \eta)^{-1} \mathcal{K}\left(\partial_{\infty}^{-1}(\partial+2 \mathrm{i} \eta)^{-1} \mathcal{K}\right)^{n} 1
\end{gathered}
$$

Similarly $\varphi^{-}=-2 \mathrm{i} \eta \sum(\partial-2 \mathrm{i} \eta)^{-1}\left(\partial_{\infty}^{-1} \mathcal{K}(\partial-2 \mathrm{i} \eta)^{-1}\right)^{n} 1$

$$
\text { and } \chi^{-}=-2 \mathrm{i} \eta \sum\left(\partial_{\infty}^{-1} \mathcal{K}(\partial+2 \mathrm{i} \eta)^{-1}\right)^{n} 1
$$

A series of formal series in η^{-1}, each of which is resurgent.

Counterpart of $(\partial+2 \mathrm{i} \varepsilon \eta)^{-1}$ in the Borel plane: when applied to $g=g(x)$ or $G(x, \eta)=\sum g_{k}(x) \eta^{-k-1}$, we find

$$
\begin{array}{r}
\mathcal{B}\left((\partial+2 \mathrm{i} \varepsilon \eta)^{-1} g\right)=\frac{1}{2 i \varepsilon} \mathcal{B}\left(\sum\left(\frac{-1}{2 \mathrm{i} \varepsilon}\right)^{k} \eta^{-k-1} \partial^{k} g\right)=\frac{1}{2 \mathrm{i} \varepsilon} \sum \frac{1}{k!}\left(\frac{-\xi}{2 \mathrm{i} \varepsilon}\right)^{k} \partial^{k} g \\
=\frac{1}{2 i \varepsilon} \exp \left(\frac{-\xi}{2 i \varepsilon} \partial\right) g=g\left(\mathcal{T}^{-\xi / 2 i \varepsilon}(x)\right),
\end{array}
$$

where $t \mapsto \mathcal{T}^{t}$ is the time- t flow map of ∂.

$$
\begin{aligned}
& \mathcal{B}\left((\partial+2 \mathrm{i} \varepsilon \eta)^{-1} G\right)=\frac{1}{2 \mathrm{i} \varepsilon} \sum \frac{1}{k!}\left(\frac{-\xi}{2 \mathrm{i} \varepsilon}\right)^{k} * \partial^{k} \hat{G}(x, \xi) \\
&=\frac{1}{2 i \varepsilon} \int_{0}^{\xi} \exp \left(\frac{-\xi^{\prime}}{2 \mathrm{i} \varepsilon} \partial\right) \hat{G}\left(x, \xi-\xi^{\prime}\right) \mathrm{d} \xi^{\prime} \\
&=\frac{1}{2 i \varepsilon} \int_{0}^{\xi} \hat{G}\left(\mathcal{T}^{-\xi^{\prime} / 2 i \varepsilon}(x), \xi-\xi^{\prime}\right) \mathrm{d} \xi^{\prime} .
\end{aligned}
$$

CLAIM: $\hat{\varphi}^{ \pm}$and $\hat{\chi}^{ \pm}$are endlessly continuable, with only possible singularities located at $\xi=\omega(x)$ determined by

$$
\mathcal{T}^{\mp \omega(x) / 2 \mathrm{i}}(x) \in\left\{x_{1}, \ldots, x_{M}\right\} .
$$

Idea: The vector field $\partial=Q(x)^{-1 / 2} \frac{\partial}{\partial x}$ is straightened by the Liouville transformation $z=\int_{x_{0}}^{x} Q^{1 / 2}\left(x^{\prime}\right) \mathrm{d} x^{\prime}=A(x) \Leftrightarrow x=x(z)=\mathcal{T}^{z}\left(x_{0}\right)$.

$$
\mathcal{T}^{t}(x(z))=x(z+t)
$$

$z \mapsto \mathcal{T}^{z}\left(x_{0}\right)$ has periodic-multivalued (!) analytic continuation, singular at $\alpha_{j}:=\int_{\Gamma_{j}} \lambda_{0}$ and at the replicas obtained by addition of classical periods $2\left(\alpha_{k}-\alpha_{j}\right)$. The function K is meromorphic on \mathbb{C}, with poles at the x_{j} 's, hence in coordinate z it has endless analytic continuation with singularities at $\tilde{\alpha} \in\left\{\alpha_{j}+\sum_{k} 2 m_{k}\left(\alpha_{k}-\alpha_{j}\right)\right\}$: all the possible values of A at the TPs. We get $z \mp \omega / 2 \mathrm{i}=\tilde{\alpha}$, i.e.

$$
\omega(x)= \pm 2 \mathrm{i}(A(x)-\tilde{\alpha}) .
$$

The condition $\mathcal{T}^{-\omega(x) / 2 \mathrm{i}}(x) \in\left\{x_{1}, \ldots, x_{M}\right\}$ for $\hat{\varphi}_{\infty}^{+}$comes from

$$
\varphi_{\infty}^{+}=\sum\left(\partial_{\infty}^{-1}(\partial+2 \mathrm{i} \eta)^{-1} \mathcal{K}\right)^{n} 1
$$

involving $\mathcal{B}\left((\partial+2 i \eta)^{-1} g\right)=g\left(\mathcal{T}^{-\xi / 2 \mathrm{i}}(x)\right)$ and $\mathcal{B}\left((\partial+2 i \eta)^{-1} G\right)=\ldots$
Similarly $\hat{\varphi}_{\infty}^{-} \leadsto \triangleright \mathcal{B}(\partial-2 i \eta)^{-1} \leadsto \triangleright \mathcal{T}^{\omega(x) / 2 \mathrm{i}}(x) \in\left\{x_{1}, \ldots, x_{M}\right\}$
Next question: What are $\Delta_{2 \mathrm{i}\left(A-\alpha_{j}\right)} \varphi^{+}$and $\Delta_{-2 \mathrm{i}\left(A-\alpha_{j}\right)} \varphi^{-}$?

$$
\begin{gathered}
\Delta_{2 \mathrm{i}\left(A-\alpha_{j}\right)} \varphi_{j}^{+}=S_{j} \varphi_{j}^{-}, \Delta_{-2 \mathrm{i}\left(A-\alpha_{j}\right)} \varphi_{j}^{-}=S_{j} \varphi_{j}^{+} \text {with } S_{j}=-2 \mathrm{i} \sin \left(\frac{\pi}{2} \frac{m_{j}}{m_{j}+2}\right) . \\
\varphi_{\infty}^{+}(x, \eta)=\mathrm{e}^{\Pi_{j, \infty}(\eta)} \varphi_{j}^{+}(x, \eta), \quad \varphi_{\infty}^{-}(x, \eta)=\mathrm{e}^{-\Pi_{j, \infty}(\eta)} \varphi_{j}^{-}(x, \eta) \\
\Delta_{2 \mathrm{i}\left(A-\alpha_{j}\right)} \varphi_{\infty}^{+}=S_{j} \mathrm{e}^{2 \Pi_{j, \infty}} \varphi_{\infty}^{-}, \quad \Delta_{2 \mathrm{i}\left(A-\alpha_{j}\right)} \varphi_{\infty}^{-}=S_{j} \mathrm{e}^{-2 \Pi_{j, \infty}} \varphi_{\infty}^{+} .
\end{gathered}
$$

One also gets formulas for $\Delta_{ \pm 2 i\left(A-\alpha_{j}\right)} Y_{ \pm \cdots}$
Next question: $\Delta_{\omega} \mathrm{e}^{ \pm 2 \Pi_{j, \infty}}=$?
$\omega=2 \mathrm{i}\left(\alpha_{k}-\alpha_{\ell}\right) \ldots$ DDP formula...
We stop our comments on resurgence here, to move on to something else.

We obtained representations of $\varphi_{\infty}^{ \pm}$and $\chi^{ \pm}$as series of elementary non-trivial resurgent series. Can we do the same for $Y_{+}=\frac{\chi^{+}}{\varphi^{+}}$and

$$
Y_{-}=\frac{\chi^{-}}{\varphi^{-}}+2 i \eta ?
$$

$$
\begin{array}{lll}
\varphi^{+}= & \sum\left(\partial_{\infty}^{-1}(\partial+2 \mathrm{i} \eta)^{-1} \mathcal{K}\right)^{n} 1 & =\sum M^{(-+)^{n}} \\
\chi^{+}= & (\partial+2 \mathrm{i} \eta)^{-1} \mathcal{K} \sum\left(\partial_{\infty}^{-1}(\partial+2 \mathrm{i} \eta)^{-1} \mathcal{K}\right)^{n} 1 & =\sum M^{+(-+)^{n}} \\
\varphi^{-}=-2 \mathrm{i} \eta(\partial-2 \mathrm{i} \eta)^{-1} \sum\left(\partial_{\infty}^{-1} \mathcal{K}(\partial-2 \mathrm{i} \eta)^{-1}\right)^{n} 1 & =\sum M^{-(+-)^{n}} \\
\chi^{-}= & -2 \mathrm{i} \eta \sum\left(\partial_{\infty}^{-1} \mathcal{K}(\partial+2 \mathrm{i} \eta)^{-1}\right)^{n} 1 & =\sum M^{(+-)^{n}}
\end{array}
$$

with

$$
M^{\varnothing}:=1 \text { and } M^{\varepsilon_{1} \cdots \varepsilon_{r}}:=\left(\partial+2 \mathrm{i} \eta\left(\varepsilon_{1}+\cdots+\varepsilon_{r}\right)\right)_{\infty}^{-1}\left(b_{\varepsilon_{1}} M^{\varepsilon_{2} \cdots \varepsilon_{r}}\right)
$$

where $b_{+}=K$ and $b_{-}=1$. This defines a "mould" M.
Family of series indexed by words $\varepsilon=\varepsilon_{1} \cdots \varepsilon_{r}$ on the alphabet $\{+,-\}$.
Here, only a slice of mould M : only alternate words...

$$
M^{\varnothing}:=1 \text { and } M^{\varepsilon_{1} \cdots \varepsilon_{r}}:=\left(\partial+2 \mathrm{i} \eta\left(\varepsilon_{1}+\cdots+\varepsilon_{r}\right)\right)_{\infty}^{-1}\left(b_{\varepsilon_{1}} M^{\varepsilon_{2} \cdots \varepsilon_{r}}\right)
$$

where $b_{+}=1$ and $b_{-}=K$.
$\varphi^{+}=\sum M^{(-+)^{n}}, \chi^{+}=\sum M^{+(-+)^{n}}, \varphi^{-}=\sum M^{-(+-)^{n}}, \chi^{-}=\sum M^{(+-)^{n}}$.
CLAIM: Define $B_{+}=\frac{\partial}{\partial y}$ and $B_{-}=-y^{2} \frac{\partial}{\partial y}$. Then

$$
Y_{+}=\sum \beta_{\varepsilon_{1} \cdots \varepsilon_{r}}^{+} M^{\varepsilon_{1} \cdots \varepsilon_{r}}, \quad Y_{-}=\sum \beta_{\varepsilon_{1} \cdots \varepsilon_{r}}^{-} M^{\varepsilon_{1} \cdots \varepsilon_{r}},
$$

with $\beta_{\varepsilon_{1} \cdots \varepsilon_{r}}^{+}=B_{\varepsilon_{r}} \cdots B_{\varepsilon_{1}} y$ if $\varepsilon_{1}+\cdots+\varepsilon_{r}=1$ and 0 else, and $\beta_{\varepsilon_{1} \cdots \varepsilon_{r}}^{-}=(-1)^{r+1} \beta_{\left(-\varepsilon_{1}\right) \cdots\left(-\varepsilon_{r}\right)}^{+}$(zero unless $\varepsilon_{1}+\cdots+\varepsilon_{r}=-1$).
$B_{\varepsilon_{r}} \cdots B_{\varepsilon_{1}}$ is homogeneous of degree $-\left(\varepsilon_{1}+\cdots+\varepsilon_{r}\right)$, hence $\beta_{\varepsilon_{1} \cdots \varepsilon_{r}}^{+} \in \mathbb{Z}$

$$
\beta_{+}^{+}=1, \beta_{++-}^{+}=-2, \beta_{-++}^{+}=\beta_{+-+}^{+}=0, \text { etc. }
$$

Remark: one can check $\sum \beta_{\left(-\varepsilon_{1}\right) \cdots\left(-\varepsilon_{r}\right)}^{+} M^{\varepsilon_{1} \cdots \varepsilon_{r}}=\frac{1}{-2 i \eta+Y_{-}}$.

Explanation: The key point is a certain family of quadratic relations.
An R-valued mould on \mathscr{A} is just the collection of values

$$
V^{a_{1} \cdots a_{n}}=\mathcal{V}_{n}\left(a_{1}, \ldots, a_{n}\right)
$$

of a sequence of functions $\mathcal{V}_{0}, \mathcal{V}_{1}, \ldots$, with $\mathcal{V}_{n}: \mathscr{A}^{n} \rightarrow R$.
Quadratic relations called "symmetrality": $\mathcal{V}_{0}=1_{R}$ and, for all p, q,

$$
\mathcal{V}_{p}\left(b_{1}, \ldots, b_{p}\right) \mathcal{V}_{q}\left(c_{1}, \ldots, c_{q}\right)=\sum_{\substack{I \subset\{1, \ldots, n\} \\|I|=p, J:=\{1, \ldots, n\} \backslash I}} \mathcal{V}_{\substack{\left.\uparrow \\ \text { the } n \text {-tuple a such that } \\ a_{\{1\}}=b \text { and } a_{\{J\}}=c \\ \text { (with } n:=p+q\right)}}
$$

Example: $\mathcal{V}_{n}\left(a_{1}, \ldots, a_{n}\right)=\frac{1}{\left(a_{1}+\cdots+a_{2}\right)\left(a_{2}+\cdots+a_{r}\right) \cdots a_{r}}$ with $\mathscr{A}=\mathbb{Z}_{>0}$ (or...)
Equivalently: $V^{\varnothing}=1_{R}$ and, for all words $b, c, \quad V^{b} V^{c}=\sum_{a \in \operatorname{shuffle}(b, c)} V^{a}$.
Our mould M on $\mathscr{A}=\{+,-\}$ is symmetral (easy proof by induction).

What symmetrality is good for... (SE) was written for φ^{+}in the form of a system

$$
\left\lvert\, \begin{aligned}
& \partial \varphi=\chi \\
& \partial \chi=-2 \mathrm{i} \eta \chi+K \varphi
\end{aligned}\right.
$$

Equivalently, consider $L:=\partial-2 i \eta y_{2} \frac{\partial}{\partial y_{2}}+b_{+} y_{1} \frac{\partial}{\partial y_{2}}+b_{-} y_{2} \frac{\partial}{\partial y_{1}}$ operator acting in $R\left[\left[y_{1}, y_{2}\right]\right]$, where $R:=\mathcal{O}\left(\dot{\mathbb{C}}_{2}\right)\left[\left[\eta^{-1}\right]\right]$.

Let $L_{0}:=\partial-2 i \eta y_{2} \frac{\partial}{\partial y_{2}}, \bar{B}_{+}:=y_{1} \frac{\partial}{\partial y_{2}}, \bar{B}_{-}:=y_{2} \frac{\partial}{\partial y_{1}}$, so

$$
L=L_{0}+b_{+} \bar{B}_{+}+b_{-} \bar{B}_{-} .
$$

All these are derivations. Consider the operator
$\Theta:=\sum M^{\varepsilon_{1} \cdots \varepsilon_{r}} \bar{B}_{\varepsilon_{r}} \cdots \bar{B}_{\varepsilon_{1}}$. The inductive definition of M says that

$$
\Theta L=L_{0} \Theta .
$$

Because M is symmetral, Θ is an automorphism, thus $\Theta f=f \circ \theta$ with $\theta\left(y_{1}, y_{2}\right)=\left(\Theta y_{1}, \Theta y_{2}\right)$. In fact

$$
\theta\left(y_{1}, y_{2}\right)=\left(y_{1} \varphi^{+}+y_{2} \varphi^{-}, y_{1} \chi^{+}+y_{2} \chi^{-}\right) .
$$

$$
\begin{aligned}
& \bar{B}_{+}=y_{1} \frac{\partial}{\partial y_{2}}, \quad \bar{B}_{-}:=y_{2} \frac{\partial}{\partial y_{1}}, \quad \Theta:=\sum M^{\varepsilon_{1} \cdots \varepsilon_{r}} \bar{B}_{\varepsilon_{r}} \cdots \bar{B}_{\varepsilon_{1}} \\
& \Theta y_{1}=y_{1} \varphi^{+}+y_{2} \varphi^{-}, \quad \Theta y_{2}=y_{1} \chi^{+}+y_{2} \chi^{-} .
\end{aligned}
$$

Now the general solution to (RE^{\prime}) is

$$
\begin{gathered}
Y=\frac{\sigma_{+} \chi^{+}+\sigma_{-} \mathrm{e}^{-2 \mathrm{i} \eta} \chi^{-}}{\sigma_{+} \varphi^{+}+\sigma_{-} \mathrm{e}^{-2 \mathrm{i} \eta} \varphi^{-}}=\frac{\chi^{+}+\sigma \mathrm{e}^{-2 \mathrm{i} \eta} \chi^{-}}{\varphi^{+}+\sigma \mathrm{e}^{-2 \mathrm{i} \eta} \varphi^{-}}=\theta_{\mathrm{RE}}\left(\sigma \mathrm{e}^{-2 \mathrm{i} \eta}\right), \quad \sigma=\frac{\sigma_{-}}{\sigma_{+}} \\
\theta_{\mathrm{RE}}(y)=\frac{\chi^{+}+y \chi^{-}}{\varphi^{+}+y \varphi^{-}}, \quad y=\frac{y_{2}}{y_{1}} .
\end{gathered}
$$

Because Θ is an automorphism (symmetrality),

$$
\theta_{\operatorname{RE}}(y)=\frac{\chi^{+}+\frac{y_{2}}{y_{1}} \chi^{-}}{\varphi^{+}+\frac{y_{2}}{y_{1}} \varphi^{-}}=\frac{\Theta y_{2}}{\Theta y_{1}}=\Theta\left(\frac{y_{2}}{y_{1}}\right)=\sum M^{\varepsilon_{1} \cdots \varepsilon_{r}} \bar{B}_{\varepsilon_{r}} \cdots \bar{B}_{\varepsilon_{1}}\left(\frac{y_{2}}{y_{1}}\right) .
$$

We get $\bar{B}_{+}\left(\frac{y_{2}}{y_{1}}\right)=1=B_{+} y$ and $\bar{B}_{-}\left(\frac{y_{2}}{y_{1}}\right)=-\left(\frac{y_{2}}{y_{1}}\right)^{2}=B_{-} y$, and since $B_{\varepsilon_{r}} \cdots B_{\varepsilon_{1}} y=\beta_{\varepsilon} y^{-\left(\varepsilon_{1}+\cdots+\varepsilon_{r}\right)+1}$, we find

$$
Y_{+}=\theta_{\mathrm{RE}}(0)=\sum M^{\varepsilon_{1} \cdots \varepsilon_{r}} \beta_{\varepsilon}^{+}
$$

Food for thought... $Y_{ \pm}=\sum \beta_{\varepsilon}^{ \pm} M^{\varepsilon}$. Recursive definition of $M \leadsto \triangleright$

$$
\begin{aligned}
& M^{\varepsilon}=\left(\partial+2 i \eta\left(\varepsilon_{1}+\cdots+\varepsilon_{r}\right)\right)^{-1}(\\
& b_{\varepsilon_{1}}\left(\partial+2 i \eta\left(\varepsilon_{2}+\right.\right.\left.\left.\cdots+\varepsilon_{r}\right)\right)^{-1}(\\
&\left.\left.\cdots b_{\varepsilon_{r-1}}\left(\partial+2 i \eta \varepsilon_{r}\right)^{-1} b_{\varepsilon_{r}}\right) \cdots\right)
\end{aligned}
$$

using ∂_{∞}^{-1} whenever a suffix $\varepsilon_{j} \cdots \varepsilon_{r}$ of ε has vanishing sum.
"Resonance level" : $\ell(\varepsilon)=n$ number of zero-sum suffixes $\leadsto M^{\varepsilon}$ involves an n-fold integration from ∞.

Group together the words with the same resonance level: $W_{n}^{ \pm}:=\sum_{\ell(\varepsilon)=n} \beta_{\varepsilon}^{ \pm} M^{\varepsilon}$ is the " n-point component" in $Y_{ \pm}$

$$
Y_{ \pm}=\sum_{n} W_{n}^{ \pm} \leadsto \triangleright W K B \text { solution } \psi_{\infty}^{ \pm}=\mathrm{e}^{ \pm i \eta A(x)} Q^{-1 / 4} \mathrm{e}^{\partial_{\infty}^{-1} Y_{ \pm}}
$$

THANKS!

