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1. Introduction

1. Introduction

This talk is motivated by questions concerning the Davey Stewartson II
equation and my own knowledge is very limited, so I will only speak about
two problems, where I have been involved. In the DSII theory appears the
following problem on C ' R2:{

∂φ1 = q
2e

kz−kzφ2,

∂φ2 = q
2e

kz−kzφ1,
(1)

φ1(z) = 1 + o(1), φ2(z) = o(1), |z | → ∞. (2)

Here k ∈ C and q is a potential which is small near infinity,

∂ = ∂z =
1

2

(
∂x +

1

i
∂y

)
, z = x + iy .
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1. Introduction

Existence and uniqueness have been established by P. Perry [Pe16] A.
Nachman, I. Regev, D. Tataru [NaReTa17]. Here we focus the asymptotic
behaviour when |k | → ∞.

Plan:

The ∂ operator with polynomial weights; Hörmander - Carleman
approach.

The convergence of a perturbation series solution when |k | → ∞,
provided q = O(〈z〉−2) is smooth.

The (would be) leading correction to φ2 when q = 1Ω, Ω b C is
strictly convex, ∂Ω ∈ C∞.

Some numerical illustrations.
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2. ∂ on C with polynomial weights.

2. ∂ on C with polynomial weights.

This is very classical (Hörmander–Carleman). Put

Φ(z) := ln〈z〉2, 〈z〉 := (1 + zz)1/2.

Let ε > 0 and put

Pε := 〈·〉−ε ◦ ∂ ◦ 〈·〉ε = ∂ + ε∂Φ/2,

P∗ε = 〈·〉ε ◦ (−∂) ◦ 〈·〉−ε = −∂ + ε∂Φ/2,

[Pε,P
∗
ε ] = ε∂∂Φ = ε〈z〉−4 > 0.

PεP
∗
ε ≥ PεP

∗
ε − P∗ε Pε =

ε

〈·〉4
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2. ∂ on C with polynomial weights.

This implies:

An apriori estimate for P∗ε ,

An existence result for Pε,

An existence result for ∂:

Proposition

Let ε > 0. For every v ∈ 〈·〉ε−2L2, there exists u ∈ 〈·〉εL2 such that

∂u = v and ‖〈·〉−εu‖ ≤ ε−1/2‖〈·〉2−εv‖.

Proposition

When 0 < ε ≤ 1 the solution is unique and given by

u(z) =
1

π

∫
v(w)

z − w
L(dw), L(dw) ' d<w ∧ d=w =

dw ∧ dw

2i
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2. ∂ on C with polynomial weights.

Semi-classical point of view

Let 0 < h� 1 and consider h∂u = v , i.e. ∂u = v/h. In addition to
loosing two powers of 〈z〉, we then also loose one power of h. However, if
χ ∈ C∞0 (R2) is equal to 1 near 0, then from h∂u = v , we get
h∂(1− χ(hD))u = (1− χ(hD))v , hD = hDx ,y . The symbol
iζ := (i/2)(ξ + iη) of ∂ is 6= 0 on supp (1− χ(ξ, η)) and one can show
that

‖〈·〉2−ε(1− χ(hD))u‖ ≤ O(1)‖〈·〉2−ε(1− χ(hD))v‖.
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3. Application to the ∂, ∂ system

3. Application to the ∂, ∂ system

Let q ∈ C∞(C) with

∂αx ∂
β
y q = O(〈z〉−2), α, β ∈ N. (3)

Let k = kx + iky ∈ C with |k| � 1 and write

kz − kz =
i

h
〈(x , y), ω〉R2 , h =

1

|k|
, ω = 2i

k

|k|
.

Writing τ̂ωu = e
i
h
〈(x ,y),ω〉u (translation by ω on the h Fourier transform

side), the system (1) becomes{
h∂φ1 − τ̂−ωh q

2φ2 = 0,

h∂φ2 − τ̂ωh q
2φ1 = 0

(4)

Trying φ0
1 = 1, φ0

2 = 0 gives{
h∂φ0

1 − τ̂−ωh
q
2φ

0
2 = 0,

h∂φ0
2 − τ̂ωh

q
2φ

0
1 = −τ̂ω hq

2 φ
0
1

(5)
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3. Application to the ∂, ∂ system

and to correct, we need to solve the inhomogeneous system{
h∂φ1 − τ̂−ωh q

2φ2 = ψ1,

h∂φ2 − τ̂ωh q
2φ1 = ψ2

(6)

in (〈·〉εL2)2 for (ψ1, ψ2) ∈ (〈·〉ε−2L2)2. For the right hand side in (5) to
be in the right space, we add an assumption on q:

q ∈ 〈·〉ε0−2L2 for some ε0 ∈]0, 1]. (7)

Let u = Ev , ũ = Fv be the unique solutions in 〈·〉ε0L2 of the equations
h∂u = v and h∂ũ = v , when v ∈ 〈·〉ε0−2L2. Applying E and F to the two
equations in (6) leads to the equivalent system

(1−K)

(
φ1

φ2

)
=

(
Eψ1

Fψ2

)
, (8)

K :=

(
0 E τ̂−ω

hq
2 ,

F τ̂ω
hq
2 0

)
=:

(
0 A
B 0

)
. (9)
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3. Application to the ∂, ∂ system

We see that K = O(1) : (〈·〉ε0L2)2 → (〈·〉ε0L2)2 which is not enough to
invert 1−K without an extra smallness assumption on q.
However K2 is much smaller, cf. Lemma 3.2 in [Pe16]:

Proposition

K2 = O(h) : (〈·〉ε0L2)2 → (〈·〉ε0L2)2.

It follows that 1−K is bijective with inverse
(1 +K)(1−K2)−1 = (1−K2)−1(1 +K) = 1 +K +O(h).
Proof of the proposition.

K2 =

(
AB 0
0 BA

)
,

AB =
h2

4
E τ̂−ωqF τ̂ωq = I + II + III,
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3. Application to the ∂, ∂ system

Let χ be as before and put χw = χ(hD).

I =
h2

4
E τ̂−ωq(1− χw )F τ̂ωq = O(h),

II =
h2

4
E (1− χw )τ̂−ωqχ

wF τ̂ωq = O(h),

III =
h2

4
Eχw τ̂−ωqχ

wF τ̂ωq.

At first sight we only have III = O(1) but χw τ̂−ωqχ
w = O(h∞) by

pseudodifferential calculus, so III = O(h∞). �
NB: For I, II we only use that q ∈ 〈·〉−2L∞. If ∀ ε > 0, ∃q̃ satisfying (3)
such that ‖〈·〉2(q − q̃)‖L∞ ≤ ε, then III = o(1) and hence K2 = o(1)
when h→∞, allowing to invert 1−K and 1−K2.
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3. Application to the ∂, ∂ system

Returning to (4), (5), cf. (8), we get

(1−K)

(
φ1 − φ0

1

φ2 − φ0
2

)
=

(
0

F τ̂ω
(
hq
2

)) = O(1) in 〈·〉ε0L2,

(actually O(h) if we use the smoothness of q) recalling that φ0
1 = 1,(

φ1 − 1
φ2

)
= (1 +K +O(h))

(
0

F τ̂ω
(
hq
2

)) .
Thus,

φ1 − 1 = E τ̂−ω
hq

2
F τ̂ω

(
hq

2

)
+O(h)︸ ︷︷ ︸
O(h2)

in 〈·〉ε0L2,

φ2 = F τ̂ω

(
hq

2

)
+O(h)︸ ︷︷ ︸
O(h2)

in 〈·〉ε0L2. (10)
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4. The leading correction term when q = 1Ω.

4. The leading correction term when q = 1Ω.

One can give weaker regularity assumptions for q that still imply the
convergence of the Neumann series (preliminary result) but this
convergence is still an open problem (to us) when q = 1Ω, Ω b C simply
connected domain with smooth boundary. In this case we study the
leading term in (10):

f̃ (z , k) :=
1

2π

∫
Ω

1

z − w
ekw−kwL(dw). (11)

Equivalently we can study

f (z , k) =

∫∫
Ω

ekw−kw

z − w

dw ∧ dw

2i
. (12)
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4. The leading correction term when q = 1Ω.

We have

dw

(
1

k(w − z)
ekw−kwdw

)
=

(
1

z − w
+
πδz(w)

k

)
ekw−kwdw ∧ dw .

Integration over Ω and Stokes’ formula give

f (z , k) =
1

2ik

∫
∂Ω

1

w − z
ekw−kwdw −

{
0 if z 6∈ Ω
π
k
ekz−kz if z ∈ Ω.

(13)

Assume

Ω is strictly convex and ∂Ω is real analytic. (14)

Parametrize: t 7→ γ(t) ∈ ∂Ω, |γ̇(t)| = 1 with the positive orientation.
Write

ekw−kw = e iu0(w ,κ) on ∂Ω, u0(w , κ) = <(wκ) = 〈w , κ〉R2 , κ = 2ik.
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4. The leading correction term when q = 1Ω.

With u0(t) ' u(γ(t), κ), we have

u̇0(t) = 〈γ̇(t), κ〉, ü0(t) = 〈γ̈(t), κ〉

Let

w+ = w+(κ) ∈ ∂Ω be the North pole where the exterior unit normal
is equal to κ/|κ|,
w− be the South pole defined the same way in terms of the interior
unit normal.

γ+ be the open boundary segment from the South pole to the North
pole and γ− the one from the North to the South.

We have

±∂tu0 > 0 on γ±, ∂tu0(w±) = 0, ±∂2
t u0(w±) < 0
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4. The leading correction term when q = 1Ω.

Let u(w , κ) be the holomorphic extension of u0 to neigh (∂Ω,C).
Then =u > 0 in neigh (γ+) ∩ Ω and in neigh (γ−) ∩ (C \ Ω).
Assume first that

z 6∈ neigh ({w+,w−}). (15)

We then would like to replace the contour ∂Ω in the integral in (13) by a
new contour obtained by deforming γ+ inwards (into Ω) and γ− outwards
(towards the exterior of Ω). Such a small deformation can be chosen so
that Γ also avoids a neighborhood of z , thanks to the assumption (15). If
the deformation crosses z , then a residue term has to be added. The
integral along Γ can be expanded with stationary phase – steepest descent:

IΓ(k) : =
1

2ik

∫
Γ

1

w − z
e iu(w ,κ)dw

= C+|k |−
3
2 e i〈w+,κ〉 + C−|k |−

3
2 e i〈w−,κ〉 +O(|k|−

5
2 ).

(16)

C± = C±(w±) are explicit constants.
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4. The leading correction term when q = 1Ω.

Taking into account the residue terms which may appear at the
deformation, we get from (13) for z ∈ neigh (γ+ ∪ γ−) when (15) holds:

f (z , k) = IΓ(z , k)


+π

k
e iu(z,κ) −π

k
e i〈z,κ〉, z ∈ neigh (γ+) ∩ Ω,

+0 +0, z ∈ neigh (γ+) ∩ (C \ Ω),

+0 −π
k
e i〈z,κ〉, z ∈ neigh (γ−) ∩ Ω,

−π
k
e iu(z,κ) +0, z ∈ neigh (γ−) ∩ (C \ Ω).

(17)

This result, including (16), still makes sense when the distance from z to
the poles is small but � |k |−1/2.

When the distance is even smaller we still have asymptotics, now in terms
of the special function

G (z) :=

∫
R

1

z − w
e−w

2/2dw . (18)
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5. Numerics

5. Numerics

Φ2 = φ2, Φ̃2 = f̃ (leading term in (10)).

Figure: The solution Φ2 for the characteristic function of the disk multiplied by k
for k = 10, 100, 1000 from left to right.
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5. Numerics

Figure: Difference between the solution Φ2 for the characteristic function of the
disk and Φ̃2 for k = 10, 100, 1000 from left to right.
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5. Numerics

ΦI
2,i(e): approximation of f̃ in the interior (exterior) without the residue

term and without IΓ.

Figure: Difference between the solution Φ2 for the characteristic function of the
disk and ΦI

2,i in the upper row and the difference between Φ2 and ΦI
2,e in the

lower row, both for k = 10, 100, 1000 from left to right.
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5. Numerics

ΦII
2,i also with the residue term. Only the interior case (the other one looks

very similar)

Figure: Difference between the solution Φ2 for the characteristic function of the
disk and ΦII

2,i from (??) at the disk for k = 10, 100, 1000 from left to right.

We get a further moderate improvement by implementing the special
function approach near the poles.
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