On a 0,0 system with a large parameter

Johannes Sjostrand
IMB, Université de Bourgogne

Joint work in progress with C. Klein and N. Stoilov,
Classical and quantum integrability
IMB, Dijon, 2—6 juin, 2019

1/21



1. Introduction

1. Introduction

This talk is motivated by questions concerning the Davey Stewartson Il
equation and my own knowledge is very limited, so | will only speak about
two problems, where | have been involved. In the DSII theory appears the
following problem on C ~ R?:

Oy = %GE_"Z@,
{&bz = Jekehe gy, )
$1(z) =1+ o(1), ¢2(2) = o(1), |z| — 0. (2)

Here k € C and g is a potential which is small near infinity,

82@22((&—#1@,), z=x+ly.
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1. Introduction

Existence and uniqueness have been established by P. Perry [Pel6] A.
Nachman, |. Regev, D. Tataru [NaReTal7]. Here we focus the asymptotic
behaviour when |k| — oc.

Plan:

The O operator with polynomial weights; Hormander - Carleman
approach.

The convergence of a perturbation series solution when |k| — o0,
provided g = O((z)~?) is smooth.

The (would be) leading correction to ¢ when g = 1o, Q € C is
strictly convex, 92 € C*°.

Some numerical illustrations.
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2. 0 on C with polynomial weights.

This is very classical (Hérmander—Carleman). Put
®(z) := In(2)?, () := (1 + zz)"/2.
Let ¢ > 0 and put

P.:=()"000 () =0+ edd/2,

Pr= () 0 (~0) 0 () = ~0 +00/2,

€

[P, P}] = €d0® = e(z)™* > 0.

€

P.P* > P.P* — P*P, = o
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2. 8 on C with polynomial weights.

This implies:
@ An apriori estimate for P},
@ An existence result for P,,
@ An existence result for O:
Proposition

Let ¢ > 0. For every v € {-)*"2L2, there exists u € (-)°L? such that

du=v and ||()"ul| < V2>V

Proposition
When 0 < e < 1 the solution is unique and given by
dw A dw

1 v(w) N W
u(z) = — / — o L(aw), L(dw) = dRw A dSw = ——

s zZ— W

5/21



2. 8 on C with polynomial weights.

Semi-classical point of view

Let 0 < h < 1 and consider hdu = v, i.e. u = v/h. In addition to
loosing two powers of (z), we then also loose one power of h. However, if
X € Cgo(Rz) is equal to 1 near 0, then from hdu = v, we get
hd(1 — x(hD))u = (1 — x(hD))v, hD = hD,. The symbol
i¢ == (i/2)(& + in) of D is # 0 on supp (1 — x(&,71)) and one can show
that

16924(1 = x(hD))ull < O){)2~(1 = x(hD))].
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3. Application to the &, & system

3. Application to the 0,0 system

Let g € C*°(C) with
aaf -2
a)<ayq_(9(<z> )7 a,ﬁEN.
Let k = k + ik, € C with |k| > 1 and write
' 1 k

kz — kz = %((X,y),w)Rz, h= R w=2i

Writing Tyu = er{CY)why (translation by w on the h Fourier transform

side), the system (1) becomes
{ha¢1 — 7 uhgdr =0,
hdgs — 7uhddy =0
Trying ¢? = 1, ¢9 = 0 gives
{haqﬁ? — 7 whigd =0,
hod3 — Tuhde? = —7, 2949

(4)
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and to correct, we need to solve the inhomogeneous system
h0p1 — T, h3da = 1,
hO¢2 — T,h3d1 = 1o

in ((-)¢L?)? for (1, %) € ((-)72L2)2. For the right hand side in (5) to
be in the right space, we add an assumption on g:

(6)

g € (-)°721? for some ¢ €]0,1]. (7)

Let u = Ev, & = Fv be the unique solutions in (-)L? of the equations
hOu = v and hdd = v, when v € (-)9=2[2 Applying E and F to the two
equations in (6) leads to the equivalent system

-0 (%) = (F), ©

(0  EF,MN /0 A
] ©
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3. Application to the &, & system

We see that K = O(1) : ({-)°®L?)? — ({-)©L2)? which is not enough to
invert 1 — KC without an extra smallness assumption on g.
However K2 is much smaller, cf. Lemma 3.2 in [Pel6]:

Proposition
K2 = O(h) : ((-)L%)? = (()°L?). J

It follows that 1 — I is bijective with inverse
1+K)1-K)t=01-K)1+K)=1+K+O(h).

Proof of the proposition.
AB 0
2 _
ko= ( 0 BA) ’

h2
AB = - E7 ,qF7,q =1+ 11 +1IL
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3. Application to the &, & system

Let x be as before and put x* = x(hD).

I= 7 ETwq(l—X")F7.q = O(h),
h2

II= ZE(]- - XW)?—quWF?wa = O(h),
h2

1 = " Ex"7T_wqx" F7.,q.

At first sight we only have IIT = O(1) but x"7_,qx" = O(h*) by
pseudodifferential calculus, so III = O(h*°).

NB: For I, II we only use that g € (-)72L>. If Ve > 0, 3g satisfying (3)
such that [|[(-)?(q — )|l < ¢, then IIT = o(1) and hence K2 = o(1)
when h — oo, allowing to invert 1 — KC and 1 — k2.

g
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3. Application to the &, & system

Returning to (4), (5), cf. (8), we get

(1-K) (zl B f;g) _ (F%?”f)) —0(1) in ()12,

(actually O(h) if we use the smoothness of q) recalling that ¢? =1,

<¢1¢; 1) — (1+K+0(h)) <F?w%,,2q>) .

Thus,
h h
$1—1=E7 0 F7, (2) + O(h) in ()12,
2 2 ) T
O(K?)

¢2 = F7, <hq> +Q(/hl in ()02,
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4. The leading correction term when g = 1q.

4. The leading correction term when g = 1q.

One can give weaker regularity assumptions for g that still imply the
convergence of the Neumann series (preliminary result) but this
convergence is still an open problem (to us) when g = 1, Q2 € C simply
connected domain with smooth boundary. In this case we study the
leading term in (10):

2T zZ—w

Equivalently we can study

kw—kw —
f(z,k):// e dw h dw (12)
Q 2/

zZ— W
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4. The leading correction term when g = 1q.

We have
1 T 1 ) T
dy <ekw_kwdw> = < + 2 Z(W)> VR i A\ dw.
k(w — z) zZ—w k
Integration over Q and Stokes’ formula give
1 1 o 0 if Q
f(z, k) = / L g, JOTFZES (13)
2ik Joq w—z %e"Z*kZ if z€ Q.
Assume
Q is strictly convex and 0X is real analytic. (14)

Parametrize: t — ~(t) € 09, |¥(t)| = 1 with the positive orientation.
Write

efw—kw — gio(wr) on 5Q, up(w, k) = R(WR) = (w, K)ge, K = 2ik.
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4. The leading correction term when g = 1q.

With wug(t) ~ u(v(t), ), we have

Let
o wy = wy (k) € 00 be the North pole where the exterior unit normal
is equal to k/|k/,
@ w_ be the South pole defined the same way in terms of the interior
unit normal.
@ 74+ be the open boundary segment from the South pole to the North
pole and ~v_ the one from the North to the South.

We have

+0rup > 0 on vy, Orug(wy) =0, i@fuo(wi) <0
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4. The leading correction term when g = 1q.

Let u(w, k) be the holomorphic extension of g to neigh (02, C).
Then Su > 0 in neigh (v4) N Q and in neigh (v-) N (C\ Q).
Assume first that

z & neigh ({wy, w_}). (15)
We then would like to replace the contour 92 in the integral in (13) by a
new contour obtained by deforming ~. inwards (into Q) and _ outwards
(towards the exterior of 2). Such a small deformation can be chosen so
that I also avoids a neighborhood of z, thanks to the assumption (15). If
the deformation crosses z, then a residue term has to be added. The
integral along [ can be expanded with stationary phase — steepest descent:

1 1 ;
- eIU(W,Ii)dW
2ik Jr w=z (16)

= C+‘k|_%ei<w+,fi> + Cﬁ|k’_%ei<W7,fi> + O(‘k|_g)

Ir(k) .

C+ = C4(wy) are explicit constants.
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4. The leading correction term when g = 1q.

Taking into account the residue terms which may appear at the
deformation, we get from (13) for z € neigh (74 U~_) when (15) holds:

+%eiU(Z:H) _%ei<z’“>, z € neigh (v4) N Q,
+0 +0, z € neigh (v4) N (C\ Q
I((Z7 k) = Ir(Z, k) T Ni{z,K) ( +) ( \ ) (17)
+0 —%e'®M, z € neigh (v-) N
7%eiu(z.ﬁ) 10, z € neigh (y_) N (C \ Q)

This result, including (16), still makes sense when the distance from z to
the poles is small but > |k|~1/2.

When the distance is even smaller we still have asymptotics, now in terms
of the special function

G(2) = /R 1 ewragy, (18)

zZ— W
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5. Numerics

5. Numerics

Oy = ¢, O, =f (leading term in (10)).

Figure: The solution ®, for the characteristic function of the disk multiplied by k
for k = 10,100, 1000 from left to right.
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5. Numerics

Figure: Difference between the solution ®; for the characteristic function of the
disk and @, for k = 10,100, 1000 from left to right.
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5. Numerics

®; i(e): approximation of f in the interior (exterior) without the residue

term and without /r.

00 1

Figure: Difference between the solution ®, for the characteristic function of the
disk and dJé’,- in the upper row and the difference between ®; and ) _ in the

lower row, both for k = 10,100, 1000 from left to right.
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5. Numerics

®LL. also with the residue term. Only the interior case (the other one looks
very similar)

Figure: Difference between the solution ®, for the characteristic function of the
disk and CDQ’J from (?7) at the disk for k = 10,100, 1000 from left to right.

We get a further moderate improvement by implementing the special
function approach near the poles.
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