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Introduction

I Analytically construct the linear stability spectrum for
traveling wave solutions of focusing NLS

I Extend previous work on problems with self-adjoint Lax pair
to prove stability of periodic traveling wave solutions
I Korteweg-de Vries (KdV) equation (Bottman, Deconinck,

Kapitula, Nivala, 2009, 2010)
I Defocusing nonlinear Schrödinger (NLS) equation (Bottman,
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I Analytical description of some spectra of non-self-adjoint
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Focusing Nonlinear Schrödinger (NLS) Equation

iψt + 1
2ψxx + |ψ|2ψ = 0

I Construct the “stationary” “periodic” solutions
I Linearize around stationary solutions to get a spectral problem
I Spectral elements in the right half plane correspond to

instability
I All stationary solutions (except soliton) are unstable

I (Kartashov et al., 2003), (Gallay and Haragus, 2007 (2×)),
(Ivey & Lafortune, 2008), (Gustafson, Le Coz, and Tsai, 2016)

I For all solutions, we obtain a fully analytical description
of the stability spectrum

I For almost all spectrally stable solutions, we establish
their orbital stability
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Stationary travelling wave solutions

iψt + 1
2ψxx + |ψ|2ψ = 0

I Ansatz
ψ = e−iωtφ(x) = e−iωtR(x)eiθ(x)

I Solutions

R2(x) = b − k2 sn2(x , k)

ω = 1
2(1 + k2)− 3

2b

θ(x) =
∫ x

0

c
R2(y)dy

c2 = b(1− b)(b − k2)
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Parameter space

R2(x) = b − k2 sn2(x , k)
c2 = b(1− b)(b − k2)

We require R, c ∈ R so
I 0 ≤ k < 1
I k2 ≤ b ≤ 1

1

0 k

b

b = k2
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Parameter space

φ(x) = R(x)eiθ(x)

θ(x) =
∫ x

0

c
R2(y)dy

R2(x) = b − k2 sn2(x , k)
c2 = b(1− b)(b − k2)

1 φ(x) = sech(x)
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Stability of stationary solutions: Orbital, Spectral

Introducing
ψ(x , t) = e−iωtΨ(x , t),

we have that stationary solutions Ψ(x , t) = φ(x) are fixed points of

iΨt + ωΨ + 1
2Ψxx + |Ψ|2Ψ = 0. (*)

A fixed-point solution Ψ(x , t) = φ(x) of (*) is orbitally stable if

∀ε > 0,∃δ > 0 : if ||Ψ(x , 0)− φ(x)|| < δ

⇒ inf
γ,x0
||Ψ(x , t)− eiγφ(x + x0)|| < ε.
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Stability of solutions: Orbital, Spectral
To start, we consider infinitesimal perturbations: let

Ψ(x , t) = eiθ(x)
(
R(x) + ε(u(x , t) + iv(x , t)) +O(ε2)

)
.

To first order in ε, u(x , t) and v(x , t) satisfy

∂

∂t

(
u
v

)
= JL

(
u
v

)
=
(

0 1
−1 0

)(
L+ S
−S L−

)(
u
v

)
,

with

L− = −1
2∂

2
x − R2(x)− ω + c2

2R4(x) ,

L+ = −1
2∂

2
x − 3R2(x)− ω + c2

2R4(x) ,

S = c
R2(x)∂x −

cR ′(x)
R3(x) .
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Stability of solutions: Orbital, Spectral

Since L+, L− and S do not depend on t, let

u(x , t) = eλtU(x ;λ), v(x , t) = eλtV (x ;λ).

This gives the spectral problem(
−S L−
−L+ −S

)(
U
V

)
= λ

(
U
V

)
.

The stability spectrum σ(JL) of JL is defined as

σ(JL) = {λ ∈ C : ∃ ||U + iV || <∞}.

A fixed-point solution Ψ(x , t) = φ(x) of (*) is spectrally stable if

σ(JL) ∩ RHP = ∅.
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Stability of solutions

Following earlier work (Bottman, Deconinck, Nivala 2009, 2011):

I Examine spectrum for Lax pair associated with NLS

I Use squared-eigenfunction connection to associate spectrum
of Lax pair with spectrum of the linear operator for NLS



Lax pairs and integrability

The Lax pair

χx =
(
−iξ φ
−φ∗ iξ

)
χ,

χt =
(
−iξ2 + i

2 |φ|
2 + i

2ω ξφ+ i
2φx

−ξφ∗ + i
2φ
∗
x iξ2 − i

2 |φ|
2 − i

2ω

)
χ=

(
A B
C −A

)
χ,

with the compatibility condition χxt = χtx gives that
Ψ = e−iωtφ(x) satisfies

iΨt + ωΨ + 1
2Ψxx + |Ψ|2Ψ = 0.



Lax pairs and integrability

Since A and B are independent of t, we let

χ(x , t) = eΩtϕ(x),

leading to

Ω2 = A2 +BC = −ξ4 +ωξ2 +cξ+ 1
16
(
−4ωb − 3b2 − (1− k2)2

)
,

and
ϕ(x) = γ(x)

(
−B(x)

A(x)− Ω

)
.



Lax pairs and integrability

The scalar function γ(x) is determined from

χx =
(
−iξ φ
−φ∗ iξ

)
χ,

resulting in a linear, first-order, homogeneous ODE for γ(x), so
that

γ(x) = γ0e
−
∫ (A− Ω)φ+ Bx + iξB

B dx
.

Since ϕ and thus γ should be bounded, we need

Re
〈(

A(x , ξ)−Ω(ξ)
)
φ(x)+Bx (x , ξ) + iξB(x , ξ)

B(ξ, x)

〉
=0,

where 〈·〉 denotes a spatial average.
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The Lax spectrum

The Lax Spectrum σL consists of all ξ ∈ C for which

Re (−2iξK (k)± 2 (ζ(α)K (k)− ζ(K (k))α)) = 0,

where ζ is the Weierstrass ζ function with lattice invariants

g2 = 4
3
(

1− k2 + k4
)
, g3 = 4

27
(

2− 3k2 − 3k4 + 2k6
)
,

and
α = α(ξ) = ℘−1

(
2Ω(ξ) + 2iξ2 + ω

3 , g2, g3

)



The Lax spectrum



The stability spectrum

The stability spectrum σ(JL) is given by all λ ∈ C for which

λ = 2Ω(ξ),

where ξ ∈ σL, and

Ω2 = −ξ4 + ωξ2 + cξ + 1
16
(
−4ωb − 3b2 − (1− k2)2

)
.

Also, (
U
V

)
=
(

e−iθ(x)ϕ2
1 − eiθ(x)ϕ2

2
−ie−iθ(x)ϕ2

1 − ieiθ(x)ϕ2
2

)
,

where ϕ1 and ϕ2 are known explicitly.



Parameter space: topology of spectra



Stability with respect to subharmonic perturbations

Consider the class of subharmonic perturbations: g(x) is
subharmonic with respect to f (x) = f (x + T ), if

∃N ∈ N0 : g(x + NT ) = g(x).

Since the spectral problem has periodic coefficients, we know from
Floquet’s Theorem that all eigenfunctions are of the form(

U(x)
V (x)

)
= eiµx

(
Û(x)
V̂ (x)

)
,

where Û(x) and V̂ (x) are periodic with period T (k). Thus,

µ = π

PT (k) mod 2π
T (k) ∈ (−π/T (K ), π/T (K )]

corresponds to perturbations of period PT (k).
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Stability with respect to subharmonic perturbations

Using the explicit form of the eigenfunction in terms of ξ, and
noticing that

eiµT (k) = U(x + T (k))
U(x) ,

we find a parametric form of the spectrum as a function of the
Floquet parameter µ:

µ = µ(ξ),

λ2 = −4ξ4 + 4ωξ2 + 4cξ + 1
4
(
−4ωb − 3b2 − (1− k2)2

)
.

for all ξ in σL.



Spectral stability with respect to subharmonic
perturbations
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Solutions (including those on the border, and all those below) are
spectrally stable with respect to perturbations of period
NT (k) = 2K (k)N.



Spectral stability with respect to subharmonic
perturbations



Orbital stability with respect to subharmonic perturbations

We wish to show that the solutions that are spectrally stable with
respect to subharmonic perturbations of period NT (k) are orbitally
stable with respect to these perturbations.

I First, establish formal stability: find a Lyapunov functional
I Second, use Grillakis, Shatah and Strauss (87, 90) &

Maddocks and Sachs (1993) to establish formal stability
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Orbital stability with respect to subharmonic perturbations

I For harmonic perturbations (N = 1), Gallay & Haragus
showed that the Hamiltonian

H2,N =
∫ NT (k)/2

−NT (k)/2

(1
2 |Ψx |2 −

1
2 |Ψ|

4 − ω|Ψ|2
)

dx

is a Lyapunov functional. In other words, the fixed point
solutions minimize H2,1.

I The quadratic part of the Hamiltonian is given by the Krein
signature

K2,N = 〈Ψ,LΨ〉N ,

where the inner product is taken over N ∈ N periods.
I Using the eigenfunctions of the spectral stability problem,

K2,N(ξ) is calculated explicitly, with different directions
indexed by different ξ. For all N, the set of ξ is countable.
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Orbital stability with respect to subharmonic perturbations

I For N = 1, no negative directions, and H2 is a Lyapunov
functional for harmonic perturbations, for all fixed point
solutions.

I For N > 1 this is no longer true: this is a larger function
space, and negative directions appear.

We need a different Lyapunov functional. . .
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Orbital stability with respect to subharmonic perturbations

I NLS is a member of an infinite hierarchy of integrable
equations whose dynamics commute:

Ψtn = i δHn,N
δΨ∗ .

I Thus Ĥn,N := Hn,N +
∑n−1

j=0 cn,jHj,N are conserved quantities,
for arbitrary j ∈ N.

I Can we find cn,j so that Ĥn,N is a Lyapunov functional for the
t = t2 dynamics near Ψ = φ?
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Orbital stability with respect to subharmonic perturbations

I Impose constraints on cn,j such that

δĤn,N
δΨ∗

∣∣∣∣∣
Ψ=φ

= 0,

i.e., φ is stationary with respect to tn.

I Crucial observation: for n ≥ 2,

Kn,N(ξ) :=
〈

Ψ, L̂nΨ
〉

= pn(ξ)K2,N(ξ),

where pn(ξ) is polynomial in ξ with coefficients determined by
cn,j , using the same Ψ as before since the different NLS flows
commute.

I Impose more constraints on cj,N such that Kn,N ≥ 0, with
equality only for Ψ ∈ kerL̂n = kerL.
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Orbital stability with respect to subharmonic perturbations
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I For all N, it suffices to let n = 4, thus
p2(ζ) = (ζ − ζ1)(ζ − ζ2).



Orbital stability with respect to subharmonic perturbations

I The above construction establishes formal stability.
I The conditions of Grillakis, Shatah and Strauss (87, 90) need

to be verified. Mainly, we have to check that kerL4 is spanned
by the generators of the Lie point symmetry group (Maddocks
and Sachs, 93).

I For all N, kerL4 is identical to kerL = kerL2, for which the
condition is easily verified.

I This establishes orbital stability for all solutions that are
spectrally stable, except for the solutions on the boundary
curves.
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Summary

I Complete understanding of the stability spectra of elliptic
solutions of focusing NLS

I Explicit description of the spectra of some non-self-adjoint
problems

I Orbital stability with respect to subharmonic perturbations


