# Integrability of New Class of Hyperbolic Two-Dimensional Linear Equations of Second Order 

Maxim V. Pavlov

Physical Institute of Russian Academy of Sciences
CQI 2019
Classical and Quantum Integrability
Dijon, 02 September 2019

## The Problem

We consider integrability of Hamiltonian hydrodynamic type systems

$$
u_{t}=\left(\frac{\partial h}{\partial v}\right)_{x}, \quad v_{t}=\left(\frac{\partial h}{\partial u}\right)_{x}
$$

whose Hamiltonian densities are quadratic with respect to the field variable $v$, i.e.

$$
h=A(u) v^{2}+B(u) v+C(u),
$$

where the functions $A(u), B(u), C(u)$ are arbitrary.

## The Problem

We consider integrability of Hamiltonian hydrodynamic type systems

$$
u_{t}=\left(\frac{\partial h}{\partial v}\right)_{x}, \quad v_{t}=\left(\frac{\partial h}{\partial u}\right)_{x}
$$

whose Hamiltonian densities are quadratic with respect to the field variable $v$, i.e.

$$
h=A(u) v^{2}+B(u) v+C(u)
$$

where the functions $A(u), B(u), C(u)$ are arbitrary.
Such hydrodynamic type systems possess infinitely many commuting flows

$$
u_{y}=\left(\frac{\partial f}{\partial v}\right)_{x}, \quad v_{y}=\left(\frac{\partial f}{\partial u}\right)_{x}
$$

where the Hamiltonian densities satisfy the linear equation

$$
h_{u u} f_{v v}=h_{v v} f_{u u} .
$$

## The Morad-Zhukov System

In the paper "The motion of a thin liquid layer on the outer surface of a rotating cylinder" the hydrodynamic type system

$$
u_{t}=(w \ln u)_{x}, \quad w_{t}=\left(\frac{w^{2}}{2 u}-\epsilon w \ln u-\frac{1}{2} \epsilon^{2} u\right)_{x}
$$

was derived by A.M. Morad and M.Yu. Zhukov.

## The Morad-Zhukov System

In the paper "The motion of a thin liquid layer on the outer surface of a rotating cylinder" the hydrodynamic type system

$$
u_{t}=(w \ln u)_{x}, \quad w_{t}=\left(\frac{w^{2}}{2 u}-\epsilon w \ln u-\frac{1}{2} \epsilon^{2} u\right)_{x}
$$

was derived by A.M. Morad and M.Yu. Zhukov.
Under the linear transformation $w=v-\frac{\epsilon}{2} u$, this system takes a local Hamiltonian structure

$$
u_{t}=\left(\frac{\partial h}{\partial v}\right)_{x}, \quad v_{t}=\left(\frac{\partial h}{\partial u}\right)_{x}
$$

where the Hamiltonian density is

$$
h=\frac{1}{2} v^{2} \ln u-\frac{\epsilon}{2} v u \ln u+\frac{\epsilon^{2}}{8} u^{2} \ln u-\frac{1}{4} \epsilon^{2} u^{2} .
$$

## The Camassa-Falqui-Ortenzi System

The Camassa-Falqui-Ortenzi system

$$
u_{t}=\left(\frac{\partial h}{\partial v}\right)_{x}, \quad v_{t}=\left(\frac{\partial h}{\partial u}\right)_{x}
$$

is determined by the Hamiltonian density quadratic with respect to the field variable $v$, i.e.

$$
h=\frac{1}{2} \frac{u(1-u)}{1-\beta u} v^{2}+\frac{1}{2} u^{2} .
$$

## The Camassa-Falqui-Ortenzi System

The Camassa-Falqui-Ortenzi system

$$
u_{t}=\left(\frac{\partial h}{\partial v}\right)_{x}, \quad v_{t}=\left(\frac{\partial h}{\partial u}\right)_{x},
$$

is determined by the Hamiltonian density quadratic with respect to the field variable $v$, i.e.

$$
h=\frac{1}{2} \frac{u(1-u)}{1-\beta u} v^{2}+\frac{1}{2} u^{2} .
$$

In the paper "Two-layer interfacial flows beyond the Boussinesq approximation: a Hamiltonian approach" the above authors
(R. Camassa, G. Falgui, G. Ortenzi) mentioned: Explicit solutions of

$$
h_{u u} f_{v v}=h_{v v} f_{u u}
$$

are in general not available, hence we turn to the perturbative analysis in the small $\beta$-limit expansion of the Hamiltonian $h(u, v)$.

## Well-known Results. Pre-History

We construct explicitly infinitely many particular solutions of the linear equation

$$
\left[A^{\prime \prime}(u) v^{2}+B^{\prime \prime}(u) v+C^{\prime \prime}(u)\right] f_{v v}=2 A(u) f_{u u}
$$

which follows from

$$
h_{u u} f_{v v}=h_{v v} f_{u u}
$$

by the substitution

$$
h=A(u) v^{2}+B(u) v+C(u) .
$$

## Well-known Results. Pre-History

We construct explicitly infinitely many particular solutions of the linear equation

$$
\left[A^{\prime \prime}(u) v^{2}+B^{\prime \prime}(u) v+C^{\prime \prime}(u)\right] f_{v v}=2 A(u) f_{u u}
$$

which follows from

$$
h_{u u} f_{v v}=h_{v v} f_{u u}
$$

by the substitution

$$
h=A(u) v^{2}+B(u) v+C(u)
$$

More than thirty years ago Ya. Nutku and P. Olver introduced the so called "separable" class of linear equations

$$
Q(v) f_{v v}=G(u) f_{u u} .
$$

This linear equation also possesses infinitely many particular solutions written in an explicit form. Both above equations have some obvious intersections (for appropriate choice of the functions $A(u), B(u), C(u), Q(v), G(u))$.

## Well-known Results. Pre-History

Previously, two interesting separable sub-classes selected by the choice $A(u)=u, B(u)=0$ and $A(u)=1, B(u)=0$ were considered by Ya . Nutku.
Later Ya. Nutku and P. Olver formulated the question "how many of results presented for the separable class can be generalised to the nonseparable classes?". Here we consider precisely such a "non-separable" case. So, we can expect that the linear equation

$$
h_{u u} f_{v v}=h_{v v} f_{u u}
$$

also possesses some other interesting non-separable classes, which allow to construct explicitly infinitely many particular solutions.

## The Polynomial Ansatz. The Quadratic Case

The second quadratic conservation law density

$$
\tilde{h}_{2}=\tilde{A}(u) v^{2}+\tilde{B}(u) v+\tilde{C}(u)
$$

can be found from the linear equation

$$
\left[A^{\prime \prime}(u) v^{2}+B^{\prime \prime}(u) v+C^{\prime \prime}(u)\right] f_{v v}=2 A(u) f_{u u}
$$

In this case

$$
\begin{aligned}
\tilde{A}(u) & =A(u) \int \frac{d u}{A^{2}(u)} \\
\tilde{B}^{\prime \prime}(u) & =B^{\prime \prime}(u) \int \frac{d u}{A^{2}(u)} \\
\tilde{C}^{\prime \prime}(u) & =C^{\prime \prime}(u) \int \frac{d u}{A^{2}(u)} .
\end{aligned}
$$

## The Polynomial Ansatz. The Cubic Case

The cubic conservation law densities are

$$
h_{3}=A_{1}(u) v^{3}+A_{2}(u) v^{2}+A_{3}(u) v+A_{4}(u)
$$

where the function $A_{1}(u)$ can be found from the ordinary differential equation

$$
A(u) A_{1}^{\prime \prime}(u)=3 A^{\prime \prime}(u) A_{1}(u)
$$

while other functions $A_{2}(u), A_{3}(u)$ and $A_{4}(u)$ are determined by

$$
\begin{gathered}
A_{2}(u)=3 A(u) \int\left(\int B^{\prime \prime}(u) A_{1}(u) d u\right) \frac{d u}{A^{2}(u)} . \\
A_{3}^{\prime \prime}(u)=3 \frac{C^{\prime \prime}(u)}{A(u)} A_{1}(u)+3 B^{\prime \prime}(u) \int\left(\int B^{\prime \prime}(u) A_{1}(u) d u\right) \frac{d u}{A^{2}(u)} \\
A_{4}^{\prime \prime}(u)=3 C^{\prime \prime}(u) \int\left(\int B^{\prime \prime}(u) A_{1}(u) d u\right) \frac{d u}{A^{2}(u)} .
\end{gathered}
$$

## The Polynomial Ansatz. The Fourth Order Case

The fourth conservation law densities are

$$
h_{3}=A_{1}(u) v^{4}+A_{2}(u) v^{3}+A_{3}(u) v^{2}+A_{4}(u) v+A_{5}(u)
$$

where the function $A_{1}(u)$ can be found from the ordinary differential equation

$$
\begin{gathered}
A(u) A_{1}^{\prime \prime}(u)=6 A^{\prime \prime}(u) A_{1}(u), \\
A(u) A_{2}^{\prime \prime}(u)=3 A^{\prime \prime}(u) A_{2}(u)+6 B^{\prime \prime}(u) A_{1}(u), \\
A_{3}(u)=3 A(u) \int\left(\int\left[B^{\prime \prime}(u) A_{2}(u)+2 C^{\prime \prime}(u) A_{1}(u)\right] d u\right) \frac{d u}{A^{2}(u)}, \\
A_{4}^{\prime \prime}(\mathrm{u})=3 B^{\prime \prime}(\mathrm{u}) \int\left(\int\left[B^{\prime \prime}(\mathrm{u}) A_{2}(\mathrm{u})+2 C^{\prime \prime}(\mathrm{u}) A_{1}(\mathrm{u})\right] d u\right) \frac{d u}{A^{2}(\mathrm{u})}+3 \frac{C^{\prime \prime}(\mathrm{u})}{A(\mathrm{u})} A_{2}(\mathrm{u}), \\
A_{5}^{\prime \prime}(u)=3 C^{\prime \prime}(u) \int\left(\int\left[B^{\prime \prime}(u) A_{2}(u)+2 C^{\prime \prime}(u) A_{1}(u)\right] d u\right) \frac{d u}{A^{2}(u)} .
\end{gathered}
$$

## The Morad-Zhukov System

We have the system

$$
u_{t}=(v \ln u)_{x}, \quad v_{t}=\left(\frac{v^{2}}{2 u}-\epsilon v \ln u-\frac{1}{2} \epsilon^{2} u\right)_{x} .
$$

## The Morad-Zhukov System

We have the system

$$
u_{t}=(v \ln u)_{x}, \quad v_{t}=\left(\frac{v^{2}}{2 u}-\epsilon v \ln u-\frac{1}{2} \epsilon^{2} u\right)_{x} .
$$

So we are looking for functions $h(u, v)$ and $g(u, v)$ such that

$$
h_{t}=g_{x}
$$

The compatibility condition $\left(g_{u}\right)_{v}=\left(g_{v}\right)_{u}$ leads to the linear differential equation of second order

$$
\frac{1}{2}\left(\frac{v}{u}+\epsilon\right)^{2} h_{v v}+\ln u\left(h_{u u}-\epsilon h_{u v}\right)=0
$$

where

$$
g_{u}=\frac{v}{u} h_{u}-\frac{v^{2}}{2 u^{2}} h_{v}-\epsilon \frac{v}{u} h_{v}-\frac{1}{2} \epsilon^{2} h_{v}, \quad g_{v}=\ln u h_{u}-\epsilon \ln u h_{v}+\frac{v}{u} h_{v} .
$$

## The Morad-Zhukov System

Theorem: The Zhukov hydrodynamic type system

$$
u_{t}=(v \ln u)_{x}, \quad v_{t}=\left(\frac{v^{2}}{2 u}-\epsilon v \ln u-\frac{1}{2} \epsilon^{2} u\right)_{x}
$$

possesses infinitely many polynomial conservation law densities

$$
h=A_{N} v^{N}+A_{N-1} v^{N-1}+\ldots+A_{1} v+A_{0}
$$

with respect to the field variable $v$, while all functions $A_{k}(u)$ can be found in quadratures.
Sketch of the Proof: For each $N$ we have the linear system ( $m=0, \ldots, N-2$ )

$$
A_{N}^{\prime \prime}+\frac{N(N-1)}{2 u^{2} \ln u} A_{N}=0
$$

$$
A_{N-1}^{\prime \prime}+\frac{(N-1)(N-2)}{2 u^{2} \ln u} A_{N-1}=\epsilon N A_{N}^{\prime}-\frac{\epsilon N(N-1)}{u \ln u} A_{N}
$$

$A_{m}^{\prime \prime}+\frac{m(m-1)}{2 u^{2} \ln u} A_{m}=\epsilon(m+1) A_{m+1}^{\prime}-\frac{\epsilon m(m+1)}{u \ln u} A_{m+1}-\frac{\epsilon^{2}(m+1)(m+2)}{2 \ln u} A_{m+2}$.

## The Morad-Zhukov System

The second order ordinary differential equation

$$
A_{N}^{\prime \prime}+\frac{N(N-1)}{2 u^{2} \ln u} A_{N}=0,
$$

has two independent solutions, and the first solution is given by the polynomial

$$
A_{N}^{(1)}=R_{N}(\ln u)
$$

where

$$
R_{N}=z P_{K}(z)
$$

and the degree of the polynomial $P_{K}(z)$ is given by

$$
K=\frac{N^{2}-N-2}{2} .
$$

So, one can look for a first solution in the polynomial form

$$
P(z)=\sum_{m=0}^{K} B_{m} z^{m}
$$

## The Morad-Zhukov System. The Generalized Hodograph Method

In a general case the Generalised Hodograph Method yields a general solution presented in implicit form

$$
t=\frac{h_{v v}}{\ln u}, \quad x=h_{u v}-\frac{v h_{v v}}{u \ln u},
$$

where $h$ is a general solution of the linear equation

$$
\frac{1}{2}\left(\frac{v}{u}+\epsilon\right)^{2} h_{v v}+\ln u\left(h_{u u}-\epsilon h_{u v}\right)=0 .
$$

## The Morad-Zhukov System. The Generalized Hodograph Method

In a general case the Generalised Hodograph Method yields a general solution presented in implicit form

$$
t=\frac{h_{v v}}{\ln u}, \quad x=h_{u v}-\frac{v h_{v v}}{u \ln u},
$$

where $h$ is a general solution of the linear equation

$$
\frac{1}{2}\left(\frac{v}{u}+\epsilon\right)^{2} h_{v v}+\ln u\left(h_{u u}-\epsilon h_{u v}\right)=0 .
$$

References:

1. A.M. Morad, M.Yu. Zhukov, The motion of a thin liquid layer on the outer surface of a rotating cylinder, Eur. Phys. J. Plus (2015) 130:8, doi 10.1140/epjp/i2015-15008-6
2. R. Camassa, G. Falgui, G. Ortenzi, "Two-layer interfacial flows beyond the Boussinesq approximation: a Hamiltonian approach", Nonlinearity, 30 No. 2 (2017) 466. DOI:10.1088/1361-6544/aa4ff7
