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Overview

I Versions of the Kadomtsev - Petviashvili (KP) equation

I Ostrovsky equation and coupled Ostrovsky equations

I 2+1D cylindrical - Korteweg - de Vries (cKdV) - type equation
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1. Introduction

Figure: Internal wave in the Strait of Messina, from
http://earth.esa.int/ers/instruments/sar/applications/ERS-
SARtropical/oceanic/intwaves/intro/



1. Introduction

Figure: Schematic of the problem formulation.



1. Introduction

Euler equations for an inviscid, incompressible fluid:

ρ(ut + uux + vuy + wuz) + px = 0,

ρ(vt + uvx + vvy + wvz) + py = 0,

ρ(wt + uwx + vwy + wwz) + pz + ρg = 0,

ρt + uρx + vρy + wρz = 0,

ux + vy + wz = 0.

Free surface and rigid bottom boundary conditions:

p = pa at z = h(x , y , t),

w = ht + uhx + vhy at z = h(x , y , t),

w = 0 at z = 0.

Vertical particle displacement:

ζt + uζx + vζy + wζz = w , ζ|z=h = h − h0.



1. Introduction

These equations can be non-dimensionalised by the transformations:

x → λx , y → λy , z → h0z , t → λ/
√

gh0t,

u →
√
gh0u, v →

√
gh0v , w → h0

√
gh0/λw ,

ρ→ ρf ρ, ζ → h0ζ, h→ h0(1 + εη),

p → pa +

∫ h0

z

ρ0ρf g dz + ρf gh0p.

There are two small parameters in the problem, the amplitude parameter
ε = a/h0 and the wavelength parameter δ = h0/λ.

In the subsequent derivations we impose the condition δ2 = ε.

Let v = 0 and consider 2D problem formulation (no dependence on y).

In the basic state (in non-dimensional variables), the fluid has the density
ρ0(z), the pressure p0z = −ρ0(z), p0(1) = 0 and the prescribed current
u0(z) in the x direction. We then consider the equations of motion
relative to this basic state.
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Derivation uses asymptotic multiple-scales expansions of the form

q = q1 + εq2 + O(ε2), where q = {ζ, η, u, w , p, ρ}.

Known modal decomposition for plane waves (at O(1) leads to
Taylor-Goldstein equation, in the long-wave limit):

ζ1 = A(ξ,T )φ(z),

where ξ = x − st, T = εt (fast and slow variables) and

((s − u0)2ρ0φz)z − ρ0zφ = 0,

(s − u0)2φz − φ = 0 at z = 1,

φ = 0 at z = 0.

(Modal equations: the boundary-value problem defines linear long-wave
modes together with their speeds).



1. Introduction

One can systematically derive the amplitude equation in the form of the
KdV equation (first versions in Benney 1966, Benjamin 1966; ...,
Grimshaw 1981, see review Grimshaw 2015):

µ1AT + µ2AAξ + µ3Aξξξ = 0, where

µ1 = 2

∫ 1

0

ρ0Wφ2
z dz ,

µ2 = 3

∫ 1

0

ρ0W
2φ3

z dz ,

µ3 =

∫ 1

0

ρ0W
2φ2 dz ,

and W = s − u0(z).



2. Versions of KP equation

The original KP equation (KP, 1970) (Ablowitz and Segur, 1979 for
surface waves; Grimshaw, 1985 for internal and surface waves)

(Uτ + 6UUξ + Uξξξ)ξ + 3α2UYY = 0 (1)

and cylindrical KP (cKP) equation (Johnson, 1980 for surface waves;
Lipovskii, 1985 for internal waves)(

Wτ + 6WWχ + Wχχχ +
W

2τ

)
χ

+
3α2

τ 2
WVV = 0 (2)

describe the evolution of nearly-plane and nearly-concentric waves,
respectively.



2. Versions of KP equation

Transformations between the KP and cKP equations were found by
Johnson (1980) and rediscovered by Lipovskii, Matveev, Smirnov (1989).
The map

W (τ, χ,V )→ U(τ, ξ,Y ) := W

(
τ, ξ +

Y 2

12α2τ
,
Y

τ

)
transforms any solution of the cKP equation (2) into a solution of the

KP equation (1). Conversely, the map

U(τ, ξ,Y )→W (τ, χ,V ) := U

(
τ, χ− τV 2

12α2
, τV

)
transforms any solution of the KP equation (1) into a solution of the

cKP equation (2).

The transformation has been used to construct some special solutions of
the cKP equation by Klein, Matveev, Smirnov 2007.

Lax Pair was found by Dryuma, 1983.



2. Versions of KP equation

We aim to consider long waves with the nearly-elliptic front. and we
write this set of equations in the elliptic cylindrical coordinate system:

x = d coshα cosβ, y = d sinhα sinβ, = z ,

where d has the meaning of half a distance between the foci of the
coordinate lines.
Equation for the linear waves is obtained as

ηtt =
ηαα + ηββ

γ2(sinh2 α + sin2 β)
.

The derivation of the cylindrical KP (cKP) equation is based on the
existence of the exact reduction of the equation for the linear to the
equation which does not depend on the angle variable.
Here, the equation does not have an exact reduction to the equation with
no dependence on β. However, there is an asymptotic reduction, and this
is enough to derive a third version of the KP equation related to
elliptic-cylindrical geometry (KK, Klein, Matveev, Smirnov 2013).



2. Versions of KP equation

We write the KP equation in the form

(Uτ + 6UUξ + Uξξξ)ξ + 3α2UYY = 0,

the cKP equation in the form(
Wτ + 6WWχ + Wχχχ +

1

2τ
W

)
χ

+
3α2

τ 2
WVV = 0,

and the ecKP equation as(
Hτ + 6HHζ + Hζζζ +

τ

2(τ 2 − a2)
H − a2ν2

12σ2(τ 2 − a2)
Hζ

)
ζ

+
3σ2

τ 2 − a2
Hνν = 0.

The map

U(τ, ξ,Y )→W (τ, χ,V ) := U

(
τ, χ− τV 2

12α2
, τV

)
transforms any solution of the KP equation into a solution of the cKP

equation, and the map

U(τ, ξ,Y )→ H(τ, ζ, ν) := U

(
τ, ζ − τν2

12α2
,
√
τ 2 − a2ν

)
transforms any solution of the KP eq. into a solution of the ecKP eq.



2. Versions of KP equation

The 1-soliton solution of the ecKP-II equation is explicitly written in the
form

H(τ, ζ, ν) =
K 2

2
sech2

[
K

2

(
ζ − τν2

12
+ L
√
τ 2 − a2ν − (K 2 + 3L2)τ + δ0

)]
,

where K , L, δ0 are arbitrary constants. The corresponding surface wave
elevation η is plotted below for γ = 1, a = 2,∆ = 1/2 and δ0 = 0.

Figure: Surface wave corresponding to the one-soliton solution of the ecKP-II
equation with K = 1, L = 0 for t = 0 (top left), t = 0.25 (top right), t = 0.5
(bottom left), t = 1 (bottom right).



2. Versions of KP equation

Figure: Surface wave corresponding to the one-soliton solution of the ecKP-II
equation with K = 1, L = 0.1 for t = 0 (top left), t = 0.25 (top right), t = 0.5
(bottom left), t = 1 (bottom right).



2. Versions of KP equation

Figure: Surface wave corresponding to the one-soliton solution of the ecKP-II
equation with K = 1, L = −0.5 for t = 0 (top left), t = 0.25 (top right),
t = 0.5 (bottom left), t = 2 (bottom right).



2. Versions of KP equation

Figure: Surface wave corresponding to the one-soliton solution of the ecKP-II
eq. with K = 1.5, L = 0 for t = 0 (left), t = 2 (right).

Figure: Surface wave corresponding to the one-soliton solution of the ecKP-II
eq. with K = 1.6, L = 0.1 for t = 0 (left), t = 2 (right).

Figure: Surface wave corresponding to the exceptional one-soliton solution of
the ecKP-II eq. with K = 1.5 and L ≈ 0.1 for t = 0 (left) and t = 1 (right).



2 Versions of KP equation

Figure: Surface waves corresponding to two different two-soliton solutions of
the ecKP-II equation for t = 1 (top left), t = 2 (top right), t = 3 (bottom
left), t = 4 (bottom right).



3. Ostrovsky equation and coupled Ostrovsky equations

The evolution of weakly-nonlinear, long internal waves with rotation is
described by the Ostrovsky equation (Ostrovsky 1978):

{At + νAAx + λAxxx}x = γA,

where ν and λ are the coefficients of nonlinear and dispersive terms,
respectively and γ = f 2/2c is the rotation coefficient when there is no
shear flow. Here, c is the linear long wave phase speed and f is the local
Coriolis parameter.

For oceanic internal waves, in the absence of a shear flow, λγ > 0 and
then here are no steady solitary wave solutions (Galkin and Stepanyants
1991). The long-time effect of rotation in this case is the emergence of a
propagating unsteady nonlinear wave packet, associated with the
maximum of the group speed (Grimshaw and Helfrich 2008). The same
phenomenon was observed independently by Yagi and Kawahara (2001)
in a Toda lattice on an elastic substrate.

On the other hand, when λγ < 0 the Ostrovsky equation can support
steady envelope wave packets, associated with the maximum of the
phase speed (Galkin and Stepanyants 1991, Obregon and Stepanyants
1998; in the context of a rotating plasma).
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Effects of a shear flow may become important (Alias, Grimshaw, KK,
2013; Grimshaw 2013):

(ut + νuux + λuxxx)x = γu,

where γ is now given by

γ =
f 2
∫ h0

0
ρ0Φφzdz

2
∫ h0

0
ρ0(c − u0(z))φ2

z dz
,

Φ =
φz − (ρ0u0)zφ

ρ0(c − u0(z))
.

In the absence of the current, γ =
f 2

2c
and λγ > 0. The underlying

current can change this sign (Alias, Grimshaw, KK, 2014). Examples:
two-layered fluid, thin top layer, second layer can have either infinite or
finite depth, sufficiently strong current in the top layer.
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Figure: Dispersion relation and numerical solution of the Ostrovsky equation
when λγ > 0 (left) and λγ < 0 (right) with λ = γ = 1. The initial condition is
given by the KdV solitary wave with the amplitude 8 at x = 0: emergence of
an unsteady wave packet associated with the maximum of the group speed
(left) and a steady wave packet associated with the maximum of the phase
speed (right).
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Coupled Ostrovsky equations have been derived for a pair of different
long-wave modes with nearly coincident phase speeds c and c + ∆
(Alias, Grimshaw, KK, 2013), generalising the work by Gear and
Grimshaw (1984).

I1(A1τ + µ1A1A1s + λ1A1sss − γ1B1) + ν1(A1A2)s

+ν2A2A2s + λ12A2sss = γ12B2 ,

I2(A2τ + µ2A2A2s + λ2A2sss + ∆A2s − γ2B2) + ν2(A1A2)s

+ν1A1A1s + λ21A1sss = γ21B1 ,

where B1s = A1,B2s = A2, and the coefficients are given in terms of
modal functions.
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We assume U2 = 0 without loss of generality. A resonance with two
distinct modes (and no implicit critical levels) can take place if

h2 � h1, h3 , c = U1 + {gh1(ρ2 − ρ1)

ρ1
}1/2 = U3 + {gh3(ρ3 − ρ2)

ρ3
}1/2 .

For given densities ρ1,2,3 and layer depths h1,3, these determine the
allowed shear U1 −U3. The modal functions and their derivatives, and all
coefficients of the scaled cO equations, are then found explicitly:

(uT + uuX + uXXX + n(uv)X + mvvX + αvXXX )X = βu + γv ,

(vT + vvX + δvXXX + ∆vX + p(uv)X + quuX + λuXXX )X = µv + νu.
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Figure: Dispersion curve in the absence of a shear flow (β = µ > 0). The solid
curves show the phase speed, and the dashed curves show the group velocity.

In the presence of a shear flow, β 6= µ, and each can be either positive or
negative.
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Figure: Typical numerical simulations for the coupled Ostrovsky equations
without shear flow.
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Figure: Typical dispersion curve for Case A (β > 0, µ > 0; top left), Case B
(β > 0, µ < 0; top right), Case C (β > 0, µ < 0; bottom left) and Case D
(β < 0, µ > 0, bottom right)



4. 2+1D cKdV-type equation

Figure: Ring soliton in the Strait of Gibraltar. NASA image STS17-34-098,
Lunar and Planetary Institute.



4. 2+1D cKdV-type equation

I The cylindrical (or concentric) Korteweg - de Vries (cKdV) equation

2AR + 3AAξ +
1

3
Aξξξ +

A

R
= 0

is a universal weakly-nonlinear weakly-dispersive wave equation in
cylindrical geometry (Maxon & Viecelli 1974, waves in plasma). The
equation is integrable (Druma 1976, Calogero & Degasperis 1978).

I In the context of fluids, it was derived for the surface waves problem
by Miles in 1978 (from Boussinesq system) and Johnson in 1980
(from Euler equations, homogeneous fluid).

I In 1985, Lipovskii derived the cKdV equation for internal waves
(stratified fluid, no shear flow).

I In 1990 Johnson obtained a version of the equation for surface
waves in a homogeneous fluid on a shear flow.

I We study the propagation of internal and surface ring waves in a
stratified fluid over a prescribed shear flow.



4. 2+1D cKdV-type equation

We use the cylindrical coordinate system moving at a constant speed c ,
and introduce the variables

ξ = rk(θ)− st, R = εrk(θ), θ,

where s is the wave speed in the absence of a shear flow, and the
function k(θ) is to be determined.
In our problem, to leading order there exists the modal decomposition

ζ1 = A(ξ,R, θ)φ(z , θ),

where the modal functions satisfy the following problem:(
ρ0F

2

k2 + k ′2
φz

)
z

− ρ0zφ = 0,

F 2

k2 + k ′2
φz − φ = 0 at z = 1,

φ = 0 at z = 0,

and F = −s + (u0 − c)(k cos θ − k ′ sin θ). If c = u0(0), then F 6= 0 at
z = 0 (and then φF = 0 at z = 0 yields φ = 0 at z = 0).

Here, the function k(θ) has to be found as a part of the solution.



4. 2+1D cKdV-type equation

The amplitude equation has the form (KK and Zhang 2016):

µ1AR + µ2AAξ + µ3Aξξξ +
µ4

R
A +

µ5

R
Aθ = 0, where

µ1 = 2s

∫ 1

0

ρ0Fφ
2
z dz , µ2 = −3

∫ 1

0

ρ0F
2φ3

z dz ,

µ3 = −(k2 + k ′2)

∫ 1

0

ρ0F
2φ2 dz ,

µ4 = −
∫ 1

0

{
ρ0φ

2
zk(k + k ′′)

(k2 + k ′2)2

(
(k2 − 3k ′2)F 2

−4k ′(k2 + k ′2)(u0 − c) sin θF − sin2 θ(u0 − c)2(k2 + k ′2)2
)

+
2ρ0k

k2 + k ′2 Fφzφzθ(k ′F + (k2 + k ′2)(u0 − c) sin θ)

}
dz ,

µ5 = − 2k

k2 + k ′2

∫ 1

0

ρ0Fφ
2
z [k ′F + (u0 − c)(k2 + k ′2) sin θ] dz .

For a homogeneous fluid, the amplitude equation reduces to a
1+1-dimensional cKdV-type equation (i.e. µ5 = 0) for any parallel
current, and not just for particular currents, as previously thought
(Johnson 1990, Johnson 1997).



4. 2+1D cKdV-type equation

Example:

‘Dispersion relation’:

(ρ2−ρ1)d(1−d)(k2 +k ′2)2−ρ2[dF 2
1 +(1−d)F 2

2 ](k2 +k ′2)+ρ2F
2
1 F

2
2 = 0,

with F1 = −s + (U1 − U2)(k cos θ − k ′ sin θ),F2 = −s.

This nonlinear first-order differential equation for the function k(θ) is
further generalisation of both Burns and generalised Burns conditions
(Burns 1953, Johnson 1990).



4. 2+1D cKdV-type equation

The singular solution for k(θ) (two branches) is given by
k(θ) = a cos θ + b(a) sin θ,

b′(a) = −1/ tan θ,

a2 + b2 = ρ2(d(−1+a(U1−U2))2+(1−d))±
√

∆
2(ρ2−ρ1)d(1−d) ,

where

∆ = ρ2
2

[
d(−1 + a(U1 − U2))2 − (1 − d)

]2

+4ρ1ρ2d(1 − d) [1 − a(U1 − U2)]2 ≥ 0.

The upper / lower sign corresponds to interfacial / surface waves.

In the rigid lid approximation, for the interfacial mode,

k(θ) =

√
α2s2 − α(U1 − U2) + 1

1 + (1 − α(U1 − U2)) tan2 θ

(
cos θ

1 − α(U1 − U2)
+

sin2 θ

cos θ

)
sign(cos θ)

− αs cos θ

1 − α(U1 − U2)
, where α =

ρ1(U1 − U2)

(1 − d)(ρ2 − ρ1)
, s2 =

(ρ2 − ρ1)d(1 − d)

ρ1d + ρ2(1 − d)
.
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Surface (left) and interfacial (right) ring waves

Let ρ1 = 1, ρ2 = 1.2, d = 0.5.
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Figure: Wavefronts of surface and interfacial ring waves described by
k(θ)r = 50.
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Figure: Internal waves in the Strait of Gibraltar. NASA image STS17-34-081,
Lunar and Planetary Institute.
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2D dam-break problem (no current):
To generate initial conditions for the cKdV-type equation we solve:

Att − s2
±(Axx + Ayy ) = 0,

A(x , y , 0) = 1
2Q
[

tanh
(
− 0.15(x2 + y2 − 64)

)
+ 1
]
, At(x , y , 0) = 0,

where Q is a scaling factor (cKdV-type equation has a scaling symmetry).

(a) (b)

Figure: Surface (a) and interfacial (b) ring DSWs for d = 0.6,Q = 40 and
t = 40.
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Figure: (a) Surface DSWs in the directions θ = 0 and θ = π for
d = 0.6,Q = 20 at t = 10 (black), 20 (red), 30 (green) and 40 (cyan).
(b) Interfacial DSWs in the directions θ = 0 and θ = π for d = 0.6,Q = 20 at
t = 50 (black), 100 (red), 150 (green) and 200 (cyan).



Conclusions

I Reduced mathematical models have interesting mathematical
properties (in this talk, models of the KdV type and their extensions,
but there are several other models). Current work: zero-mass
contradiction.

I Reduced models are powerful additional tools to direct numerical
simulations of the full equations.

I Efficient semi-analytical numerical methods can be developed using
our knowledge about these models.

I It is vital to study the analytical properties of the reduced
mathematical models.


