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Introduction

Motivations

We want to study the evolution of the quantity of toxicities in a cell
population under binary division.

We introduce an individual-based model that describes discrete
population in continuous time. The dynamics of the population are
specified at the level of the individual SDEs and branching events.

In this model, a cell which contains a toxicity x ∈ R+ divides in
continuous time and the toxicity grows inside the cell. When the cell
divides, the toxicity is shared randomly in the two daughter cells.
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Introduction

The continuous time model

Along branches: The toxicity (Xt , t ≥ 0) satisfies

dXt = κg(Xt)dt (1)

with X0 = 0.

Genealogical tree:

The cell divides at a rate B(x) and the toxicity increases with rate
κg(x) where g is a continuous positive function and κ > 0.

When a cell divides, a random fraction Γ of the toxicity goes in the first
daughter cell and a fraction (1− Γ) in the second one. We assume that
Γ is a random variable in [0, 1] with distribution H(dγ).

V H. Hoang () 4 / 23



Introduction

The continuous time model

Assumption

The division rate B(x) is continuous and bounded by a positive
constant B̄.

There exists a constant C > 0 and x0 > 0 such that ∀x > x0,
|g(x)| ≤ Cx .

H(dγ) is a symmetric distribution on (0, 1).

Examples:

H(dγ) = δ 1
2
(dγ),

H(dγ) = U [0, 1],
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Introduction

The continuous time model

We aim to establish a partial differential equation that expresses the
evolution when the population is large and estimate H(dγ).

For the similar models, we refer to Bansaye and Tran [2] and a lot of
literature for discrete time (Guyon, Delmas and Marsalle, etc )

For the statistic: we refer to Doumic et al [3].
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Introduction

Empirical measure

Let Vt be the set of living cells at time t, we define

Zn
t (dx) =

1

n

∑
i∈Vt

δX i
t
(dx), n ∈ N∗ (2)

is the random point measure on MF (R+), the space of finite
measures, is embedded with the topology of weak convergence.

For a measure µ ∈MF (R+) and a positive function f , we use the
notation 〈µ, f 〉 =

∫
R+ fdµ.

The parameter n is related to the large population limit which
corresponds to n→ +∞.
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Moment and martingale properties

Moment and martingale properties

Z n
t is described by a SDE driven by a Poisson Point measure and under the

moment conditions, the SDE has a solution (Z n
t )t≥0 ∈ D ([0,T ],MF (R+)).

If Z n
0 is such that E(〈Z n

0 , 1〉2) < +∞, then for all test function
f (x , t) ∈ C1

b(R+ × R+,R)

〈Z n
t , ft〉 = 〈Z n

0 , f0〉+ V n,f
t + Mn,f

t

where

V n,f
t =

∫ t

0

∫
R+

(
∂s fs(x) + κg(x)∂x fs(x)

)
Z n
s (dx)ds

+

∫ t

0

∫
R+

∫ 1

0

[fs(γx) + fs((1− γ)x)− fs(x)]B(x)H(dγ)Z n
s (dx)ds (3)

where Mn
t is a continous square integrable martingale with quadratic

variation

〈Mn,f 〉t =
1

n

∫ t

0

∫ ∫ 1

0

[
fs(γx) + fs((1− γ)x)− fs(x)

]2

B(x)H(dγ)Z n
s (dx)ds

(4)
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Convergence in the large population limit

Convergence in the large population limit

Theorem

Consider the sequence (Zn)n∈N∗ , if Zn
0 converges in distribution to

µ0 ∈MF (R+) as n→ +∞ then (Zn)n∈N∗ converges in distribution in
D ([0,T ],MF (R+)) as n→ +∞ to µ ∈ C ([0,T ],MF (R+)), where µ is
the unique solution of

〈µt , ft〉 =〈µ0, f0〉+

∫ t

0

∫
R+

(
∂s fs(x) + κg(x)∂x fs(x)

)
µs(dx)ds

+

∫ t

0

∫
R+

∫ 1

0

[fs(γx) + fs((1− γ)x)− fs(x)]B(x)H(dγ)µs(dx)ds (5)

with ft(x) ∈ C1,1
b (R+ × R+,R) is a test function.
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Convergence in the large population limit

Sketch of the proof

Tightness

We will prove that (Zn)n∈N∗ is tight in D ([0,T ],MF (R+)), where
MF (R+) is embedded the topology of weak convergence.

Aldous’s criterion [1] has to be checked for V n,f
t and 〈Mn,f 〉t (cf.

Arzelá-Ascoli theorem for the similar proof) and additional work from
vague topology (MF , v) to weak topology (MF ,w) .

Uniqueness: we use the martingale and moment arguments.
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Convergence in the large population limit

Sketch of the proof

Aldous’s criterion:

1. ∀t ∈ T dense in R+,
(
〈Mn,f 〉t

)
n∈N∗ and

(
V n,f
t

)
n∈N∗

are tight in R+.

2. ∀T ≥ 0, ∀ε > 0, ∀η > 0, ∃δ > 0, n0 ∈ N such that

sup
n≥n0

P
(∣∣∣〈Mn,f 〉Tn − 〈Mn,f 〉Sn

∣∣∣ ≥ η) ≤ ε
and

sup
n≥n0

P
(∣∣∣V n,f

Tn
− V n,f

Sn

∣∣∣ ≥ η) ≤ ε
for every couples of stopping-times (Sn,Tn)n∈N∗ such that
Sn ≤ Tn ≤ T and Tn ≤ Sn + δ.

V H. Hoang () 11 / 23



Convergence in the large population limit

Sketch of the proof

Let µ be a limiting value of (Z n) and

Ψt(µ) =〈µt , f 〉 − 〈µ0, f 〉 −
∫ t

0

∫
R+

(
∂s fs(x) + κg(x)∂x fs(x)

)
µs(dx)ds

+

∫ t

0

∫
R+

∫ 1

0

[fs(γx) + fs((1− γ)x)− fs(x)]B(x)H(dγ)µs(dx)ds

To prove that µ satisfies (5) almost surely, we will show that Ψt(µ) = 0 for
every t.

We know that, ∀n ∈ N∗ the process M
f ,φ(n)
t = Ψt

(
Z
φ(n)
t

)
is a square integrable

martingale. Thus, for t ∈ R+ we have

E
(∣∣∣M f ,φ(n)

t

∣∣∣)2

≤ E
(
〈M f ,φ(n)〉t

)
≤ tC

φ(n)
E
(

sup
s∈[0,t]

〈Zφ(n)
s , 1〉

)
Then, ∀t ∈ R+, limn→+∞ E

(∣∣∣M f ,φ(n)
t

∣∣∣) = 0
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Convergence in the large population limit

Sketch of the proof

To show that, ∀t ∈ R+, Ψt(µ) = 0 almost surely, we need to prove that

lim
n→+∞

E
(∣∣∣M f ,φ(n)

t

∣∣∣) = E ((Ψt(µ)|)

We know that (Zφ(n))n∈N∗ converges in distribution to µ. Since µ is
continous almost surely, f ∈ C1 class with bounded derivatives and from
moment assumption then Ψt is continous and

lim
n→+∞

Ψt(Z
φ(n))

d−→ Ψt(µ)

This ends the proof of the Theorem.
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Convergence in the large population limit

Size-structured population equation

Proposition:

We assume that g(x) = 1 for all x ∈ R+. This implies that
Xt = x0 + κ(t − t0) if toxicity is x0 at times t0. Then, we have the
following results:

i. If µ0(dx) = n0(x)dx then ∀t ∈ R+, µt(dx) = nt(x)dx .

ii. n(t, x) ∈ C1,1(R+,R+) and satisfies the PDE:

∂n(t, x)

∂t
+ κ

∂n(t, x)

∂x
+B(x)n(t, x) = 2

∫ 1

0

1

γ
B

(
x

γ

)
n

(
t,
x

γ

)
H(dγ)

(6)

We now focus to estimate the the division kernel in two cases: 1) case of
complete data of divisions. 2) Else, use the stationary distribution
approximation.

V H. Hoang () 14 / 23



Estimating the division kernel

Case of complete data of divisions

We observed the evolution of the cell population in a given time
interval [0,T ].

At the i th division time Ti , denote ji the individual who splits into two
daughters X ji1

ti and X ji2
ti . We define

Γ1
i =

X ji1
ti

X ji
ti−

and Γ2
i =

X ji2
ti

X ji
ti−

the random fractions that go into the daughter cells, with the
convention 0

0 = 0.

The couples (Γ1
i , Γ

2
i )i∈N∗ are independent with distribution (Γ1, Γ2)

where Γ1 ∼ H(dγ) and Γ2 = 1− Γ1.

Assume that H(dγ) = h(γ)dγ where h(γ) is a density function. We
now construct an estimator of h based on (Γ1

i , Γ
2
i )i∈N∗ .
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Estimating the division kernel

Case of complete data of divisions

Definition

Let NT be the random number of divisions in the time interval [0,T ]. For
γ ∈ (0, 1), define

ĥT (γ) =
1

NT

NT∑
i=1

K`(γ − Γ1
i ), (7)

where K is a kernel function, ` > 0 is the bandwidth to be chosen and
K`(·) = 1

`K ( ·`). We write ĥ(γ) instead of ĥT (γ) for convenience.

Example:

K (x) = 1
2I(|x | ≤ 1) (the rectangular kernel),

K (x) = 1√
2π

exp
(
−x2/2

)
(the Gaussian kernel).
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Estimating the division kernel

Case of complete data of divisions

Proposition:

If B(x) = R > 0 and h ∈ H(β) (h ∈ Cbβc and h(β) is β − bβc Hölder
continuous). Then the kernel estimator ĥT (γ) satisfies

sup
h∈H(β)

E‖h − ĥT‖2
2 ≤ Ce−%T . (8)

where

% =
N0

N0 + 1

2βR

2β + 1
. (9)

Remark: compare with n−
2β

2β+1 for n observations.
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Estimating the division kernel

Case of the stationary distribution approximation

If we don’t have complete data, ĥT can not be computed anymore.
Then, we consider the case when we have a stationary distribution of
x at a given time.

To estimate h, we assume that we have n data, each data being
obtained from the measurement of an individual cell picked at
random, after the system has evolved for a long time so that the
approximation n(t, x) ≈ N(x)eλt is valid (The growth rate λ will be
explained later).

Each data is viewed as the outcome of random variable Xi , each Xi

having density function N(x).

We observed a random sample (X1,X2, . . . ,Xn).
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Estimating the division kernel

Case of the stationary distribution approximation

The PDE that describes the evolution of cell population

∂tn(t, x)+α∂xn(t, x)+B(x)n(t, x) = 2

∫ 1

0

1

γ
B

(
x

γ

)
n

(
t,

1

γ

)
H(dγ), t ≥ 0, x ≥ 0.

(10)

Assume that H(dγ) has a density: H(dγ) = h(γ)dγ and set y = x/γ
then equation (10) becomes:

∂tn(t, x) + α∂xn(t, x) = 2

∫ ∞
0

B(y)n(t, y)h

(
x

y

)
dy

y
− B(x)n(t, x),

(11)
where h(x/y) = 0 if y < x .
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Estimating the division kernel

Case of the stationary distribution approximation

By general relative entropy principle (see [6]), it is proved that under
suitable assumption on h and B, one has∫ ∞

0
|n(t, x)e−λt − ρN(x)|φ(x)dx → 0 as t →∞, (12)

where ρ =
∫∞

0 n(t = 0, u)φ(u)du and (λ,N) is the unique solution of the
following eigenvalue problem α∂xN(x) + λN(x) = 2

∫∞
0 B(y)N(y)h

(
x

y

)
dy

y
− B(x)N(x), x ≥ 0

B(0)N(0) = 0,
∫
N(x)dx = 1, N(x) ≥ 0, λ > 0

(13)
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Estimating the division kernel

Case of the stationary distribution approximation

We denote G = BN and equation (13) can be expressed in terms of G :

α∂xN(x) + λN(x) = 2

∫ ∞
0

G (y)h

(
x

y

)
dy

y
− G (x). (14)

We define the operators

L(N)(x) := α∂xN(x) + λN(x), (15)

L(G , h)(x) := 2

∫ ∞
0

G (y)h

(
x

y

)
dy

y
− G (x), (16)

then
L(N)(x) = L(G , h)(x). (17)

We introduce the functions

G̃ (u) = G (eu), h̃(u) = h(eu) and Ñ(u) = N(eu),

Applying Fourier transform into both sides of (17), we obtain

F [h̃](ξ) =
1

2

F [L(Ñ)](ξ)

F [G̃ ](ξ)
+

1

2
, ξ ∈ R (18)
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Estimating the division kernel

Case of the stationary distribution approximation

Proposition:

Assume that N satisfies
∫
R+

x−kN(x)dx <∞ for k =, 1, 2. For γ ∈ (0, 1),
the function h is explicitly given for a.e by

h(γ) =
1

2
F−1 [A(ξ)]

(
ln(γ)

)
, (19)

where

A(ξ) =
α(1 + iξ)E

[
X−2−iξ

1

]
+ λE

[
X−1−iξ

1

]
E
[
B(X1)X−1−iξ

1

] , ξ ∈ R, (20)

with X1 ∼ N(x)dx and i is the unit imaginary number.

For the estimator: we replace the expectation by empirical means.
Convergence is a work in progress.
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