Séminaire Géométrie et groupes discrets

Harmonic Maps for Hitchin Representations

by Prof. Qiongling Li (Chern Institute of Mathematics, Nankai University)

Europe/Paris
Amphithéâtre Léon Motchane (IHES)

Amphithéâtre Léon Motchane

IHES

Le Bois Marie 35, route de Chartres 91440 Bures-sur-Yvette
Description

Hitchin representations are an important class of representations of fundamental groups of closed hyperbolic surfaces into PSL(n,R), at the heart of higher Teichmüller theory. Given such a representation j, there is a unique j-equivariant harmonic map from the universal cover of the hyperbolic surface to the symmetric space of PSL(n,R). We show that its energy density is at least 1 and that rigidity holds. In particular, we show that given a Hitchin representation, every equivariant minimal immersion from the hyperbolic plane into the symmetric space of PSL(n,R) is distance-increasing. Moreover, equality holds at one point if and only if it holds everywhere and the given Hitchin representation j is an n-Fuchsian representation.

Organized by

Fanny Kassel

Contact