Low–rank tensors for high–dim integrals

> Dmitry Savostyanov

Introduction

Motivation

Matrices

Low rank

Cross interpolati

Maximum volume

Algorithm

Example

Tensors

Formats

Algorithm

Probability

Parametric PD

Stochastic OD

Ising physics

Conclusions

Low-rank interpolation of tensors for high-precision calculation of high-dimensional integrals

Dmitry Savostyanov

容 University of Brighton

Structured Matrix Days Limoges, 24th May 2019

Low-rank tensors for high-dim Why do we need high-dimensional integrals? integrals Dmitry Savostyanov Introduction Motivation Matrices

Low-rank tensors for high-dim integrals

> Dmitry Savostyanov

Introduction

Motivation

. . .

Low ran

Cross interpolat

Maximum volume

Algorithm

Example

Tensors

Formats

Algorithm

Probability

Parametric PDE

Stochastic ODE

Ising physics

Conclusions

Why do we need high-dimensional integrals?

• Multivariate distributions: $\int_{\mathbb{R}^d} f(x) \left(\sum_k b_k e^{-\frac{1}{2}(x-c_k)^T A_k(x-c_k)} \right) dx$

Stochastic and parametric PDEs:

 $\mathcal{D}_x(\xi)u(x,\xi)=f(x),\qquad\text{find}\quad\bar{u}(x)=\text{E}[u(\xi,x)]$

Low-rank tensors for high-dim integrals

> Dmitry Savostyanov

Introduction

Motivation

Matrices

Low rank

Cross interpolat

Algorithm

Pagoritani

Tancara

Encounte

Algorithm

Probability

Parametric P

Stochastic OI

Ising physics

onclusions

Why do we need high-dimensional integrals?

• Multivariate distributions: $\int_{\mathbb{R}^d} f(x) \left(\sum_k b_k e^{-\frac{1}{2}(x-c_k)^T A_k(x-c_k)} \right) dx$

Stochastic and parametric PDEs:

 $\mathcal{D}_x(\xi) u(x,\xi) = f(x), \qquad \text{find} \quad \bar{u}(x) = \text{E}[u(\xi,x)]$

- Ising susceptibility integrals in mathematical physics
- Weyl's integrals in representation theory / random matrix theory

$$\int_{\mathbb{U}_d} f(\mathbf{U}) \mathrm{d}\mathbf{U} = \frac{1}{(2\pi)^d d!} \int_{[0,2\pi]^d} f(\mathrm{diag}(e^{\mathrm{i}\theta_1},\ldots,e^{\mathrm{i}\theta_d})) \prod_{j \leqslant k} \left| e^{\mathrm{i}\theta_j} - e^{\mathrm{i}\theta_k} \right|^2 \mathrm{d}\theta$$

... and many more.

Example I: Generalised Gaussians

Monte Carlo

$$\epsilon \sim N_{\text{eval}}^{-1/2}$$

2

Low–rank tensors for high–dim integrals

Dmitry Savostyanov

Introductio

Processed

Matrices

Low rank

- Cross interpol Maximum volu Algorithm Example Tensors
- Formats

Algorithm

Probability

Parametric

Stochartic C

Ising physics

01 / . .

Example I: Generalised Gaussians

•	۰	۰	۰	۰	۰	۰	۰	۰	۰
•	٠	٠	٠	٠	٠	٠	٠	٠	٠
•	٠	٠	٠	٠	٠	٠	٠	٠	۰
•	٠	٠	٠	•	•	•	•	٠	٠
•	٠	٠	٠	•	•	•	•	•	•
•	۰	٠	•	۰	۰	٠	٠	٠	۰
•	۰	۰	•	•	٠	٠	٠	٠	۰
•	•	•	•	٠	•	٠	٠	٠	•
•	٠	٠	٠	٠	٠	٠	٠	٠	•
•	•	٠	•	•	•	٠	•	•	•

Monte Carlo

$$\epsilon \sim N_{\text{eval}}^{-1/2}$$

$$\epsilon \sim n^{-s}$$
 but $N_{eval} = n^d$

Low–rank tensors for high–dim integrals

Dmitry Savostyanov

		а.							

Deserved

- Matrices
- Low rank
- Cross interpol: Maximum volu Algorithm
- Tensors
- Algorithm
- Deebabilie
- n obuointy
- r ar ameurici
- Stochastic Ol
- Ising physics
- Conclusions

Example I: Generalised Gaussians

•	۰	•	٠	٠	٠	٠	٠	•	٠
٠	٠	٠	•	٠	٠	٠	٠	٠	•
٠	۰	٠	٠	٠	۰	۰	٠	•	•
٠	۰	٠	•	۰	•	•	•	•	•
٠	•	٠	•	۰	•	•	•	٠	•
٠	۰	•	•	۰	•	٠	٠	•	•
٠	۰	۰	•	۰	٠	٠	٠	•	۰
•	۰	•	•	٠	۰	٠	٠	•	•
٠	۰	٠	•	٠	۰	٠	٠	•	•
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠

Monte Carlo

$$\epsilon \sim N_{\text{eval}}^{-1/2}$$

- Tensor product grid
 - $\boldsymbol{\epsilon} \sim n^{-s} \quad \text{but} \quad N_{\text{eval}} = n^d$

Low-rank structure of p.d.f.:

Matrices: cross interpolation

Matrices: Cross interpolation (good)

Low-rank tensors for high-dim integrals Dmitry Savostyanov Introduction Motivation Proposal Matrices	A =	$ \begin{pmatrix} 1/2 & 1/3 \\ 1/3 & 1/4 \\ 1/4 & 1/5 \\ 1/5 & 1/6 \\ 1/6 & 1/7 \end{pmatrix} $	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1/6 1/7 1/8 1/9 1/10				
Low rank Cross interpolation		$\begin{pmatrix} 1/2 & 1/3 \end{pmatrix}$						
Algorithm Example	_	$\frac{1}{3}$ $\frac{1}{4}$	(1/2)	1/3 - 1	(1/2	1/3	1/4 1/	$(5 \ 1/6)$
Tensors Formats Algorithm	—	1/5 1/6	(1/3)	1/4)	· (1/3	1/4	1/5 1/	⁶ ¹ /7)
Probability Parametric PDE		\ ¹ /6 ¹ /7)						
Ising physics			(0	0	0	0	0)	
Conclusions			0	0	0	0	0	
			+ 0	0	1.67	2.86	3.57	$ imes$ 10 $^{-3}$
			0	0	2.86	5.00	6.35	
(124			0	0	3.57	6.35	8.17/	

Matrices: Cross interpolation (not so good)

Low-rank tensors for high-dim integrals Dmitry Savostyanov Introduction Motivation Proposal Matrices	A =	$\begin{pmatrix} 1/2 \\ 1/3 \\ 1/4 \\ 1/5 \\ 1/6 \end{pmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	/4 1/5 /5 1/6 /6 1/7 /7 1/8 /8 1/9	1/6 1/7 1/8 1/9 1/10					
Low rank										
Cross interpolation		$(1/_{5})$	$1/_{6}$							
Algorithm		11/2	1/-							
Example		'/6	'/7	(1/0	$1/_{0}$	$^{-1}$ (1/5	1/c	1/7	1 /0	$1/_{0}$
-	=	$1/_{7}$	1/8		17		1/0	1	1/0	
lensors		1/2	1/2	(1/9	1/10	\ ¹ /6	1/7	1/8	1/9	¹ /10 /
Algorithm		'/8	1/9							
Probability		1/9	1/10/							
Parametric PDE			/ /							
Stochastic ODE										
Ising physics				/8.00	1.90	0.36	0	0)		
Conclusions				1 1 90	0.51	0.10	0	0		
				1.70	0.51	0.10	0	0		2
			+	0.36	0.10	0.02	0	0	×	10-1
				0	0	0	0	0		
				0	0	0	0	0		
7/24				$\langle 0$	0	0	0	0 /		
///4										

Matrices: Cross interpolation (maximum volume)

Low-rank tensors for high-dim integrals Dmitry Savostyanov	A =	$\begin{pmatrix} 1/2 \\ 1/3 \\ 1/4 \\ 1/5 \\ 1/6 \end{pmatrix}$	1/3 1/ 1/4 1/ 1/5 1/ 1/6 1/ 1/7 1/	/4 1/5 /5 1/6 /6 1/7 /7 1/8 /8 1/9	1/6 1/7 1/8 1/9 1/10				
Low rank Cross interpolation Maximum volume Algorithm Example Tensors Formats Algorithm Probability Parametric PDE	=	$\begin{pmatrix} 1/2 \\ 1/3 \\ 1/4 \\ 1/5 \\ 1/6 \end{pmatrix}$	$\frac{1}{5}$ $\frac{1}{6}$ $\frac{1}{7}$ $\frac{1}{8}$ $\frac{1}{9}$	$\begin{pmatrix} 1/2 & 1\\ 1/5 & 1 \end{pmatrix}$	$\binom{/5}{/8}^{-1}$.	$\begin{pmatrix} 1/2 & 1/3 \\ 1/5 & 1/6 \end{pmatrix}$	1/4 1/7	$\frac{1}{5}$ 1 $\frac{1}{8}$ 1	/6 /9
Stochastic ODE Ising physics Conclusions 8/24			+	$ \left(\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0 \end{array}\right) $	0 3.09 1.59 0 -1.18	0 1.59 0.85 0 –0.66	0 0 0 0	$ \begin{pmatrix} 0 \\ -1.18 \\ -0.66 \\ 0 \\ 0.55 \end{pmatrix} $	× 10 ⁻³

Matrices: Cross interpolation algorithm

Algorithm (Gaussian elimination with partial pivoting)

- Find (i^*, j^*) s.t. $|A(i^*, j^*) A(i^*, \mathcal{J})[A(\mathcal{I}, \mathcal{J})]^{-1}A(\mathcal{I}, j^*)|$ is large
- Add i^* to \mathcal{I} and j^* to \mathcal{J}
- ▶ Update columns $[A(i, \mathcal{J})]$, submatrix $[A(\mathcal{I}, \mathcal{J})]^{-1}$, and rows $[A(\mathcal{I}, j)]$

Matrices: Cross interpolation algorithm (step 1)

Low-rank tensors for high-dim integrals Dmitry Savostyanov Introduction Motivation Proposal Matrices	A =	$=\begin{pmatrix} 1/2\\ 1/3\\ 1/4\\ 1/5\\ 1/6 \end{pmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/5 1/6 1/7 1/8 1/9	1/6 1/7 1/8 1/9 1/10				
Low rank									
Maximum volume		(1/2)							
Algorithm		1/2							
Example		1/5	(1, 1)	1 (1)				()	
Tensors	=	= 1/4	· (1/2)	· (1/2	2 /3	1/4	1/5 1/	6)	
Formats		$1/_{5}$						<i>,</i>	
Algorithm		1/2							
Probability		\ <mark>'/6</mark> /							
Parametric PDE									
Stochastic ODE				0	0	0	0	()	
Ising physics			(0	0	0	0	0	
Conclusions				0	2.78	3.33	3.33	3.17	
			_	0	3 33	4.17	4.28	4.17	× 10 ⁻²
				0	2.22	1 20	4 50		·· ••
				0	5.55	4 . ∠ð	4.50	4.44	
				0	3.17	4.17	4.44	4.44 /	
10/24				\				/	

Matrices: Cross interpolation algorithm (step 1)

ow-rank tensors for high-dim integrals Dmitry Savostyanov Introduction Motivation Proposal	$A = \begin{pmatrix} 1/2 \\ 1/3 \\ 1/4 \\ 1/5 \\ 1/6 \end{pmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Cross interpolation Maximum volume Algorithm Example Tensors Formats Algorithm Probability Parametric PDE	$= \begin{pmatrix} 1/2 \\ 1/3 \\ 1/4 \\ 1/5 \\ 1/6 \end{pmatrix}$	$ \begin{array}{c} 1/5\\ 1/6\\ 1/7\\ 1/8\\ 1/9 \end{array} \cdot \begin{pmatrix} 1/2 & 1/5\\ 1/5 & 1/8 \end{pmatrix}^{-1} \cdot \begin{pmatrix} 1/2 & 1/3 & 1/4 & 1/5 & 1/6\\ 1/5 & 1/6 & 1/7 & 1/8 & 1/9 \end{pmatrix} $	
Stochastic ODE Ising physics Conclusions		$+ \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 3.09 & 1.59 & 0 & -1.18 \\ 0 & 1.59 & 0.85 & 0 & -0.66 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & -1.18 & -0.66 & 0 & 0.55 \end{pmatrix} \times 10$	0 ⁻³

- Parametric PC
- Stochastic ODE
- Ising physics
- Conclusions

Parametric PD

Stochastic ODI

Ising physics

Conclusions

Stochartic ODI

Ising physics

Conclusions

- Probability
- Parametric PDE
- Stochastic ODE
- Ising physics
- Conclusions

Tensors: formats

Tensors: cross interpolation

Low-rank tensors for high-dim integrals Dmitry Savostyanov

- Introductior
- Deservation
- Proposal
- Matrices
- Low rank
- Cross interpolation
- Maximum volume
- Algorithm

Example

- Tensors
- Formats

Algorithm

- Probability Parametric PDE Stochastic ODE Ising physics
- Conclusions

Matrix interpolation for tensors

$$\begin{aligned} A(\mathbf{i}_1, \dots, \mathbf{i}_k; \mathbf{i}_{k+1}, \dots, \mathbf{i}_d) &= A(\mathbf{i}_{\leq k}, \mathbf{i}_{>k}) \approx \tilde{A}(\mathbf{i}_{\leq k}, \mathbf{i}_{>k}) \\ &= A(\mathbf{i}_{\leq k}, \mathcal{I}_{>k}) \left[A(\mathcal{I}_{\leq k}, \mathcal{I}_{>k}) \right]^{-1} A(\mathcal{I}_{\leq k}, \mathbf{i}_{>k}) \\ &= A(\mathbf{i}_1 \dots \mathbf{i}_k, \mathcal{I}_{>k}) \left[A(\mathcal{I}_{\leq k}, \mathcal{I}_{>k}) \right]^{-1} A(\mathcal{I}_{\leq k}, \mathbf{i}_{k+1} \dots \mathbf{i}_d) \end{aligned}$$

If
$$[\mathcal{I}_{\leqslant k},\mathcal{I}_{>k}] = \text{maxvol}[A(i_{\leqslant k},i_{>k})],$$
 then

$$|A-\tilde{A}|\leqslant (r_k+1)^2\min_{\mathsf{rank}\,X=r_k}|A-X|$$

Goreinov, Tyrtyshnikov, 2011

Tensors: cross interpolation

$$\tilde{A}(\mathbf{i}_{1},\mathbf{i}_{2}...,\mathbf{i}_{d}) = A(\mathbf{i}_{1},\mathcal{I}_{>1}) [A(\mathcal{I}_{\leq 1},\mathcal{I}_{>1})]^{-1} A(\mathcal{I}_{\leq 1},\mathbf{i}_{2},\mathcal{I}_{>2})$$
$$\cdots [A(\mathcal{I}_{\leq d-1},\mathcal{I}_{>d-1})]^{-1} A(\mathcal{I}_{\leq d-1},\mathbf{i}_{d})$$

Tensors: cross interpolation

Tensors: examples

Dmitry Savostyanov

Introduction

Motivatio

Matrices

Low rank Cross interpol Maximum volu

Algorithm

unumpro

Tensors

Formats

Algorithi

Probability

Parametric PDE

Stochastic OD

Ising physics

Conclusions

$\int_{\mathbb{R}^d} e^{-\frac{1}{2} x^\top A x} \, \mathsf{d} x = \frac{(2\pi)^{d/2}}{\sqrt{\mathsf{det}(A)}}$

Example I: Generalised Gaussian

$$\blacktriangleright A = \left[e^{-|i-j|}\right]_{i,j=1}^n$$

•
$$d = 100, n = 50$$

Tensors: examples

$$\begin{aligned} -\nabla_{\mathbf{x}}(\mathfrak{a}(\mathbf{x},\mathbf{p})\nabla_{\mathbf{x}}\mathfrak{u}(\mathbf{x},\mathbf{p})) &= 1 \quad \mathbf{x}\in\Omega\\ \mathfrak{u}(\mathbf{x},\mathbf{p}) &= 0 \quad \mathbf{x}\in\partial\Omega \end{aligned}$$

$$a(x,p) = \begin{cases} p_{s,t} & x \in \text{cookie}_{s,t} \\ 1 & \text{otherwise} \end{cases}$$

Tensors

Tensors: examples

Example 3: Stochastic ODE

$$\xi_k \in [-1, 1], d \sim 10$$
 Find E[∫₀¹ u(x, ξ) dx]

$$\begin{split} -\nabla_x(\mathfrak{a}(x,\xi)\nabla_x\mathfrak{u}(x,\xi)) &= 1 \quad x \in [0,1] \\ \mathfrak{u}(x,\xi) &= 0 \quad x \in \{0,1\} \end{split}$$

$$a(x,\xi) = \text{exp}\left(\sum_{k=1}^d k^{-\gamma} \cos(k\pi x) \xi_k\right)$$

Dmitry Savostyanov

Introduction

Motivati

Proposal

Matrices

Low rank

Cross interpolat

Maximum volume

Algorithm

Example

Tensors

Formats

Algorithm

Probability

Parametric PDE

Stochastic ODE

Ising physics

Conclusions

- electrons have spins: $|\uparrow\rangle$ or $|\downarrow\rangle$
- external magnetic field aligns the spins

Low–rank tensors for high–dim integrals

Dmitry Savostyanov

Introduction

Motivati

Proposal

Matrices

Low ranl

Cross interpolat

Maximum volume

Algorithm

Example

Tensors

Formats

Algorithm

Probability

Parametric PDE

Stochastic ODE

Ising physics

Conclusions

- electrons have spins: $|\uparrow\rangle$ or $|\downarrow\rangle$
- external magnetic field aligns the spins
- in ferromagnets, spins form domains

Low–rank tensors for high–dim integrals

Dmitry Savostyanov

- Introduction
- Motivatio
- Proposal
- Matrices
- Low ranl
- Cross interpolat
- Maximum volume
- Algorithm
- Example

Tensors

- Formats
- Algorithm
- Probability
- Parametric PDE
- Stochastic ODE
- Ising physics
- Conclusions

- electrons have spins: $|\uparrow\rangle$ or $|\downarrow\rangle$
- external magnetic field aligns the spins
- ▶ in ferromagnets, spins form domains
- domains persist even when the external field is zero

Dmitry Savostyanov

- Introductior
- Motivatio
- Proposal
- Matrices
- Low ranl
- Cross interpolat
- Maximum volume
- Algorithm
- Example

Tensors

- Formate
- Algorithm
- Probability
- Parametric PDE
- Stochastic ODE
- Ising physics
- Conclusions

- electrons have spins: $|\uparrow\rangle$ or $|\downarrow\rangle$
- external magnetic field aligns the spins
- in ferromagnets, spins form domains
- domains persist even when the external field is zero
- heating and/or beating removes the total magnetisation, but domains still form spontaneously

Dmitry Savostyanov

Introduction

Proposal

- Matrices Low rank Cross interpolati Maximum volum Algorithm
- Example
- Tensors
- Algorithm
- Probability
- Parametric PD
- Stochastic OD
- Ising physics
- Conclusions

- electrons have spins: $|\uparrow\rangle$ or $|\downarrow\rangle$
- external magnetic field aligns the spins
- ▶ in ferromagnets, spins form domains
- domains persist even when the external field is zero
- heating and/or beating removes the total magnetisation, but domains still form spontaneously
- Systems with next-neighbour interaction exhibit co-operative behavior (similar to gas-liquid transition, binary alloys, biology, genetics, economics, etc)
- $\label{eq:phase transition effect:} \left\{ \begin{array}{ll} \text{spontaneous magnetisation}, & \text{when } T < T_c \\ \text{demagnetisation}, & \text{when } T > T_c \end{array} \right.$
- Susceptibility $\chi_0(T) = -\frac{\partial^2 f}{\partial H^2}\Big|_{H=0}$ is closely related to the long-range correlation $\langle \hat{\sigma}_{0,0} \ \hat{\sigma}_{m,n} \rangle$

Low–rank tensors for high–dim integrals

Dmitry Savostyanov

- Introductio
- Motivati
- Matrices
- Low rank
- Cross interpolati
- Maximum volu
- Algorithm
- Tensors
- Formats
- Probability
- Parametric PI
- Stochastic OD

D

С

- Ising physics
- Conclusions

Ising susceptibility integrals

Phase transition at Curie temperature:

$$\chi_0^{\pm}(T) \sim C_0^{\pm} \left| 1 - T/T_c \right|^{-7/4}$$

Susceptibility amplitudes

$$C_0^+ \sim \sum_{d \text{ odd}} \frac{\pi D_d}{(2\pi)^d}, \quad C_0^- \sim \sum_{d \text{ even}} \frac{\pi D_d}{(2\pi)^d},$$

$$d = \int_{\Theta} \frac{\prod\limits_{1 \leq i < j \leq d} \left(\frac{1 - x_{i+1} \cdots x_j}{1 + x_{i+1} \cdots x_j}\right)^2 dx_2 \cdots dx_d}{\left(1 + \sum\limits_{k=2}^d x_2 \cdots x_k\right) \left(1 + \sum\limits_{k=2}^d x_k \cdots x_d\right)}$$
$$d = \int_{\Theta} \frac{1}{\left(1 + \sum\limits_{k=2}^d x_2 \cdots x_k\right) \left(1 + \sum\limits_{k=2}^d x_k \cdots x_d\right)}$$

Wu, McCoy, Tracy, Barouch, 1976

```
Bailey, Borwein, Crandall, 2006
```


- \blacktriangleright C₁₀₂₄ is reduced to two-dimensional integral and computed to 500 digits Bailey, Borwein, Crandall, 2006
- We compute C_{1024} as 1023-dimensional integral to verify cross interpolation

Low-rank tensors for high-dim integrals Dmitry

Savostyanov

Motivation Proposal Matrices Low rank

Cross interpolat Maximum volum Algorithm Example

Tensors

Algorithm Probability Parametric Pl

Stochastic OE

Ising physics

Conclusions

Verification

- C₁₀₂₄ is reduced to two-dimensional integral and computed to 500 digits
 Bailey, Borwein, Crandall, 2006
- We compute C₁₀₂₄ as 1023–dimensional integral to verify cross interpolation
- MC and qMC converge slowly

Low–rank tensors for high–dim integrals

Dmitry Savostyanov

Motivation Proposal Matrices Low rank Cross interpola Maximum volun

Algorithm Example

Tensors Formats

Algorithm Probability Parametric Pl Stochastic Ol

Ising physics

Conclusions

Verification

- C₁₀₂₄ is reduced to two-dimensional integral and computed to 500 digits
 Bailey, Borwein, Crandall, 2006
- We compute C₁₀₂₄ as 1023–dimensional integral to verify cross interpolation
- MC and qMC converge slowly
- TT cross interpolation
 - + double precision

Low–rank tensors for high–dim integrals

> Dmitry Savostyanov

Motivation Proposal Matrices Low rank Cross interpolat Maximum volum Algorithm Example

Tensors Formats Algorithm Probability Parametric Stochastic (

Ising physics

Conclusions

- C₁₀₂₄ is reduced to two-dimensional integral and computed to 500 digits
 Bailey, Borwein, Crandall, 2006
- We compute C₁₀₂₄ as 1023–dimensional integral to verify cross interpolation
- MC and qMC converge slowly
- TT cross interpolation
 - + double precision
 - quadruple precision

Low-rank tensors for high-dim **Benchmarking** integrals Dmitry Savostyanov 0 -20-40Tensors -60 -80Ising physics

High-precision numerics is more expensive — it's fair to compare CPU time.

Low-rank tensors for high-dim integrals Dmitry Savostyanov

Motivatio

Proposal

Matrices Low rank

Cross interpolati

Algorithm

Pagoritani

Tensors

Formats Algorithm

Probability

Parametric Pl

Stochastic OE

Ising physics

Conclusions

Benchmarking

- High-precision numerics is more expensive — it's fair to compare CPU time.
- Quadruple precision via gfortran's option default-real-8

Low–rank tensors for high–dim integrals Dmitry

Proposal

- Matrices Low rank Cross inter
- Maximum volum
- Algorithm
- Tensors
- Formats Algorithm
- Probability
- Farameuric FL
- Stochastic OE
- Ising physics

Conclusions

Benchmarking

 $\text{log}_{10}(\text{core}\cdot\text{hours})$

- High-precision numerics is more expensive — it's fair to compare CPU time.
- Quadruple precision via gfortran's option default-real-8
- Multiple precision via MPFUN2015 package [D. H. Bailey]

Low-rank tensors for high-dim integrals Dmitry

Savostyanov

Introductio

Proposal

- Matrices Low rank Cross interp
- Maximum volu
- Example

Tensors

Formats Algorithm Probability Parametric

- Stochastic Ol
- Ising physics

Conclusions

Benchmarking

 $\log_{10}(\text{core}\cdot\text{hours})$

- High-precision numerics is more expensive — it's fair to compare CPU time.
- Quadruple precision via gfortran's option default-real-8
- Multiple precision via MPFUN2015 package [D. H. Bailey]
- Is it exponential convergence we see?

Low-rank tensors for high-dim integrals Dmitry

Savostyanov

- Introduction Motivation Proposal Matrices
- Low rank Cross interpol Maximum volu
- Algorithm

Tensors

Formats Algorithm Probability Parametric P Stochastic O

Ising physics

Conclusions

Exploration

- Each element of D_n cost O(n²) which is n times more expensive than C_n
- ► Good news: the observed convergence of TT cross interpolation is O(N⁻⁷)
- Other news: we are still far from the 100 digit target that enables us to use inverse symbolic calculators

Conclusions

Low-rank tensors for high-dim integrals

> Dmitry Savostyanov

Introduction

Motivatio

- Massiana
- Low rank
- Cross interpo
- Maximum volun
- Algorithm
- Example
- Tensors
- Formats
- Algorithm
- Probability
- Parametric PD
- Stochastic OD
- Ising physics

Conclusions

- tensor cross interpolation is fast, scalable and reliable
- tensor cross interpolation allows high-precision integration
- tensor cross interpolation can replace Monte Carlo methods (we hope)

References

- Quasioptimality of maximum-volume cross interpolation of tensors. Linear Algebra and Applications 458:217–244, 2014.
- Parallel cross interpolation for high-precision calculation of high-dimensional integrals. ArXiv:1903.11554

