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problem statement

To solve a polynomial system f (x) = 0, the homotopy

h(x , t) = γ(1− t)g(x) + t f (x) = 0,

defines solution paths x(t) satisfying h(x(t), t) = 0, where

γ ∈ C is a random constant,
t ∈ [0,1] is the continuation parameter,
g(x) = 0 is the start system, with known solutions x(0),
f (x) = 0 is the target system, with solutions x(1).

If all solutions of g(x) = 0 are regular, then, except for a finite number
of bad choices of γ, all solution paths x(t) are regular, for all t < 1.

Variable step size ∆t control in predictor-corrector methods:
∆t is too large: divergence and/or path jumping.
∆t is too small: inefficient, we care only about x(1).
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five relevant papers, in chronological order
1 E. Fabry. Sur les points singuliers d’une fonction donnée par son

développement en série et l’impossibilité du prolongement
analytique dans des cas très généraux. Annales scientifiques de
l’École Normale Supérieure, 13:367–399, 1896.

2 H. Schwetlick and J. Cleve. Higher order predictors and adaptive
steplength control in path following algorithms.
SIAM Journal on Numerical Analysis, 24(6):1382–1393, 1987.

3 D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler.
Adaptive multiprecision path tracking.
SIAM Journal on Numerical Analysis, 46(2):722–746, 2008.

4 P. Gonnet, S. Güttel, and L. N. Trefethen. Robust Padé
approximation via SVD. SIAM review, 55(1):101–117, 2013.

5 N. Bliss and J. Verschelde. The method of Gauss–Newton to
compute power series solutions of polynomial homotopies.
Linear Algebra and its Applications, 542:569–588, 2018.
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Padé Approximants
Consider the homotopy: (1− t)(x2 − 1) + t(3x2 − 3/2) = 0.

G. A. Baker and P. Graves-Morris. Padé Approximants. Cambridge UP, 1996.
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a posteriori and a priori step control
An a posteriori step control uses feedback loops.

∆t := β∆t
- predictor - corrector -t

6

‖f(z(∆t))‖ > α

t
6

‖f(z(∆t))‖ > ε

Extreme choices for α and ε (not recommended):
If α ≤ ε, then the corrector is not needed.
If α =∞, then the first feedback loop does never happen.

Setting 0.5 for β cuts the step size ∆ in half.

Our goal: develop an a priori step control algorithm.
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linearization

Working with truncated power series, computing modulo O(td ),
is doing arithmetic over the field of formal series C[[t ]].

Linearization: consider Cn[[t ]] instead of C[[t ]]n. Instead of a vector of
power series, we consider a power series with vectors as coefficients.

Solve Ax = b, A ∈ Cn×n[[t ]], b,x ∈ Cn[[t ]].

A = A0ta + A1ta+1 + · · · ,
b = b0tb + b1tb+1 + · · ·
x = x0tb−a + x1tb−a+1 + · · ·

where Ai ∈ Cn×n and bi ,xi ∈ Cn.
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block linear algebra

Computing the first d terms of the solution of Ax = b:(
A0ta + A1ta+1 + A2ta+2 + · · ·+ Ad ta+d)
·
(
x0tb−a + x1tb−a+1 + x2tb−a+2 + · · ·+ xd tb−a+d)

= b0tb + b1tb+1 + b2tb+2 + · · ·+ bd tb+d .

Written in matrix format:
A0
A1 A0
A2 A1 A0
...

...
...

. . .
Ad Ad−1 Ad−2 · · · A0




x0
x1
x2
...

xd

 =


b0
b1
b2
...

bd

 .
If A0 is regular, then solving Ax = b is straightforward.
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detecting nearby singularities
Applying the ratio theorem of Fabry, we can detect singular points
based on the coefficients of the Taylor series.

Theorem (the ratio theorem, Fabry 1896)

If for the series x(t) = c0 + c1t + c2t2 + · · ·+ cntn + cn+1tn+1 + · · · ,
we have lim

n→∞
cn/cn+1 = z, then

z is a singular point of the series, and
it lies on the boundary of the circle of convergence of the series.

Then the radius of this circle is less than |z|.

L. Leau in 1899 comments on the proof (Bieberbach, 1955, page 51):
“d’habiles calculs malheureusement assez complexes."
A proof is in the book
The Taylor Series, an introduction to the theory of functions of a
complex variable, by Paul Dienes, Dover Publications, 1957.
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the ratio theorem of Fabry and Padé approximants

Consider n = 3, x(t) = c0 + c1t + c2t2 + c3t3 + c4t4.

[3/1]x =
a0 + a1t + a2t2 + a3t3

1 + b1t

(c0 + c1t + c2t2 + c3t3 + c4t4)(1 + b1t) = a0 + a1t + a2t2 + a3t3

c0 + c1t + c2t2 + c3t3 + c4t4

+ b1c0t + b1c1t2 + b1c2t3 + b1c3t4 = a0 + a1t + a2t2 + a3t3

We solve for b1 in the term for t4: c4 + b1c3 = 0⇒ b1 = −c4/c3.

The denominator of [3/1]x is 1− c4/c3t . The pole of [3/1]x is c3/c4.
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an illustrative example
Consider the homotopy x2 − (t − 1/2)2 − p2 = 0, for p > 0.

x(t) = ±
√

4p2 + 4t2 − 4t + 1

R. B. Kearfott and Z. Xing. An interval step control for continuation methods.
SIAM Journal on Numerical Analysis, 31(3):892–914, 1994.
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two nearby singularities for complex values of t

4p2 + 4t2 − 4t + 1 = 0⇒ t = 1/2± p
√
−1
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poles of a [6/2]-Padé approximant

x(t) =
√

4p2 + 4t2 − 4t + 1 for p = 0.1
has singularities at t = 0.5± 0.1I.

t poles radius
0.0 0.522± 0.054I 0.525
0.1 0.428± 0.056I 0.431
0.2 0.336± 0.061I 0.341
0.3 0.250± 0.077I 0.261
0.4 0.139± 0.126I 0.188
0.5 ±0.126I 0.126

The poles of the Padé approximant predict the distance
to the nearest singularity.
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approaching a nearby singularity – step 0
The circle centered at t = 0.0 has as radius
the computed distance to the closest pole.

The singular points at 0.5± 0.1I are represented by the red dots.
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approaching a nearby singularity – step 1
The circle centered at t = 0.1 has as radius
the computed distance to the closest pole.

The singular points at 0.5± 0.1I are represented by the red dots.
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approaching a nearby singularity – step 2
The circle centered at t = 0.2 has as radius
the computed distance to the closest pole.

The singular points at 0.5± 0.1I are represented by the red dots.
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approaching a nearby singularity – step 3
The circle centered at t = 0.3 has as radius
the computed distance to the closest pole.

The singular points at 0.5± 0.1I are represented by the red dots.
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approaching a nearby singularity – step 4
The circle centered at t = 0.4 has as radius
the computed distance to the closest pole.

The singular points at 0.5± 0.1I are represented by the red dots.
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close to a nearby singularity – step 5
The circle centered at t = 0.5 has as radius
the computed distance to the closest pole.

The singular points at 0.5± 0.1I are represented by the red dots.
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leaving a nearby singularity – step 6
The circle centered at t = 0.6 has as radius
the computed distance to the closest pole.

The singular points at 0.5± 0.1I are represented by the red dots.
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leaving a nearby singularity – step 7
The circle centered at t = 0.7 has as radius
the computed distance to the closest pole.

The singular points at 0.5± 0.1I are represented by the red dots.
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leaving a nearby singularity – step 8
The circle centered at t = 0.8 has as radius
the computed distance to the closest pole.

The singular points at 0.5± 0.1I are represented by the red dots.
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leaving a nearby singularity – step 9
The circle centered at t = 0.9 has as radius
the computed distance to the closest pole.

The singular points at 0.5± 0.1I are represented by the red dots.
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leaving a nearby singularity – step 10
The circle centered at t = 1.0 has as radius
the computed distance to the closest pole.

The singular points at 0.5± 0.1I are represented by the red dots.
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approaching and leaving a nearby singularity

Circles centered at t = 0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0
have as radius the computed distance to the closest pole.

The singular points at 0.5± 0.1I are represented by the red dots.
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a phcpy session with a [6/2]-Padé predictor
phcpy is the Python interface to PHCpack

t : 4.93828714960806E-01 0.00000000000000E+00
m : 1
the solution for t :
x : 1.00190242833497E-01 0.00000000000000E+00

== err : 4.795E-09 = rco : 1.000E+00 = res : 1.210E-17 =

t : 4.938e-01, step : 9.383e-02, frp : 1.877e-01

closest pole : (0.13875598086124408, -0.1263411602765256)

poles: [[(0.13875598086124408-0.1263411602765256j),
(0.1387559808612441+0.1263411602765256j)]]

The poles are computed at t = 0.4.
The tracker slows down before 0.5.
The imaginary parts of the poles are close in magnitude to 0.1 = p.
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the approximation error of the Padé approximant

Consider the Padé approximant [L/M]k = pk (t)/qk (t),
with degrees deg(pk ) = L, deg(qk ) = M, k = 1,2, . . . ,n,
for the k th coordinate xk (t) of the solution around t = 0.

For small step size ∆t , we estimate the error, for ` = L + M + 2,

ek (∆t) =
pk (∆t)
qk (∆t)

− xk (∆t) = e0,k (∆t)` + O((∆t)`+1).

Using |ek (∆t)| ≈ |e0,k (∆t)`| leads to∥∥∥∥x(∆t)−
(

p1(∆t)
q1(∆t)

,
p2(∆t)
q2(∆t)

, . . . ,
pn(∆t)
qn(∆t)

)∥∥∥∥ ≈ ‖e0‖|∆t |`,

with e0 = (e0,1,e0,2, . . . ,e0,n).
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distance to the nearest path

Let y(t) and z(t) be two distinct solution paths of h(x , t) = 0.
We assume z(t) is close to y(t) and denote ∆z = y(t)− z(t) ∈ Cn.
Our goal is to estimate ‖∆z‖.

h(y(t), t) ≈ h(z(t), t) + Jh(z(t), t)∆z +
v
2
,

where Jh is the Jacobian matrix,

v =


〈H1(z(t), t)∆z,∆z〉
〈H2(z(t), t)∆z,∆z〉

...
〈Hn(z(t), t)∆z,∆z〉

 Hk (x , t) =
∂2hk

∂x`∂xm
,

1 ≤ `,m ≤ n,

Hk is the Hessian of the homotopy hk , and 〈·, ·〉 is the inner product.
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the largest singular values of the Hessians

Abbreviate Jh(z(t), t) by Jh and Hk (z(t), t) by Hk :

0 ≈ 0 + Jh∆z +
1
2


〈H1∆z,∆z〉
〈H2∆z,∆z〉

...
〈Hn∆z,∆z〉

 .
The Hessian matrices are Hermitian and have a unitary diagonalization
Hk = Vk ΛkV H

k , for the Hermitian transpose ·H , V H
k Vk = I.

There is some vector wk such that ‖wk‖ = ‖∆z‖ and ∆z = Vkwk .

〈Hk ∆z,∆z〉 = 〈Λkwk ,wk 〉
⇒ |〈Hk ∆z,∆z〉| ≤ σk ,1‖wk‖2 = σk ,1‖∆z‖2,

for the largest singular value σk ,1 of Hk .
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the smallest singular value of the Jacobian matrix
Applying |〈Hk ∆z,∆z〉| ≤ σk ,1‖∆z‖2 leads to∥∥∥∥∥∥∥∥∥
〈H1∆z,∆z〉
〈H2∆z,∆z〉

...
〈Hn∆z,∆z〉

∥∥∥∥∥∥∥∥∥ ≤
∥∥∥∥∥∥∥∥∥
σ1,1‖∆z‖2
σ2,1‖∆z‖2

...
σn,1‖∆z‖2

∥∥∥∥∥∥∥∥∥ = ‖∆z‖2
√
σ2

1,1 + σ2
2,1 + · · ·+ σ2

n,1.

As we have an upper bound for the right hand side of

Jh∆z ≈ −1
2


〈H1∆z,∆z〉
〈H2∆z,∆z〉

...
〈Hn∆z,∆z〉


we use a lower bound for the left hand side: ‖Jh∆z‖ ≥ σn(Jh)‖∆z‖,
where σn(Jh) is the smallest singular value of the Jacobian matrix Jh.
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an estimate for the distance to the nearest path

σn(Jh)‖∆z‖ ≤ ‖Jh∆z‖

≈ 1
2

∥∥∥∥∥∥∥∥∥
〈H1∆z,∆z〉
〈H2∆z,∆z〉

...
〈Hn∆z,∆z〉

∥∥∥∥∥∥∥∥∥
≤ 1

2
‖∆z‖2

√
σ2

1,1 + σ2
2,1 + · · ·+ σ2

n,1

⇓
2σn(Jh)√

σ2
1,1 + σ2

2,1 + · · ·+ σ2
n,1

. ‖∆z‖

The lower bound for ‖∆z‖ decreases
as Jh becomes close to a singular matrix, and/or
as the curvature of the path increases.
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an illustrative example
Consider the homotopy h(x , t) = xp+1 − q(x − (t − 1/2)) = 0, where

p ∈ Z+ controls the curvature.
q ∈ R+ controls the distance to the nearest solution.

At t = 1/2: h(x , t = 1/2) = (xp − q)x = 0. Consider z = q1/p.

Jh = (p + 1)xp − q, Jh(x = z) = (p + 1)q − q = pq,
for fixed p, small q, the Jacobian Jh is close to singular.
H = (p + 1)pxp−1, H(x = z) = (p + 1)pq(p−1)/p,
for fixed q, the Hessian H grows quadratically in p.

|∆z| ≥ Jh(x = z)

H(x = z)
=

q
(p + 1)q(p−1)/p

z = q1/p: small q � 1: the lower bound for |∆z| decreases for all p,
large q � 1: the lower bound for |∆z| decreases for large p.
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an apriori step control algorithm

To determine the step size ∆t , do as follows:

1 Compute the distance R to the closest pole.

2 Compute the lower bound L =
2σn(Jh)√

σ2
1,1 + σ2

2,1 + · · ·+ σ2
n,1

on the distance to the nearest path.

3 Use the approximation error of the Padé approximant:∥∥∥∥x(∆t)−
(

p1(∆t)
q1(∆t)

,
p2(∆t)
q2(∆t)

, . . . ,
pn(∆t)
qn(∆t)

)∥∥∥∥ ≈ ‖e0‖|∆t |`,

compute ‖e0‖|∆t |` ≤ L⇒ ∆t ≤
(

L
‖e0‖

)1/`

= D.

4 ∆t = min(β1R, β2D), for some constants β1, β2, 0 < β1, β2 < 1.
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two generic polynomials

Two polynomials of degree d lead to a homotopy with d2 paths.

phc -p : a posteriori step control with corrector feedback loop
phc -u : a priori step control based on poles and Hessians

phc -p phc -u
d d2 #fail user cpu time #fail user cpu time
10 100 0 124ms 0 5s 130ms
20 400 2 2s 59ms 0 1m 11s 610ms
30 900 8 10s 462ms 0 6m 10s 521ms
40 1600 23 33s 558ms 0 20m 19s 950ms
50 2500 39 1m 13s 489ms 0 44m 0s 807ms

Ran on one core of 3.1 GHz Intel Core i7, 16 GB 1867 MHz DDR3,
in double precision, early 2015 MacBook Pro, macOS Sierra 10.12.6.

Done with version 2.4.67, phc -u is still under development.
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the 184,756 paths to all cyclic 11-roots

The cyclic 11-roots problem is a sparse polynomial system
in 11 variables with 181,756 isolated solutions;
the mixed volume of the Newton polytopes equals 181,756.

The start system is a system with the same Newton polytopes,
but with randomly generated complex coefficients.

A run with phc on some difficult path shows:
Around t = 0.5, the coordinates take extreme values,
suggesting a diverging path.
But there is no nearby pole at t = 0.5 and phc -u can
complete without the bound involving the Jacobian and Hessians.

These computations are confirmed with the program Padé.jl,
Julia code written by Simon Telen and Marc Van Barel.

work still in progress...

Jan Verschelde (UIC) Robust Numerical Path Tracking 24 May 2019 44 / 44


	Problem Statement
	adaptive step control
	Padé approximants and power series

	Detecting Nearby Singularities
	applying the ratio theorem of Fabry
	an illustrative example

	Distance to the Nearest Path
	an estimate based on the Jacobian and Hessian matrices
	an illustrative example

	Algorithm and Computational Experiments
	an apriori step control algorithm
	two generic polynomials
	the 184,756 paths to all cyclic 11-roots


