Characteristic polynomials of p-adic matrices.

Xavier Caruso, David Roe, Tristan Vaccon

Univ. Bordeaux, MIT, Université de Limoges

SMD 2019

A first question

Determinant computation

A first question

Determinant computation

$$\begin{bmatrix} X^5 + O(X^{10}) & 1 + O(X^{10}) & 1 + X^3 + O(X^{10}) \\ O(X^{10}) & 1 + O(X^{10}) & 1 + O(X^{10}) \\ 2X^6 + O(X^{10}) & 2X + O(X^{10}) & 2X + X^5 + O(X^{10}) \end{bmatrix}$$

Question

What is the precision on the determinant?

A little warm-up on computing determinants : expansion

An example of determinant computation

$$\begin{bmatrix} X^5 + O(X^{10}) & 1 + O(X^{10}) & 1 + X^3 + O(X^{10}) \\ O(X^{10}) & 1 + O(X^{10}) & 1 + O(X^{10}) \\ 2X^6 + O(X^{10}) & 2X + O(X^{10}) & 2X + X^5 + O(X^{10}) \end{bmatrix}$$

A little warm-up on computing determinants : expansion

An example of determinant computation

$$\begin{vmatrix} X^5 + O(X^{10}) & 1 + O(X^{10}) & 1 + X^3 + O(X^{10}) \\ O(X^{10}) & 1 + O(X^{10}) & 1 + O(X^{10}) \\ 2X^6 + O(X^{10}) & 2X + O(X^{10}) & 2X + X^5 + O(X^{10}) \end{vmatrix}$$

Using Leibniz formula

If we expand directly using the expression of the determinant in terms of the coefficients, we get:

A little warm-up on computing determinants : expansion

An example of determinant computation

$$\begin{array}{c|cccc} X^5 + O(X^{10}) & 1 + O(X^{10}) & 1 + X^3 + O(X^{10}) \\ O(X^{10}) & 1 + O(X^{10}) & 1 + O(X^{10}) \\ \hline 2X^6 + O(X^{10}) & 2X + O(X^{10}) & 2X + X^5 + O(X^{10}) \end{array}$$

Using Leibniz formula

If we expand directly using the expression of the determinant in terms of the coefficients, we get:

$$-2X^9 + O(X^{10}),$$

because of $1 \times 1 \times O(X^{10})$.

A little warm-up on computing determinants: row-echelon form computation

An example of determinant computation

$$\begin{bmatrix} X^5 + O(X^{10}) & 1 + O(X^{10}) & 1 + X^3 + O(X^{10}) \\ O(X^{10}) & 1 + O(X^{10}) & 1 + O(X^{10}) \\ O(X^{10}) & O(X^{10}) & -2X^4 + X^5 + O(X^{10}) \end{bmatrix}$$

A little warm-up on computing determinants: row-echelon form computation

An example of determinant computation

$$\begin{bmatrix} X^5 + O(X^{10}) & 1 + O(X^{10}) & 1 + X^3 + O(X^{10}) \\ O(X^{10}) & 1 + O(X^{10}) & 1 + O(X^{10}) \\ O(X^{10}) & O(X^{10}) & -2X^4 + X^5 + O(X^{10}) \end{bmatrix}$$

Row-echelon form computation

If we compute approximate row-echelon form, we still get:

A little warm-up on computing determinants : row-echelon form computation

An example of determinant computation

$$\begin{bmatrix} X^5 + O(X^{10}) & 1 + O(X^{10}) & 1 + X^3 + O(X^{10}) \\ O(X^{10}) & 1 + O(X^{10}) & 1 + O(X^{10}) \\ O(X^{10}) & O(X^{10}) & -2X^4 + X^5 + O(X^{10}) \end{bmatrix}$$

Row-echelon form computation

If we compute approximate row-echelon form, we still get:

$$-2X^9 + O(X^{10}),$$

because of $1 \times 1 \times O(X^{10})$.

A little warm-up on computing determinants : SNF

An example of determinant computation

$$1 + O(X^{10})$$
 $O(X^{10})$ $O(X^{10})$

A little warm-up on computing determinants : SNF

An example of determinant computation

$$1 + O(X^{10})$$
 $O(X^{10})$ $O(X^{10})$ $O(X^{10})$ $O(X^{10})$ $O(X^{10})$ $O(X^{10})$ $O(X^{10})$ $O(X^{10})$ $O(X^{10})$ $O(X^{10})$

Smith Normal Form (SNF) computation

If we compute approximate SNF, we now get:

A little warm-up on computing determinants : SNF

An example of determinant computation

$$\begin{bmatrix} 1 + O(X^{10}) & O(X^{10}) & O(X^{10}) \\ O(X^{10}) & X^3 + O(X^{10}) & O(X^{10}) \\ O(X^{10}) & O(X^{10}) & -2X^6 + X^7 + O(X^{10}) \end{bmatrix}$$

Smith Normal Form (SNF) computation

If we compute approximate SNF, we now get:

$$-2X^9 + X^{10} + O(X^{13}),$$

because of $1 \times X^3 \times O(X^{10}) = O(X^{13})$.

Determinant

Determinant

■ Is there an **optimal** precision on the determinant?

Determinant

- Is there an **optimal** precision on the determinant?
- Is there an algorithm to reach this precision?

Determinant

- Is there an **optimal** precision on the determinant?
- Is there an algorithm to reach this precision?

Characteristic polynomial

Determinant

- Is there an **optimal** precision on the determinant?
- Is there an algorithm to reach this precision?

Characteristic polynomial

Is there an **optimal** precision on the coefficients of the characteristic polynomial?

Determinant

- Is there an **optimal** precision on the determinant?
- Is there an algorithm to reach this precision?

Characteristic polynomial

- Is there an **optimal** precision on the coefficients of the characteristic polynomial?
- Is there an algorithm to reach this precision?

Determinant

- Is there an **optimal** precision on the determinant?
- Is there an algorithm to reach this precision?

Characteristic polynomial

- Is there an **optimal** precision on the coefficients of the characteristic polynomial?
- Is there an algorithm to reach this precision?

Remarque

From now on, we will work over \mathbb{Q}_p instead of K[X], but there is no difference in the behaviour regarding to precision.

- 1 p-adic precision: direct approach and differential precision
- 2 Characteristic polynomial and its derivative

- 3 An efficient way for p-adic matrices
 - Hessenberg form
 - Adjugate computation
 - Experimental results

Motivations and goal

Counting points on curves

■ Kedlaya's algorithm to count point on curves.

Motivations and goal

Counting points on curves

- Kedlaya's algorithm to count point on curves.
- One core part of Kedlaya's algorithm is the computation of the characteristic polynomial of the linear mapping given by the Frobenius acting on some cohomological *p*-adic vector space.

Motivations and goal

Counting points on curves

- Kedlaya's algorithm to count point on curves.
- One core part of Kedlaya's algorithm is the computation of the characteristic polynomial of the linear mapping given by the Frobenius acting on some cohomological p-adic vector space.

Today's goal

- What is the (optimal) precision on the characteristic polynomial of a matrix with *p*-adic entries all known at the same precision?
- How can we compute at this precision?

Table of contents

- 1 p-adic precision: direct approach and differential precision
- 2 Characteristic polynomial and its derivative
- 3 An efficient way for p-adic matrices
 - Hessenberg form
 - Adjugate computation
 - Experimental results

Finite-precision p-adics

Elements of \mathbb{Q}_p can be written $\sum_{i=l}^{+\infty} a_i p^i$, with $a_i \in [0, p-1]$, $l \in \mathbb{Z}$ and p a prime number.

Working with a computer, we usually only can consider the beginning of this power series expansion: we only consider elements of the form

$$\sum_{i=I}^{d-1} a_i p^i + O(p^d)$$
 , with $I \in \mathbb{Z}$.

Finite-precision p-adics

Elements of \mathbb{Q}_p can be written $\sum_{i=l}^{+\infty} a_i p^i$, with $a_i \in [0, p-1]$, $l \in \mathbb{Z}$ and p a prime number.

Working with a computer, we usually only can consider the beginning of this power series expansion: we only consider elements of the form

$$\sum_{i=l}^{d-1} a_i p^i + O(p^d)$$
, with $l \in \mathbb{Z}$.

Finite-precision p-adics

Elements of \mathbb{Q}_p can be written $\sum_{i=l}^{+\infty} a_i p^i$, with $a_i \in [0, p-1]$, $l \in \mathbb{Z}$ and p a prime number.

Working with a computer, we usually only can consider the beginning of this power series expansion: we only consider elements of the form

$$\left(\sum_{i=l}^{d-1} a_i p^i + O(p^d)\right)$$
, with $l \in \mathbb{Z}$.

Definition

The order, or the absolute precision of $\sum_{i=1}^{d-1} a_i p^i + O(p^d)$ is d.

Finite-precision p-adics

Elements of \mathbb{Q}_p can be written $\sum_{i=l}^{+\infty} a_i p^i$, with $a_i \in [0, p-1]$, $l \in \mathbb{Z}$ and p a prime number.

Working with a computer, we usually only can consider the beginning of this power series expansion: we only consider elements of the form

$$\left(\sum_{i=l}^{d-1} a_i p^i + O(p^d)\right)$$
, with $l \in \mathbb{Z}$.

Definition

The **order**, or the **absolute precision** of $\sum_{i=1}^{d-1} a_i p^i + O(p^d)$ is d.

Exemple

The order of $3 * 7^{-1} + 4 * 7^{0} + 5 * 7^{1} + 6 * 7^{2} + O(7^{3})$ is 3.

Precision formulae

Proposition (addition)

$$(x_0 + O(p^{k_0})) + (x_1 + O(p^{k_1})) = x_0 + x_1 + O(p^{\min(k_0, k_1)})$$

Precision formulae

Proposition (addition)

$$(x_0 + O(p^{k_0})) + (x_1 + O(p^{k_1})) = x_0 + x_1 + O(p^{\min(k_0, k_1)})$$

Proposition (multiplication)

$$(x_0 + O(p^{k_0})) * (x_1 + O(p^{k_1})) = x_0 * x_1 + O(p^{\min(k_0 + \nu_p(x_1), k_1 + \nu_p(x_0))})$$

Precision formulae

Proposition (addition)

$$(x_0 + O(p^{k_0})) + (x_1 + O(p^{k_1})) = x_0 + x_1 + O(p^{\min(k_0, k_1)})$$

Proposition (multiplication)

$$(x_0 + O(p^{k_0})) * (x_1 + O(p^{k_1})) = x_0 * x_1 + O(p^{\min(k_0 + \nu_\rho(x_1), k_1 + \nu_\rho(x_0))})$$

Proposition (division)

$$\frac{xp^{a} + O(p^{b})}{yp^{c} + O(p^{d})} = x * y^{-1}p^{a-c} + O(p^{\min(d+a-2c,b-c)})$$

In particular,
$$\frac{1}{p^c y + O(p^d)} = y^{-1} p^{-c} + O(p^{d-2c})$$

Lemma (CRV14)

Let $f: \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a (strictly) **differentiable** mapping.

Lemma (CRV14)

Let $f: \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a (strictly) **differentiable** mapping. Let $x \in \mathbb{Q}_p^n$. We assume that f'(x) is **surjective**.

◆□▶◆□▶◆豆▶◆豆▶ 豆 めQ@

Lemma (CRV14)

Let $f: \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a (strictly) **differentiable** mapping.

Let $x \in \mathbb{Q}_p^n$. We assume that f'(x) is **surjective**.

Then for any ball B = B(0, r) small enough,

Lemma (CRV14)

Let $f: \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a (strictly) **differentiable** mapping.

Let $x \in \mathbb{Q}_p^n$. We assume that f'(x) is **surjective**.

Then for any ball B = B(0, r) small enough,

$$f(x+B)=f(x)+f'(x)\cdot B.$$

Geometrical meaning

Differential of the determinant

It is well known:

$$\det'(M): dM \mapsto \operatorname{Tr}(\operatorname{Adj}(M) \cdot dM).$$

Differential of the determinant

It is well known:

$$\det'(M): dM \mapsto \operatorname{Tr}(\operatorname{Adj}(M) \cdot dM).$$

Consequence on precision

• Loss in precision: coefficient of Adj(M) with smallest valuation.

Differential of the determinant

It is well known:

$$\det'(M): dM \mapsto \operatorname{Tr}(\operatorname{Adj}(M) \cdot dM).$$

Consequence on precision

- Loss in precision: coefficient of Adj(M) with smallest valuation.
- Corresponds to the products of the n-1-first invariant factors.

Differential of the determinant

It is well known:

$$\det'(M): dM \mapsto \operatorname{Tr}(\operatorname{Adj}(M) \cdot dM).$$

Consequence on precision

- Loss in precision: coefficient of Adj(M) with smallest valuation.
- Corresponds to the products of the n-1-first invariant factors.
- Approximate SNF is optimal.

Differential of the determinant

It is well known:

$$\det'(M): dM \mapsto \mathsf{Tr}(\mathsf{Adj}(M) \cdot dM).$$

Consequence on precision

- Loss in precision: coefficient of Adj(M) with smallest valuation.
- Corresponds to the products of the n-1-first invariant factors.
- Approximate SNF is optimal.

Linear equations

One can also easily prove that SNF is optimal to solve linear equations.

Table of contents

- 1 p-adic precision: direct approach and differential precision
- 2 Characteristic polynomial and its derivative
- 3 An efficient way for p-adic matrices
 - Hessenberg form
 - Adjugate computation
 - Experimental results

Classical ways to compute χ_M

Direct Gaussian elimination

Is $O^{\sim}(n^4)$, with divisions.

Classical ways to compute χ_M

Direct Gaussian elimination

Is $O^{\sim}(n^4)$, with divisions.

Also with divisions

Fadeev-Leverrier and Berlekamp-Massey.

Deterministic: Storjohann (2001)

Computes Frobenius Normal Form, and hence χ_M . Is in $O^{\sim}(n^{\omega})$, with divisions.

Deterministic: Storjohann (2001)

Computes Frobenius Normal Form, and hence χ_M . Is in $O^{\sim}(n^{\omega})$, with divisions.

Non-deterministic: Pernet-Storjohann (2007), field large enough

Is a Las Vegas algorithm to compute Frobenius Normal Form, and hence χ_M . Is in $O(n^\omega)$ in average, **with divisions**.

Deterministic: Storjohann (2001)

Computes Frobenius Normal Form, and hence χ_M . Is in $O^{\sim}(n^{\omega})$, with divisions.

Non-deterministic: Pernet-Storjohann (2007), field large enough

Is a Las Vegas algorithm to compute Frobenius Normal Form, and hence χ_M . Is in $O(n^\omega)$ in average, **with divisions**.

Division-free: Kaltoffen-Villard (2004)

Is in $O(n^{2.7})$.

Deterministic: Storjohann (2001)

Computes Frobenius Normal Form, and hence χ_M . Is in $O^{\sim}(n^{\omega})$, with divisions.

Non-deterministic: Pernet-Storjohann (2007), field large enough

Is a Las Vegas algorithm to compute Frobenius Normal Form, and hence χ_M . Is in $O(n^\omega)$ in average, **with divisions**.

Division-free: Kaltoffen-Villard (2004)

Is in $O(n^{2.7})$.

What is left?

■ No division, so precision is saved, can a gain of precision be seen?

Deterministic: Storjohann (2001)

Computes Frobenius Normal Form, and hence χ_M . Is in $O^{\sim}(n^{\omega})$, with divisions.

Non-deterministic: Pernet-Storjohann (2007), field large enough

Is a Las Vegas algorithm to compute Frobenius Normal Form, and hence χ_M . Is in $O(n^\omega)$ in average, **with divisions**.

Division-free: Kaltoffen-Villard (2004)

Is in $O(n^{2.7})$.

What is left?

- No division, so precision is saved, can a gain of precision be seen?
- If we know the optimal precision. We can perform Kaltoffen-Villard at high-enough precision to get the extra digits.

$$\chi'(M)$$

Derivative of det

 $\det'(M): dM \mapsto \operatorname{Tr}(\operatorname{Adj}(M) \cdot dM).$

$$\chi'(M)$$

Derivative of det

$$\det'(M): dM \mapsto \operatorname{Tr}(\operatorname{Adj}(M) \cdot dM).$$

Derivative of χ_M

$$\chi'(M): dM \mapsto \mathsf{Tr}(\mathsf{Adj}(XI_n - M) \cdot dM).$$

Naïve computations

Formulae

$$\chi'(M): dM \mapsto \operatorname{Tr}(\operatorname{Adj}(XI_n - M) \cdot dM).$$

 $\operatorname{Adj}(XI_n - M) = \chi_M \times (XI_n - M)^{-1}.$

Naïve computations

Formulae

$$\chi'(M): dM \mapsto \operatorname{Tr}(\operatorname{Adj}(XI_n - M) \cdot dM).$$

 $\operatorname{Adj}(XI_n - M) = \chi_M \times (XI_n - M)^{-1}.$

First idea

■ Compute (approximations of) χ_M and $(XI_n - M)^{-1}$.

Naïve computations

Formulae

$$\chi'(M): dM \mapsto \operatorname{Tr}(\operatorname{Adj}(XI_n - M) \cdot dM).$$

 $\operatorname{Adj}(XI_n - M) = \chi_M \times (XI_n - M)^{-1}.$

First idea

- Compute (approximations of) χ_M and $(XI_n M)^{-1}$.
- Computing $(XI_n M)^{-1} \mod X^{n+1}$ is $O^{\sim}(n^4)$ by Gaussian elimination (+ it requires divisions).

Table of contents

- 1 p-adic precision: direct approach and differential precision
- 2 Characteristic polynomial and its derivative
- 3 An efficient way for p-adic matrices
 - Hessenberg form
 - Adjugate computation
 - Experimental results

Table of contents

- 1 p-adic precision: direct approach and differential precision
- 2 Characteristic polynomial and its derivative
- 3 An efficient way for p-adic matrices
 - Hessenberg form
 - Adjugate computation
 - Experimental results

Similarity

For
$$H = PMP^{-1}$$
,

$$\chi'(M) \cdot dM = \text{Tr}(\text{Adj}(XI_n - M) \cdot dM).$$

Similarity

For
$$H = PMP^{-1}$$
,

$$\chi'(M) \cdot dM = \operatorname{Tr}(\operatorname{Adj}(XI_n - M) \cdot dM).$$

$$\chi'(M) \cdot dM = \text{Tr}(\text{Adj}(XI_n - H) \cdot PdMP^{-1}).$$

Similarity

For
$$H = PMP^{-1}$$
,

$$\chi'(M) \cdot dM = \operatorname{Tr}(\operatorname{Adj}(XI_n - M) \cdot dM).$$

$$\chi'(M) \cdot dM = \operatorname{Tr}(\operatorname{Adj}(XI_n - H) \cdot PdMP^{-1}).$$

Enough for flat precision.

Similarity

For $H = PMP^{-1}$,

$$\chi'(M) \cdot dM = \operatorname{Tr}(\operatorname{Adj}(XI_n - M) \cdot dM).$$

$$\chi'(M) \cdot dM = \operatorname{Tr}(\operatorname{Adj}(XI_n - H) \cdot PdMP^{-1}).$$

Enough for flat precision.

Similarity

For $H = PMP^{-1}$,

$$\chi'(M) \cdot dM = \text{Tr}(\text{Adj}(XI_n - M) \cdot dM).$$

$$\chi'(M) \cdot dM = \operatorname{Tr}(\operatorname{Adj}(XI_n - H) \cdot PdMP^{-1}).$$

Enough for flat precision.

Which form?

■ Jordan or trigonal?

Similarity

For $H = PMP^{-1}$,

$$\chi'(M) \cdot dM = \text{Tr}(\text{Adj}(XI_n - M) \cdot dM).$$

$$\chi'(M) \cdot dM = \operatorname{Tr}(\operatorname{Adj}(XI_n - H) \cdot PdMP^{-1}).$$

Enough for flat precision.

Which form?

Jordan or trigonal? No.

Similarity

For $H = PMP^{-1}$,

$$\chi'(M) \cdot dM = \operatorname{Tr}(\operatorname{Adj}(XI_n - M) \cdot dM).$$

$$\chi'(M) \cdot dM = \operatorname{Tr}(\operatorname{Adj}(XI_n - H) \cdot PdMP^{-1}).$$

Enough for flat precision.

- Jordan or trigonal? No.
- Frobenius?

Similarity

For $H = PMP^{-1}$,

$$\chi'(M) \cdot dM = \operatorname{Tr}(\operatorname{Adj}(XI_n - M) \cdot dM).$$

$$\chi'(M) \cdot dM = \operatorname{Tr}(\operatorname{Adj}(XI_n - H) \cdot PdMP^{-1}).$$

Enough for flat precision.

- Jordan or trigonal? No.
- Frobenius? Too complicated?

Similarity

For $H = PMP^{-1}$,

$$\chi'(M) \cdot dM = \operatorname{Tr}(\operatorname{Adj}(XI_n - M) \cdot dM).$$

$$\chi'(M) \cdot dM = \operatorname{Tr}(\operatorname{Adj}(XI_n - H) \cdot PdMP^{-1}).$$

Enough for flat precision.

- Jordan or trigonal? No.
- Frobenius? Too complicated?
- Hessenberg?

Similarity

For $H = PMP^{-1}$,

$$\chi'(M) \cdot dM = \operatorname{Tr}(\operatorname{Adj}(XI_n - M) \cdot dM).$$

$$\chi'(M) \cdot dM = \operatorname{Tr}(\operatorname{Adj}(XI_n - H) \cdot PdMP^{-1}).$$

Enough for flat precision.

- Jordan or trigonal? No.
- Frobenius? Too complicated?
- Hessenberg? Seems a good idea.

Hessenberg form

Remark

A companion matrix is Hessenberg.

Hessenberg form

Remark

A companion matrix is Hessenberg. The Frobenius form is Hessenberg.

Hessenberg reduction: modified Gaussian elimination

$$P_*MP_*^{-1} = \begin{bmatrix} m_{1,1} & m_{1,2} & m_{1,3} & m_{1,4} & & & m_{1,n} & m_{1,n} \\ m_{2,1} & m_{2,2} & m_{2,3} & m_{2,4} & & & m_{2,n} \\ m_{3,1} & m_{3,2} & m_{3,3} & m_{3,4} & & & m_{3,n} \\ m_{4,1} & m_{4,2} & m_{4,3} & m_{4,4} & & & m_{4,n} \\ \\ & & & & & & & & & & & \\ m_{n,1} & m_{n,2} & m_{n,3} & m_{n,4} & & & m_{n-1,n} & m_{n,n} \end{bmatrix}$$

Hessenberg reduction: modified Gaussian elimination

$$P_*MP_*^{-1} = \begin{bmatrix} m_{1,1} & m_{1,2} & m_{1,3} & m_{1,4} & m_{1,n} & m_{1,n} \\ m_{2,1} & m_{2,2} & m_{2,3} & m_{2,4} & & m_{2,n} \\ m_{3,1} & m_{3,2} & m_{3,3} & m_{3,4} & & m_{3,n} \\ m_{4,1} & m_{4,2} & m_{4,3} & m_{4,4} & & m_{4,n} \end{bmatrix}$$

Hessenberg reduction: modified Gaussian elimination

$$P_*MP_*^{-1} = \begin{bmatrix} m_{1,1} & m_{1,2} & m_{1,3} & m_{1,4} & m_{1,n} & m_{2,n} & m_{2,n} & m_{3,n} & m_{3,n} & m_{3,n} & m_{3,n} & m_{3,n} & m_{4,n} & m_{4,n}$$

Hessenberg reduction: modified Gaussian elimination

$$P_*MP_*^{-1} = \begin{bmatrix} m_{1,1} & m_{1,2} & m_{1,3} & m_{1,4} & m_{1,n} & m_{1,n} & m_{1,n} & m_{2,n} & m_{2,n}$$

Hessenberg reduction: modified Gaussian elimination

$$P_*MP_*^{-1} = \begin{bmatrix} m_{1,1} & m_{1,2} & m_{1,3} & m_{1,4} & m_{1,n} & m_{2,n} & m_{2,n}$$

Hessenberg reduction: modified Gaussian elimination

$$P_*MP_*^{-1} = \begin{bmatrix} m_{1,1} & m_{1,2} & m_{1,3} & m_{1,4} & m_{1,n} & m_{1,n}$$

Hessenberg reduction: modified Gaussian elimination

Hessenberg reduction: modified Gaussian elimination

$$P_*MP_*^{-1} = \begin{bmatrix} m_{1,1} & m_{1,2} & m_{1,3} & m_{1,4} & m_{1,n} & m_{1,n}$$

Hessenberg reduction: modified Gaussian elimination

Hessenberg reduction: modified Gaussian elimination

$$P_*MP_*^{-1} = \begin{bmatrix} m_{1,1} & m_{1,4} & m_{1,3} & m_{1,2} & m_{1,n} & m_{1,n} \\ m_{4,1} & m_{4,4} & m_{4,3} & m_{4,2} & m_{4,n} \\ m_{3,1} & m_{3,4} & m_{3,3} & m_{3,2} & m_{3,n} \\ m_{2,1} & m_{2,4} & m_{2,3} & m_{2,2} & m_{2,n} \\ \end{bmatrix}$$

Hessenberg reduction: modified Gaussian elimination

$$P_*MP_*^{-1} = \begin{bmatrix} m_{1,1} & m_{1,4} & m_{1,3} & m_{1,2} & m_{1,n} & m_{1,n} \\ m_{4,1} & m_{4,4} & m_{4,3} & m_{4,2} & m_{4,n} \\ m_{3,1} & m_{3,4} & m_{3,3} & m_{3,2} & m_{3,n} \\ m_{2,1} & m_{2,4} & m_{2,3} & m_{2,2} & m_{2,n} \end{bmatrix}$$

Hessenberg reduction: modified Gaussian elimination

$$P_*MP_*^{-1} = \begin{bmatrix} m_{1,1} & m_{1,4} & m_{1,3} & m_{1,2} & m_{1,n} & m_{1,n} \\ m_{4,1} & m_{4,4} & m_{4,3} & m_{4,2} & m_{4,n} \\ m_{3,1} & m_{3,4} & m_{3,3} & m_{3,2} & m_{3,n} \\ m_{2,1} & m_{2,4} & m_{2,3} & m_{2,2} & m_{2,n} \\ \end{bmatrix}$$

Hessenberg reduction: modified Gaussian elimination

Hessenberg reduction: modified Gaussian elimination

$$P_*MP_*^{-1} = \begin{bmatrix} m_{1,1} & m_{1,4} & m_{1,3} & m_{1,2} & m_{1,n} & m_{1,n}$$

Hessenberg reduction: modified Gaussian elimination

$$P_*MP_*^{-1} = \begin{bmatrix} m_{1,1} & \widetilde{m_{1,4}} & m_{1,3} & m_{1,2} & m_{1,n} & m_{1,n} \\ m_{4,1} & \widetilde{m_{4,4}} & m_{4,3} & m_{4,2} & & m_{4,n} \\ 0 & \widetilde{m_{3,4}} & \widetilde{m_{3,3}} & \widetilde{m_{3,2}} & & \widetilde{m_{3,n}} \\ m_{2,1} & \widetilde{m_{2,4}} & m_{2,3} & m_{2,2} & & m_{2,n} \\ \end{bmatrix}$$

Hessenberg reduction: modified Gaussian elimination

$$P_*MP_*^{-1} = \begin{bmatrix} m_{1,1} & \widetilde{m_{1,4}} & m_{1,3} & m_{1,2} & m_{1,n} & m_{1,n} \\ \hline m_{4,1} & \widetilde{m_{4,4}} & m_{4,3} & m_{4,2} & m_{4,n} \\ \hline 0 & \widetilde{m_{3,4}} & \widetilde{m_{3,3}} & \widetilde{m_{3,2}} & \widetilde{m_{3,n}} \\ \hline m_{2,1} & m_{2,4} & m_{2,3} & m_{2,2} & m_{2,n} \\ \hline m_{n,1} & \widetilde{m_{n,4}} & m_{n,3} & m_{n,2} & m_{n-1,n} & m_{n,n} \\ \end{bmatrix}$$

Hessenberg reduction: modified Gaussian elimination

Hessenberg reduction: modified Gaussian elimination

$$P_*MP_*^{-1} = \begin{bmatrix} m_{1,1} & m_{1,3} & m_{1,2} & m_{1,n} & m_{1,n} \\ m_{4,1} & m_{4,3} & m_{4,3} & m_{4,2} & m_{4,n} \\ 0 & m_{3,4} & m_{3,3} & m_{3,2} & m_{3,n} \\ 0 & m_{2,4} & m_{2,3} & m_{2,2} & m_{2,n} \end{bmatrix}$$

Hessenberg reduction: modified Gaussian elimination

$$P_*MP_*^{-1} = \begin{bmatrix} m_{1,1} & \overline{m_{1,4}} & m_{1,3} & m_{1,2} & m_{1,n} & m_{1,n} \\ m_{4,1} & \overline{m_{4,4}} & m_{4,3} & m_{4,2} & & m_{4,n} \\ 0 & \overline{m_{3,4}} & \overline{m_{3,3}} & \overline{m_{3,2}} & & \overline{m_{3,n}} \\ 0 & \overline{m_{2,4}} & \overline{m_{2,3}} & \overline{m_{2,2}} & & \overline{m_{2,n}} \\ \\ m_{n,1} & \overline{m_{n,4}} & m_{n,3} & m_{n,2} & & m_{n-1,n} & m_{n,n} \end{bmatrix}$$

Hessenberg reduction: modified Gaussian elimination

$$P_*MP_*^{-1} = \begin{pmatrix} m_{1,1} & \widetilde{m_{1,4}} & m_{1,3} & m_{1,2} & m_{1,n} & m_{1,n} \\ \hline m_{4,1} & m_{4,4} & m_{4,3} & m_{4,2} & m_{4,n} \\ \hline 0 & \widetilde{m_{3,4}} & \widetilde{m_{3,3}} & \widetilde{m_{3,2}} & \widetilde{m_{3,n}} \\ 0 & m_{2,4} & m_{2,3} & \widetilde{m_{2,2}} & \widetilde{m_{2,n}} \\ \hline m_{n,1} & m_{n,4} & m_{n,3} & m_{n,2} & m_{n-1,n} & m_{n,n} \\ \hline \end{pmatrix}$$

Hessenberg reduction: modified Gaussian elimination

Hessenberg reduction: modified Gaussian elimination

Hessenberg reduction: modified Gaussian elimination

$$P_*MP_*^{-1} = \begin{bmatrix} m_{1,1} & \widehat{m_{1,4}} & m_{1,3} & m_{1,2} & m_{1,n} & m_{1,n} \\ m_{4,1} & \widehat{m_{4,4}} & m_{4,3} & m_{4,2} & & m_{4,n} \\ 0 & \widehat{m_{3,4}} & \widehat{m_{3,3}} & \widehat{m_{3,2}} & & \widehat{m_{3,n}} \\ 0 & \widehat{m_{2,4}} & \widehat{m_{2,3}} & \widehat{m_{2,2}} & & \widehat{m_{2,n}} \\ \end{bmatrix}$$

Hessenberg reduction: modified Gaussian elimination

$$P_{*}MP_{*}^{-1} = \begin{bmatrix} m_{1,1} & \widetilde{m_{1,4}} & m_{1,3} & m_{1,2} & m_{1,n} & m_{1,n} \\ m_{4,1} & \widetilde{m_{4,4}} & m_{4,3} & m_{4,2} & m_{4,n} \\ 0 & \overline{m_{3,4}} & \overline{m_{3,3}} & \overline{m_{3,2}} & \overline{m_{3,n}} \\ 0 & \overline{m_{2,4}} & \overline{m_{2,3}} & \overline{m_{2,2}} & \overline{m_{2,n}} \\ \end{bmatrix}$$

Hessenberg reduction: modified Gaussian elimination

$$P_{*}MP_{*}^{-1} = \begin{bmatrix} m_{1,1} & \widetilde{m_{1,4}} & m_{1,3} & m_{1,2} & m_{1,n} & m_{1,n} \\ m_{4,1} & \widetilde{m_{4,4}} & m_{4,3} & m_{4,2} & m_{4,n} \\ 0 & \widetilde{m_{3,4}} & \widetilde{m_{3,3}} & \widetilde{m_{3,2}} & \widetilde{m_{3,n}} \\ 0 & \widetilde{m_{2,4}} & \widetilde{m_{2,3}} & \widetilde{m_{2,2}} & \widetilde{m_{2,n}} \end{bmatrix}$$

Hessenberg reduction: modified Gaussian elimination

$$P_*MP_*^{-1} = \begin{bmatrix} m_{1,1} & \overline{m_{1,4}} & \overline{m_{1,3}} & m_{1,2} & m_{1,n} & m_{1,n} \\ m_{4,1} & \overline{m_{4,4}} & \overline{m_{4,3}} & m_{4,2} & m_{4,n} \\ 0 & \overline{m_{3,4}} & \overline{m_{3,3}} & \overline{m_{3,2}} & \overline{m_{3,n}} \\ 0 & 0 & \overline{m_{2,3}} & \overline{m_{2,2}} & \overline{m_{2,n}} \\ 0 & 0 & 0 & \overline{m_{n,3}} & \overline{m_{n,2}} & \overline{m_{n-1,n}} & \overline{m_{n,n}} \end{bmatrix}$$

Hessenberg reduction: modified Gaussian elimination

$$P_*MP_*^{-1} = \begin{bmatrix} m_{1,1} & \widehat{m_{1,4}} & \widehat{m_{1,3}} & m_{1,2} & m_{1,n} & m_{1,n} \\ m_{4,1} & \widehat{m_{4,4}} & \widehat{m_{4,3}} & m_{4,2} & m_{4,n} \\ 0 & \widehat{m_{3,4}} & m_{3,3} & \widehat{m_{3,2}} & \widehat{m_{3,n}} \\ 0 & 0 & m_{2,3} & \widehat{m_{2,2}} & \widehat{m_{2,n}} \\ 0 & 0 & m_{n,3} & \widehat{m_{n,2}} & \widehat{m_{n-1,n}} & \widehat{m_{n,n}} \end{bmatrix}$$

Hessenberg reduction: modified Gaussian elimination

$$P_*MP_*^{-1} = \begin{bmatrix} m_{1,1} & \widetilde{m_{1,4}} & \widetilde{m_{1,3}} & m_{1,2} & m_{1,n} & m_{1,n} \\ m_{4,1} & \overline{m_{4,4}} & \overline{m_{4,3}} & m_{4,2} & m_{4,n} \\ 0 & \overline{m_{3,4}} & \overline{m_{3,3}} & \overline{m_{3,2}} & \overline{m_{3,n}} \\ 0 & 0 & \overline{m_{2,3}} & \overline{m_{2,2}} & \overline{m_{2,n}} \\ 0 & 0 & \overline{m_{2,3}} & \overline{m_{2,2}} & \overline{m_{2,n}} \\ 0 & 0 & \overline{m_{n,3}} & \overline{m_{n,2}} & \overline{m_{n-1,n}} & \overline{m_{n,n}} \end{bmatrix}$$

Hessenberg reduction: modified Gaussian elimination

$$P_{*}MP_{*}^{-1} = \begin{bmatrix} m_{1,1} & \widetilde{m_{1,4}} & \widetilde{m_{1,3}} & m_{1,2} & m_{1,n} & m_{1,n} \\ m_{4,1} & \widetilde{m_{4,4}} & \overline{m_{4,3}} & m_{4,2} & m_{4,n} \\ 0 & \widetilde{m_{3,4}} & \overline{m_{3,3}} & \overline{m_{3,2}} & \overline{m_{3,n}} \\ 0 & 0 & \overline{m_{2,3}} & \overline{m_{2,2}} & \overline{m_{2,n}} \\ 0 & 0 & \overline{m_{n,3}} & \overline{m_{n,2}} & \overline{m_{n-1,n}} & \overline{m_{n,n}} \end{bmatrix}$$

Hessenberg reduction: modified Gaussian elimination

Hessenberg reduction: modified Gaussian elimination

$$P_*MP_*^{-1} = \begin{bmatrix} m_{1,1} & \widetilde{m_{1,4}} & \widetilde{m_{1,3}} & m_{1,2} & m_{1,n} & m_{1,n} \\ m_{4,1} & \widetilde{m_{4,4}} & \widetilde{m_{4,3}} & m_{4,2} & m_{4,n} \\ 0 & \widetilde{m_{3,4}} & \widetilde{m_{3,3}} & \widetilde{m_{3,2}} & m_{3,n} \\ 0 & 0 & \widetilde{m_{2,3}} & \widetilde{m_{2,2}} & \widetilde{m_{2,n}} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Hessenberg reduction: modified Gaussian elimination

$$P_*MP_*^{-1} = \begin{bmatrix} m_{1,1} & \widetilde{m_{1,4}} & \widetilde{m_{1,3}} & m_{1,2} & m_{1,n} & m_{1,n} \\ m_{4,1} & \widetilde{m_{4,4}} & \widetilde{m_{4,3}} & m_{4,2} & m_{4,n} \\ 0 & \widetilde{m_{3,4}} & \overline{m_{3,3}} & \overline{m_{3,2}} & m_{3,n} \\ 0 & 0 & \overline{m_{2,3}} & \overline{m_{2,2}} & \overline{m_{2,n}} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 $Hessenberg\ reduction:\ modified\ Gaussian\ elimination$

Hessenberg form

Computation of an Hessenberg form

Hessenberg reduction: modified Gaussian elimination

The result is Hessenberg. It required $O(n^3)$ operations on the base field.

Hessenberg form

Computation of an Hessenberg form

Hessenberg reduction: modified Gaussian elimination

$$P_*MP_*^{-1} = \begin{bmatrix} \hline m_{1,1} & \widetilde{m_{1,4}} & \widetilde{m_{1,3}} & m_{1,2} & & & & & \\ m_{4,1} & \overline{m_{4,4}} & \overline{m_{4,3}} & m_{4,2} & & & & & \\ m_{4,1} & \overline{m_{4,4}} & \overline{m_{4,3}} & m_{4,2} & & & & & \\ 0 & \overline{m_{3,4}} & \overline{m_{3,3}} & \overline{m_{3,2}} & & & \overline{m_{3,n}} \\ 0 & 0 & \overline{m_{2,3}} & \overline{m_{2,2}} & & & & \overline{m_{2,n}} \\ 0 & 0 & \overline{m_{5,2}} & & & & & \\ 0 & 0 & 0 & 0 & & & & & \\ \hline 0 & 0 & 0 & 0 & & & & & & \\ \hline \end{bmatrix}$$

The result is Hessenberg. It required $O(n^3)$ operations on the base field. It is possible to do everything mod p^N , with no division.

Table of contents

- 1 p-adic precision: direct approach and differential precision
- 2 Characteristic polynomial and its derivative
- 3 An efficient way for p-adic matrices
 - Hessenberg form
 - Adjugate computation
 - Experimental results

Adjugate of $H = PMP^{-1}$

$$XI_n - H$$

$$det(XI_n - H) = \chi_H.$$

$$Adj(XI_n - H) = \chi_M \times (XI_n - H)^{-1}.$$

Adjugate of $H = PMP^{-1}$

$$XI_n - H$$

$$det(XI_n - H) = \chi_H.$$

$$Adj(XI_n - H) = \chi_M \times (XI_n - H)^{-1}.$$

$$I_n - XH$$

$$det(I_n - XH) = \chi_H^*$$
, reciprocal polynomial.
 $Adj(I_n - XH) = \chi_M \times (I_n - XH)^{-1}$.

An algorithm for Hessenberg matrices: computation of $(Id - XH)^{-1}$

$$P_*(I_n-XH)Q_* = \begin{bmatrix} 1-Xh_{1,1} & Xh_{1,2} & Xh_{1,3} & Xh_{1,n-1} & Xh_{1,n} \\ Xh_{2,1} & 1-Xh_{2,2} & Xh_{2,3} & Xh_{2,n-1} & Xh_{2,n} \\ 0 & Xh_{3,2} & 1-Xh_{3,3} \\ 0 & 0 & Xh_{4,3} \\ 0 & 0 & 0 \\ & & & Xh_{n-1,n-2} & 1-Xh_{n-1,n-1} & Xh_{n-1,n} \\ 0 & 0 & 0 & 0 & Xh_{n,n-1} & 1-Xh_{n,n} \end{bmatrix}$$

An algorithm for Hessenberg matrices: computation of $(Id - XH)^{-1}$

$$P_*(I_n - XH)Q_* = \begin{bmatrix} 1 - Xh_{1,1} & Xh_{1,2} & Xh_{1,3} & Xh_{1,n-1} & Xh_{1,n} \\ Xh_{2,1} & 1 - Xh_{2,2} & Xh_{2,3} & Xh_{2,n-1} & Xh_{2,n} \\ 0 & Xh_{3,2} & 1 - Xh_{3,3} \\ 0 & 0 & Xh_{4,3} \\ 0 & 0 & 0 & Xh_{4,3} \\ 0 & 0 & 0 & Xh_{n-1,n-2} & 1 - Xh_{n-1,n-1} & Xh_{n-1,n} \\ 0 & 0 & 0 & 0 & Xh_{n,n-1} & 1 - Xh_{n,n} \end{bmatrix}$$

An algorithm for Hessenberg matrices: computation of $(Id - XH)^{-1}$

Everything done $mod p^M, X^{n+1}$.

An algorithm for Hessenberg matrices: computation of $(Id - XH)^{-1}$

Everything done $mod p^M, X^{n+1}$.

An algorithm for Hessenberg matrices: computation of $(Id - XH)^{-1}$

An algorithm for Hessenberg matrices: computation of $(Id - XH)^{-1}$

An algorithm for Hessenberg matrices: computation of $(Id - XH)^{-1}$

An algorithm for Hessenberg matrices: computation of $(Id - XH)^{-1}$

An algorithm for Hessenberg matrices: computation of
$$(Id - XH)^{-1}$$

$$P_*(I_n - XH)Q_* = \begin{bmatrix} 1 - Xh_{1,1} & 0 & 0 & 0 & 0 \\ Xh_{2,1} & 1 - Xh_{2,2} & Xh_{2,3} & Xh_{2,n-1} & Xh_{2,n} & Xh_{2,n-1} & Xh_{2,n} \end{bmatrix}$$

$$0 & Xh_{3,2} & 1 - Xh_{3,3} & 0 & 0 & Xh_{4,3} & 0 & 0 & 0 & Xh_{n-1,n-2} & 1 - Xh_{n-1,n-1} & Xh_{n-1,n} & 0 & Xh_{n-1,n-2} & 1 - Xh_{n-1,n-1} & 1 - Xh_{n,n} & 0 & Xh_{n,n-1} & 1 - Xh_{n,n} & Xh_{n-1,n-1} & Xh_{n-1,n} & Xh_{n-1,n-1} & Xh_{n-1,n-1}$$

An algorithm for Hessenberg matrices: computation of $(Id - XH)^{-1}$

An algorithm for Hessenberg matrices: computation of $(Id - XH)^{-1}$

$$P_*(I_n-XH)Q_* = \begin{bmatrix} 1-Xh_{1,1} & 0 & 0 & 0 & 0 \\ Xh_{2,1} & Xh_{2,2} & Xh_{2,3} & Xh_{2,n-1} & Xh_{2,n} \\ 0 & Xh_{3,2} & 1-Xh_{3,3} \\ 0 & 0 & Xh_{4,3} \\ 0 & 0 & 0 & Xh_{n-1,n-2} & 1-Xh_{n-1,n-1} & Xh_{n-1,n} \\ 0 & 0 & 0 & 0 & Xh_{n,n-1} & 1-Xh_{n,n} \end{bmatrix}$$

An algorithm for Hessenberg matrices: computation of $(Id - XH)^{-1}$

$$P_*(I_n - XH)Q_* = \begin{bmatrix} 1 - Xh_{1,1} & 0 & 0 & 0 & 0 & 0 \\ Xh_{2,1} & 1 - X\widehat{h_{2,2}} & 0 & 0 & 0 & 0 & 0 \\ & 0 & Xh_{3,2} & 1 - X\widehat{h_{3,3}} & & & & & \\ & 0 & 0 & Xh_{4,3} & & & & & \\ & & & & & & & Xh_{n-1,n-2} & 1 - Xh_{n-1,n-1} & Xh_{n-1,n} & & \\ & & & & & & & Xh_{n-1,n-2} & 1 - Xh_{n-1,n-1} & Xh_{n-1,n} & & \\ & & & & & & & & Xh_{n-1,n-2} & 1 - Xh_{n-1,n-1} & Xh_{n-1,n} & & \\ & & & & & & & & Xh_{n-1,n-2} & 1 - Xh_{n-1,n-1} & Xh_{n-1,n} & & \\ & & & & & & & & Xh_{n-1,n-2} & 1 - Xh_{n-1,n-1} & Xh_{n-1,n} & & \\ & & & & & & & & Xh_{n-1,n-2} & 1 - Xh_{n-1,n-1} & Xh_{n-1,n} & & \\ & & & & & & & & Xh_{n-1,n-2} & 1 - Xh_{n-1,n-1} & Xh_{n-1,n} & & \\ & & & & & & & & Xh_{n-1,n-2} & 1 - Xh_{n-1,n-1} & Xh_{n-1,n} & & \\ & & & & & & & & Xh_{n-1,n-2} & 1 - Xh_{n-1,n-1} & Xh_{n-1,n} & & \\ & & & & & & & & Xh_{n-1,n-2} & 1 - Xh_{n-1,n-1} & Xh_{n-1,n} & & \\ & & & & & & & & Xh_{n-1,n-2} & 1 - Xh_{n-1,n-1} & Xh_{n-1,n} & & \\ & & & & & & & & Xh_{n-1,n-2} & 1 - Xh_{n-1,n-1} & Xh_{n-1,n} & & \\ & & & & & & & & Xh_{n-1,n-2} & 1 - Xh_{n-1,n-1} & Xh_{n-1,n} & & \\ & & & & & & & & Xh_{n-1,n-2} & 1 - Xh_{n-1,n-1} & Xh_{n-1,n} & & \\ & & & & & & & & Xh_{n-1,n-2} & 1 - Xh_{n-1,n-1} & Xh_{n-1,n} & & \\ & & & & & & & & Xh_{n-1,n-2} & 1 - Xh_{n-1,n-1} & Xh_{n-1,n} & & \\ & & & & & & & & & Xh_{n-1,n-2} & 1 - Xh_{n-1,n-1} & Xh_{n-1,n} & & \\ & & & & & & & & & Xh_{n-1,n-2} & 1 - Xh_{n-1,n-1} & Xh_{n-1,n} & & \\ & & & & & & & & Xh_{n-1,n-2} & 1 - Xh_{n-1,n-1} & Xh_{n-1,n} & & \\ & & & & & & & & & Xh_{n-1,n-2} & Xh_{n-1,n-1} & Xh_{n-1,n} & & \\ & & & & & & & & & & Xh_{n-1,n-2} & Xh_{n-1,n-1} & Xh_{n-1,n} & & \\ & & & & & & & & & & Xh_{n-1,n-2} & Xh_{n-1,n-1} & Xh_{n-1,n} & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\$$

An algorithm for Hessenberg matrices: computation of $(Id - XH)^{-1}$

Adjugate computation

Computation

An algorithm for Hessenberg matrices: computation of $(Id - XH)^{-1}$

An algorithm for Hessenberg matrices: computation of $(Id - XH)^{-1}$

An algorithm for Hessenberg matrices: computation of $(Id - XH)^{-1}$

An algorithm for Hessenberg matrices: computation of $(Id - XH)^{-1}$

$$P_*(I_n-XH)Q_* = \begin{bmatrix} 1-Xh_{1,1} & 0 & 0 & 0 & 0 & 0 \\ \hline Xh_{2,1} & 1-X\widehat{h_{2,2}} & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & Xh_{3,2} & 1-X\widehat{h_{3,3}} & & & & & & \\ 0 & 0 & Xh_{4,3} & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & &$$

An algorithm for Hessenberg matrices: computation of $(Id - XH)^{-1}$

An algorithm for Hessenberg matrices: computation of $(Id - XH)^{-1}$

Everything done $\operatorname{mod} p^M, X^{n+1}$. $\operatorname{det}(Id - XH) = \prod_i (1 - X \widetilde{h_{i,i}})$.

An algorithm for Hessenberg matrices: computation of $(Id - XH)^{-1}$

Everything done $\operatorname{mod} p^M, X^{n+1}$. $\operatorname{det}(Id - XH) = \prod_i (1 - X \widetilde{h_{i,i}})$. $(Id - XH)^{-1}$ obtained from $Q\Delta^{-1}P$, in $O^{\sim}(n^3)$, with no division.

The case of flat precision

M is given at precision $dM = O(p^N)$ on each coefficient.

The case of flat precision

M is given at precision $dM = O(p^N)$ on each coefficient.

1 Compute $H = PMP^{-1}$ an Hessenberg form.

The case of flat precision

M is given at precision $dM = O(p^N)$ on each coefficient.

- **1** Compute $H = PMP^{-1}$ an Hessenberg form.
- **2** Compute $Adj(I_n XH)$.

The case of flat precision

M is given at precision $dM = O(p^N)$ on each coefficient.

- **1** Compute $H = PMP^{-1}$ an Hessenberg form.
- **2** Compute $Adj(I_n XH)$.

The case of flat precision

M is given at precision $dM = O(p^N)$ on each coefficient.

- **1** Compute $H = PMP^{-1}$ an Hessenberg form.
- **2** Compute $Adj(I_n XH)$.

$$Adj(XI_n - H) = Adj(I_n - XH)^*.$$

The case of flat precision

M is given at precision $dM = O(p^N)$ on each coefficient.

- **1** Compute $H = PMP^{-1}$ an Hessenberg form.
- **2** Compute $Adj(I_n XH)$.

- $Adj(XI_n H) = Adj(I_n XH)^*.$
- $Adj(I_n XH) = P Adj(I_n XM)P^{-1}$

The case of flat precision

M is given at precision $dM = O(p^N)$ on each coefficient.

- **1** Compute $H = PMP^{-1}$ an Hessenberg form.
- **2** Compute $Adj(I_n XH)$.

$$Adj(XI_n - H) = Adj(I_n - XH)^*.$$

$$Adj(I_n - XH) = P Adj(I_n - XM)P^{-1}$$

$$If P^{-1}dMP = dM,$$

$$tr(Adj(I_n - XM) \cdot dM) = tr(Adj(I_n - XH) \cdot dM).$$

The case of flat precision

M is given at precision $dM = O(p^N)$ on each coefficient.

- **1** Compute $H = PMP^{-1}$ an Hessenberg form.
- **2** Compute $Adj(I_n XH)$.

Precision and complexity

- $Adj(XI_n H) = Adj(I_n XH)^*.$
- $Adj(I_n XH) = P Adj(I_n XM)P^{-1}$
- If $P^{-1}dMP = dM$,

$$tr(Adj(I_n - XM) \cdot dM) = tr(Adj(I_n - XH) \cdot dM).$$

Precision can directly be read from $Adj(I_n - XH)$.

The case of flat precision

M is given at precision $dM = O(p^N)$ on each coefficient.

- **1** Compute $H = PMP^{-1}$ an Hessenberg form.
- **2** Compute $Adj(I_n XH)$.

Precision and complexity

- $Adj(XI_n H) = Adj(I_n XH)^*.$
- $Adj(I_n XH) = P Adj(I_n XM)P^{-1}$
- If $P^{-1}dMP = dM$,

$$tr(Adj(I_n - XM) \cdot dM) = tr(Adj(I_n - XH) \cdot dM).$$

Precision can directly be read from $Adj(I_n - XH)$. All in all in $O^{\sim}(n^3)$, with no division.

Non-flat

Jagged precision

Precision dM on each coefficient of M may differ.

Precision?

No longer $P^{-1}dMP = dM$.

Non-flat

Jagged precision

Precision dM on each coefficient of M may differ.

Precision?

No longer $P^{-1}dMP = dM$.

Computing $P \operatorname{Adj}(XI_n - H)P^{-1}$ or $P^{-1}dMP$ is very costly.

Adjugate computation

Factorization

A classical formula

If $A \in M_n(K)$ is of rank 1,

Factorization

A classical formula

If $A \in M_n(K)$ is of rank 1, there exists $u, v \in K^n$ such that

$$A = u \cdot {}^{T}v.$$

Factorization

A classical formula

If $A \in M_n(K)$ is of rank 1, there exists $u, v \in K^n$ such that

$$A = u \cdot {}^{T}v.$$

A new formula for Adj(XId - M)

Under some genericity assumptions,

Factorization

A classical formula

If $A \in M_n(K)$ is of rank 1, there exists $u, v \in K^n$ such that

$$A = u \cdot {}^{T}v.$$

A new formula for Adj(XId - M)

Under some genericity assumptions, there exists some $U, V \in K[X]_{\leq n}^n$, $f \in K[X]_{\leq n}$ such that:

Factorization

A classical formula

If $A \in M_n(K)$ is of rank 1, there exists $u, v \in K^n$ such that

$$A = u \cdot {}^{T}v.$$

A new formula for Adj(XId - M)

Under some genericity assumptions, there exists some $U, V \in K[X]_{\leq n}^n$, $f \in K[X]_{\leq n}$ such that:

$$Adj(XId - M) = f \cdot U \cdot {}^{T}V \mod \chi_{M}.$$

Adjugate computation

Conclusion on jagged precision

An algorithm

An algorithm

■ Compute Adj(XId - H) and approximate χ_M for $M = PHP^{-1}$ with H Hessenberg.

An algorithm

- Compute Adj(XId H) and approximate χ_M for $M = PHP^{-1}$ with H Hessenberg.
- Factor $Adj(XId H) = f \cdot U \cdot {}^TV \mod \chi_M$.

An algorithm

- Compute Adj(XId H) and approximate χ_M for $M = PHP^{-1}$ with H Hessenberg.
- Factor $Adj(XId H) = f \cdot U \cdot {}^TV \mod \chi_M$.
- Then $Adj(XId M) = f \cdot (PU) \cdot (^T VP^{-1}) \mod \chi_M$.

An algorithm

- Compute Adj(XId H) and approximate χ_M for $M = PHP^{-1}$ with H Hessenberg.
- Factor $Adj(XId H) = f \cdot U \cdot {}^TV \mod \chi_M$.
- Then $Adj(XId M) = f \cdot (PU) \cdot (^T VP^{-1}) \mod \chi_M$.

Complexity and precision

In $O^{\sim}(n^3)$, but with divisions to compute the factorization (Extended Euclidean Algorithm).

An algorithm

- Compute Adj(XId H) and approximate χ_M for $M = PHP^{-1}$ with H Hessenberg.
- Factor $Adj(XId H) = f \cdot U \cdot {}^TV \mod \chi_M$.
- Then $Adj(XId M) = f \cdot (PU) \cdot (^T VP^{-1}) \mod \chi_M$.

Complexity and precision

In $O^{\sim}(n^3)$, but with divisions to compute the factorization (Extended Euclidean Algorithm). Enough for precision on every coefficient.

Table of contents

- 1 p-adic precision: direct approach and differential precision
- 2 Characteristic polynomial and its derivative
- 3 An efficient way for p-adic matrices
 - Hessenberg form
 - Adjugate computation
 - Experimental results

In practice, is it worth it?

Average precision loss on the characteristic polynomial of a random 9×9 matrix over \mathbb{Q}_2 — results for a sample of 1000 instances.

	Average loss of accuracy	
	Optimal	Naïve, division-free
X ⁰ (det.)	3.17	196
X1 X2 X3 X4 X5 X6 X7 X8 (trace)	2.98 2.75 2.74 2.57 2.29 2.07 1.64 0.99	161 129 108 63.2 51.6 9.04 5.70 0.99
(trace)		

On *p*-adic precision

On p-adic precision

■ Step-by-step analysis : as a first step. Can show differentiability and naïve loss in precision during the computation.

On p-adic precision

- Step-by-step analysis: as a first step. Can show differentiability and naïve loss in precision during the computation.
- Differential calculus : **intrinsic** and can handle both **gain** and **loss**.

On p-adic precision

- Step-by-step analysis: as a first step. Can show differentiability and naïve loss in precision during the computation.
- Differential calculus : intrinsic and can handle both gain and loss.

On characteristic polynomial: generic case

On p-adic precision

- Step-by-step analysis: as a first step. Can show differentiability and naïve loss in precision during the computation.
- Differential calculus : intrinsic and can handle both gain and loss.

On characteristic polynomial: generic case

■ Can know the **optimal** precision in $O^{\sim}(n^3)$ without division when starting from flat precision.

On p-adic precision

- Step-by-step analysis: as a first step. Can show differentiability and naïve loss in precision during the computation.
- Differential calculus : intrinsic and can handle both gain and loss.

On characteristic polynomial: generic case

- Can know the **optimal** precision in $O^{\sim}(n^3)$ without division when starting from flat precision.
- Can know the **optimal** precision in $O^{\sim}(n^3)$ with few divisions when starting from jagged precision.

On p-adic precision

- Step-by-step analysis: as a first step. Can show differentiability and naïve loss in precision during the computation.
- Differential calculus : intrinsic and can handle both gain and loss.

On characteristic polynomial: generic case

- Can know the **optimal** precision in $O^{\sim}(n^3)$ without division when starting from flat precision.
- Can know the **optimal** precision in $O^{\sim}(n^3)$ with few divisions when starting from jagged precision.
- If one allows (few) divisions, faster methods are possible.

References

Initial article

■ XAVIER CARUSO, DAVID ROE AND TRISTAN VACCON Tracking p-adic precision, ANTS XI, 2014.

Linear Algebra

■ XAVIER CARUSO, DAVID ROE AND TRISTAN VACCON p-adic Precision in Linear Algebra, ISSAC 2015.

Characteristic polynomial

■ XAVIER CARUSO, DAVID ROE AND TRISTAN VACCON Characteristic polynomials of p-adic matrices, ISSAC 2017.

Thank you for your attention

