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What are parametric curves & surfaces ?

o= R — R3

fi f f;
= o (6 46-69)

¢:= R? — R3

fi(s, f(s,u) f3(s,
(s.u) (B2 He flet),

where fy, fi, >, f3 are polynomials in s and s, u respectively over R,
then Im(y) defines surface in R3.
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What is the distance between a point and a plane curve?

We would like to compute the distance from a point p € R? to a

parametric curve C ( ¢ : R — R? such that (s) <287 28))

For this reason, we look for the orthogonal projections of p onto C.
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Red lines : tangent lines at ¢; and g2,
Green lines : normal lines to the curve C.
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What is the distance between a point and a plane curve?

We would like to compute the distance from a point p € R? to a

parametric curve C ( ¢ : R — R? such that (s) — (28, 2%3))

For this reason, we look for the orthogonal projections of p onto C.

Parametrization for normal lines to C :
¥ R? — R2 such that (s, t) — (¢(s) + tn(s)), where 7(s) is

normal vector obtained by (;—g (28) ,% %gg

Orthogonal projections of p are the pre-images of p via v :

$H(p) = {(s0, o) € R* : (50, o) = p}-.
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What is the distance between a point and a plane curve?
We would like to compute the distance from a point p € R? to a

parametric curve C ( ¢ : R — R? such that (s) — (ggg, ggg))

For this reason, we look for the orthogonal projections of p onto C.

Parametrization for normal lines to C :
¥ : R?2 — R2 such that (s, t) — (¢(s) + tn(s)), where 1(s) is

normal vector obtained by (;,—g (ggg) ,% %gg

Orthogonal projections of p are the pre-images of p via ¢ :

$7H(p) == {(s0, to) € R? : (50, o) = p}.
Expected number of the orthogonal projections :
Suppose deg(f;) = d,i = {0,1,2}.
non-rational, i.e. fp =1, 2d —1,

rational, i.e. fg # 1, 3d —2. = % ot
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Triangular surfaces

80:: ]R2 - R3
(S,u) — (fl(s,u) f(s,u) f;,(s,u))’

fo(s,u)’ fo(s,u)’ fio(s,u)

where fy, f1, f, f3 are polynomials of degree d in s, u over R.
Choose a basis : monomial basis. Then, fy, fi, >, f3 are written in
basis

{s9,
d-1

If fo =1, then the surface is called, non-rational triangular surface,
otherwise it is called rational triangular surface.



Tensor-product surfaces

80:: ]R2 — R3
(S,u) — (fl(s,u) f(s,u) f;,(s,u)>’

fo(s,u) fo(s,u)’ fio(s,u)

where fy, f1, >, f3 are polynomials of degree d; in s and dy in u

over R.
Choose a basis : monomial basis. Then, fy, f1, >, f3 are written in
basis
{Sdl Ud2, Sdl UC/Q—l7 , Sdl,
sh-lydh  gh—1, b1 . sl
d d—1 d
u, ue T

If fy = 1, then the surface is called, non-rational tensor-product
surface, otherwise it is called rational tensor-product surface.



Tensor-product surfaces

Ex: (2,2) tensor-product surface

p:= R2 — R3
—4520% —su? —s?+su—u?—s+18u
—2s2u2—s2 1252 8su— 7u2+2s+u 9’
—s2uP s 4252 —2su—u? —s+4u+l
(S’ U) = —25212—s2y—1252—8su—7u?+2s+u—9°
—25202—1152u+5s5u? 4252 —su+3u2—5s—5u—1
—25212—52y—1252—8su—T7u2+2s+u—9

Figures are done in Axl. [ 7 | V aYy >
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What are closest points?

v:R?> — RS

fi(s,u) f(s,u) f(s,u
(50) (g, plen b)),

im(¢) = S defines a surface in R3, x point in R3.

Closest points pg's on S to xp are minimizing the distance
function

distp,es(xo, Po)-
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We look for the orthogonal projections

dist(xo, ¢(s, u)) = [[x0 — (s, u)l],

where ||.|| Euclidean norm. We consider
[Ix0 — (s, )|
We study its extremas i.e,
A(||x0 — ¢(s, u)[|?) dp(s, u)
= 2 — _— =
I) Os (XO 90(57 U)) s 07
I||x0 — (s, u)||? do(s,u
iy Wro=slelB) _pi oy, p0etan) g

» /) and /i) give the orthogonality conditions.

» The solutions of /) and /i) contain the closest points.



We look for the orthogonal projections

The image is done in Axl.
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We look for the orthogonal projections

-0.3

Green point : the point that we project orthogonaly on the surface,
: orthogonal projection of green point,
Red line : normal line at

. tangent lines at =] % nria
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Theoretical bound for the number of orthogonal
projections onto S

Notation :
By Draisma, Horobet, Ottaviani, Sturmfels, Thomas 2014,

EDdegree := number of the orthogonal projections.
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Theoretical bound for the number of orthogonal
projections onto S

S : tensor-product surface,

1 : parametrization of S of (di,d2) non-rat rat
degree (di, d2), then EDdegree (1,1) 5 6
for tensor-product surfaces S is
(1,2) 11 14
non-rational 8didy — 2(dh + d2) + 1, (1,3) 17 29
tional 14d1dy — 6(d1 + d2) + 4.
rationa 162 = 6(d1 + cb) (2,2) 25 36
(2,3) 39 58
(3,3) 61 94




Theoretical bound for the number of orthogonal
projections onto S

S : triangular surface,
1) : parametrization of S of
degree d, then EDdegree for
triangular surfaces § is

non-rational (2d — 1)?,

rational

7d? —9d + 3.

d non-rat rat
1 1 1
2 9 13
3 25 39
4 49 79
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Where does distance problem appear in CAD 7

Applications in CAD

» Offset surface

The figures are done in CAD software TopSolid.




Where does distance problem appear in CAD ?

Applications in CAD

» Offset surface
> Surface fitting

9
10957

654

y o321

We have finite number of points p;, for i € 1,...,n, n€ N
and we look for a approximate surface S which minimizes for

instance

> dist(S, pi).
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Where does distance problem appear in CAD ?

Applications in CAD

» Offset surface
» Surface fitting
» Medial Axe
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Existing Methods

> lterative methods, Newton-Ralphson

Problems

» Initial value, convergence,

» it does not see multiple solutions.

» Subdivision methods

» More robust because no initial guess needed.

> Algebraic methods

» Usually use exact data

We propose an algebraic method which is also
symbolic-numeric and which get on well with
approximate data.



Closest point computation using moving surfaces

Moving surface is introduced by Sederberg and Chen in 1995 for
the implicitization problem.
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Closest point computation using moving surfaces

What is a moving surface?

Let
Y= R — R3

(57 U) — (9017 Y2, ‘703)

be a parametrization of a given tensor-product surface. @1, @2, ¥3
are fractions of polynomials in s, u of degree di, d> respectively.
A moving surface M is

M= > Alsu)T{ T3 752,

dEgsAiSdl
deg,Ai<ds
a1+azx+az<r

where A is of degree (di, d2), and r is the degree on Ty, T2, T3.
We say that M follows the surface if

Z Ai(s, u)pi(s, u)*pa(s, u)?es3(s, u)® = 0

deg.Ai<dy - Va2

deg,Ai<d> e ARCADES
ajt+azt+az<r



Closest point computation using moving surfaces

Related work : Thomassen, Johansen, Dokken 2004

» They construct 2 moving surfaces My in s and Ms in u,
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Closest point computation using moving surfaces

Related work : Thomassen, Johansen, Dokken 2004

» They construct 2 moving surfaces My in s and Ms in u,

» My, M, are high degree (with the previous notation) both in
(d1,d>) and r,
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Closest point computation using moving surfaces

Related work : Thomassen, Johansen, Dokken 2004

» They construct 2 moving surfaces My in s and Ms in u,

» My, M, are high degree (with the previous notation) both in
(d1,d>) and r,

» They compute the degree of the moving surface via resultant
of partial derivatives of the square distance function,
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Closest point computation using moving surfaces

Related work : Thomassen, Johansen, Dokken 2004

» They construct 2 moving surfaces My in s and Ms in u,

» My, M, are high degree (with the previous notation) both in
(d1,d>) and r,

» They compute the degree of the moving surface via resultant
of partial derivatives of the square distance function,

» This method allows the use of numerical linear algebra,



Closest point computation using moving surfaces

Related work : Thomassen, Johansen, Dokken 2004

>
| 2

They construct 2 moving surfaces My in s and M5 in v,

My, M, are high degree (with the previous notation) both in
(d1,d>) and r,

They compute the degree of the moving surface via resultant
of partial derivatives of the square distance function,

This method allows the use of numerical linear algebra,

For degree (2,2) surface, the algorithm is accurate,



Closest point computation using moving surfaces

Related work : Thomassen, Johansen, Dokken 2004

>
| 2

| 2

v

They construct 2 moving surfaces My in s and M5 in v,

My, M, are high degree (with the previous notation) both in
(d1,d>) and r,

They compute the degree of the moving surface via resultant
of partial derivatives of the square distance function,

This method allows the use of numerical linear algebra,
For degree (2,2) surface, the algorithm is accurate,

For degree (3, 3) surface, they have memory problem, no
result.



Closest point computation using moving surfaces

Related work : Thomassen, Johansen, Dokken 2004

» They compute more than necessary points

deg of ¢» [TJDO04] EDdeg

(1,1) 10 6
(1,2) 22 14
(1,3) 34 22
(2,2) 52 36
(2,3) 82 58
(3,3) 130 94
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We have a new method using AGAIN the moving surfaces

Why a new method?

» It allows using numerical linear algebra tools,

> We decrease the degrees by using moving planes, it becomes
more efficient.
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Our new method
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We homogenize the parameterization of the surface

For a rational parametrization of a the surface §

fi(s,u) f(s,u) f(s,u
o o (R H 2.

where fy, f1, >, f3 are polynomials in s, u, we would like to write an
homogeneous parameterization for the coungruence of normal lines
to S. We homogenize ¢ in either P! x P! or P2, Let X be either
P! x P! or P2

¢: X — P3
(5) = (F07F17F27F3)(£)‘



We consider the parameterization of normal lines to the surface &
which is in form

VX xPl— P3
(5) X ()\0 : )\1) — (\Uo : \Ul . \Ug : \U3).



Homogeneous normal vector for a tensor product surface

X :=P! x P!, x€ X and (Ty, T1, T2, T3) € P3. By the Jacobian
matrix of ¢

axo Fo axo F axo F> an F3

8x1 FO 8x1 Fl 8x1 F2 8x1 F3

BXQ FO ax2 Fl axz F2 axz F3
To T1 T> T3

= x3(ToAo(x)+ T1A1(x)+ T2A2(x)+ T3A3(x)) = 0,
where A; for i = 0,1,2,3 are the signed minors, we characterize

the normal line to S at (x) with the projective point,

(0:A1: Ay Az).
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Homogeneous normal vector for a triangular surface

X :=1P? x € X and (To, T1, T, T3) € P3. By the Jacobian
matrix of ¢

axo Fo axo F axo F? an F3

8x1 FO 8x1 Fl 8x1 F2 8x1 F3

BXQ FO ax2 Fl axz F2 axz F3
To T1 T> T3

= TolAo(x) + T1A1(x) + T2A2(x) + T3A3(x) =0,

where A; for i = 0,1,2,3 are the signed minors, we characterize
the normal line to S at (x) with the projective point,

(0:A1: Ay Az).
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Lemma

Let H be a hyperplane in P3 of equation

agTo + aix1 +a»To+a3T3 =0 and L be a line in P3 that are not
contained in the hyperplane at infinity V(To) € P3. Then, L is
orthogonal to H, in the sense that their restrictions to the affine
space P3\V(Ty) are orthogonal, iff the projective point
(0:a1:ay: as) belongs to L.



Lemma

Let H be a hyperplane in P3 of equation ag Ty + ayx1 + apTo +a3T3 =0
and L be a line in P3 that are not contained in the hyperplane at infinity
V(Ty) € P3. Then, L is orthogonal to H, in the sense that their
restrictions to the affine space P2\ V(Ty) are orthogonal, iff the
projective point (0 : ay : ay : a3) belongs to L.

Proof.

Let H; = Z?:O a;T; =0, and H, = Z?:O B;T; =0 are 2
hyperplanes. Suppose that Hy (| H2 = L, where L is line in P3. We
restrict then to the affine space P3\ V/(Ty),

_ (al_ﬂl>ﬂ+<0@_ﬁz>5+<%_ﬁs>ﬁzo
ao Bo/ To ao Bo/) To a  fo) To
Hence, L is orthogonal to H iff (a1, a2, a3) is orthogonal to the

both vectors (a1, a2, 3) and (51, B2, 53). Thus, (0: a1, a2, a3)
belongs to the Hi, H», then to L. O



Parameterization for the congruence of the normal lines to

surface S
For rational tensor product surface,

Vo= P! X P! X P! > P3
(Xo:Xl) X (X2:X3) X ()\02)\1) '—)(Wo,wl,W2,W3)

2d1—2 2dr—2 .
\Uo - )\OXO ! X2 2 FO(X07X11X27X3)’

2d;—2 2dy—2 .
Vi = Xoxg "t x5 27 “Fi(x0, x1; X2, x3) + A1(x0, X1; X2, x3), i =1,2,3.
For rational triangular surface,

V= P2 x Pt P8
(Xo X1 X2) X (/\0 : )\1) — (\IJO,\Ul,\Ilg,\U3)

\UO = )\0X22d_3F0(X)
Vi = Aox3? 3Fi(x) + MA(x), i = 1,2, 388 (7N Lo

e " ARCADES



Parameterization for the congruence of the normal lines to
surface S

Given degree d for triangular surface, or (di, d») for tensor-product
surface §, we write a parameterization for the congruence of
normal lines to the surface S in the following degrees.

deg(V;) Triangular surface | Tensor-product surface
Non-rational (2d —2,1) (2d1 — 1,2d, — 1,1)
Rational (3d —3,1) (3d1 — 2,3d> — 2,1)

» (2 x 2) rational tensor-product surface, W is of degree (4,4,1),
» (3 x 3) rational tensor-product surface, W is of degree (7,7,1).



Base locus BB

For rational tensor product surface,

Vo= P! X P! X P! > P3
(Xo:Xl) X (X2:X3) X ()\0 )\1) l—)(\Vo,\Ul,\Uz,\U3)

2d1—2 2dy—2 _
Vo = Aoxg ™ x5 “Fo(xo, X1; X2, X3),

v, :)\ 2d1 2 2d2 2F(X(),Xl X2,X3)—|—)\1A (Xo,Xl X2,X3) | = 1,2,3.

Then, B corresponds to the ideal (xg 2di—2 2d2 2 ,A\1) for dy > 1 and
dr > 1.



Base locus BB

For rational triangular surface,

V= P2 x P! - P3
(Xo X1 ZX2) X ()\0 : )\1) —> (Wo,\Ul,\Uz,Wg;)

Vo = Aox2? 3 Fo(x),

Vi = X5 3 Fi(x) + MAi(x), i=1,2,3.

Then, B corresponds to the ideal (x2973, A1) for d > 2.

Thus, B is one-dimensional.
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We study the fibers.

Why fibers ? : all pre-images of W at given point p € P3

WV . parameterization of the normal lines to the given surface,
p : point in P3. We consider all pre-images

W H(p) = {(x0: Ao) € X x PHW(xg, Ag) = p}.
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What is the fiber of p € P37

v is
for tensor-product surfaces in P! x P! x P!,
for triangular surfaces in P2 x PL.

X : either P! x P!, or P2.

X x P xP3> {(x, A, V(x,)))) € X x P1 x P3}
/ lﬂ'z
XxPlZ- - - AN - p3
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Details about fibers

X : either P! x P, or P2.

| := (Wo, V1, Wy, W3) ideal of k[x, A], where k : field.
R, : Rees algebra of /.

Sy : Symmetric algebra of /.

X xPlxP3> R
>
T2
X xPl-V-_-p3
The fiber at p € P3 is
™5 1(p) = Proj(R; ® k(p)),

where k(p) denoted the residue field of p.



We study FINITE LINEAR fibers.

X : either P! x P!, or P2.
| := (Wo, V1, Wy, W3) ideal of k[x, A], where k : field.
R, : Rees algebra of /.
Sy : Symmetric algebra of /.
X xPlxP3> S
o

XxPl- Y- _~p3

We will study the linear fiber £, := Proj(S; ® k(p)).
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How is linear fiber £, is related to the syzygies of W?

k : field, k[yo, y1,¥2, y3] = k[y] : coordinate ring of P3. In general

setting, i.e, W is a rational map of degree (d, e) over X x P3. Consider
the graded map

kixl(—d,—e)* = Kklx]

(8081, 82,85) — > &V
i=0

and denote its kernel by Z;, which is the first module of syzygies of /.
Setting 2 := Z1(d, e) ® k[x][y] and Zy = k[x][y], then the symmetric
algebra S(/) admits the following multi-graded presentation

zZi(-1) & 2z, -S8U)—=0 (1)
3
(g0,81,82,8) — Y&y
i=0

where the shift in the grading of Z; is with respect to the grading of
3 3
k[y]. Thus, S(I) = k[x,y]/ >_ giyi such that > gV, =0
o - i=0 =

i=b L Ve



We consider moving planes.

What is a moving plane?
A moving plane L is

L= Ao(x) + A1(x) T1 + Az(x) T2 + As(x) Ts.
We say that L follows the surface if
AP + A1 + Axdo + Azds = 0.

L is of degree 1 in Ty, T, T3, with the previous notation r = 1.
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Matrix M built from syzygies

(For a tensor product surface) We construct a matrix M by the
coefficients of the family of moving planes of degree (u,0) over

X x P! =P x P! x P!, where pu = (ju1, p12),

| | \
| | \

M(”,O): Lo { L|,' L‘r such that
| | |

M1 B2 n1—1_p2 12 pa—1_ 1
(xl X572, Xox1 TG  xE TSR xexg T L
L, L]

S X5 Xg

12 M) M(p,o) —

The L;'s are the moving planes following the parametrization of the

congruence normal lines to the given surface, V.



M is built from the syzygies of Wo, Wy, Wy, W3,
M(,0) is of form :

M0y = Mo To + My Ty + Mo T + M3 T3,

where M, M1, My, M3 are matrix of coefficients in corresponding
field.

For p = W(xo,,x1,;X2,,X3,; Ao : A1) € P3, for i = 0,...,r where

(x0, : x1,), (x2, : x3,) and (Ao : A1) are homogeneous coordlnates
on P!, we have

1 1 po—1 H1 p2—1
(XO, Xo X0 X0 X3y X0 X3 X0 x3 x1 >M(“70)(p) =

= [L1(x0,, X1,; %2,,X3,), - - Lr(x0,, X1, X2,, x3,)] = [0, --- 0]



What is the degree of moving planes?

We construct M, ) for (u,v) > (p1, 1) component wisely.

i, v1 Triangular surface Tensor-product surface
Non-rational (6d —8,0) (6d1 — 4,5d> — 3,0) or (5d1 — 3,6d> — 4,0)
Rational (9d — 11,0) (9d1 —7,7d>» — 5,0) or (7dy — 5,9d» — 7,0)

» For (2 x 2) rational tensor-product surface, we consider

M(11,9,0),
» for (3 x 3) rational tensor-product surface, we consider

M (20,17,0)-



Example

fo(x1,x3) =1,

f(x1, x3) = 0.664201612386595x; x3 — 0.696180693615241x; + 0.988206384882165x3 -+ 0.906977337706699,
fy(x1, x3) = —0.915727734023933x1 x3 + 0.988108228974431x; — 0.225588687085695x3 — 0.621331435011471,
f3(x1, x3) = —0.576270958213199x) x3 — 0.954839048406471x; — 0.891823661638540x3 -+ 0.362088586549061,

—0.425473294 5.05572860e ~ 10 —5.81097375¢ 17 —1.70665475¢ 1  —1.17323489¢ 10
3.00831969¢ ! 1.73381600e 2 —1.67834812¢6—1  2.96500346e 1.82465261e 1
—2.28128628¢ ! 5.73232481e ! 4.00966940e 1 —1.29780618¢ ! 1.16129762¢ 1
—5.17916656e —!  —1.97990280e !  —8.79439603¢ 2 —1.43415029¢ 1 2.92373481e !
M3,2,0) = | 6.80006794¢~2 2.30338581e—1 —1.97601814e 1 6.51978060e ! 1.53557241e 2
1.50506778¢ ! 1.13101614¢ ! 1.46102809¢ 1 —2.90327510e ! 5.19740790e !
—2.41574950¢ ! —3.61304910¢ !  —1.79427626¢ ! —1.29288486¢ 1 1.80889760e !
7.50543392¢ 2 3.86886648¢ 3.35420328¢ 3 3.01383654¢ ! 2.23246797e !
—2.17370476e 2 —1.37540252¢ 1 —2.03740588¢ 2 —7.03850526e 2 —1.95658132¢ !

9 x 5 size of matrix M, 5 o) is computed in 1.859 ms. Its rank at
randomly choosen 1000 points with 16 digits precision is equal to
4. The corank of M350y is 9 —4 =5 = EDdegree.




Difficulty

» Base locus B of W contains curves, i.e. dim(B) = 1.
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Difficulty

» Base locus B of W contains curves, i.e. dim(B) = 1.

» There is no related existing work.

» There exist the sections of positive degree.

P It's necessary to study the sections.



Sections

Definition

X,Y : 2 topological space.

m: X — Y be a continuous map.
Then, a section o is a continuous map

o: U— 71U such that n(o(u)) = u, Yue U,
where U is an open subset of Y.

Example
Consider
m: [0,1] x [0,1] —[0,1]
(x,y) — X.
Then, there are plenty of sections examples. For instance,
o(y) = (y,y) oro(y) = (v, c) where c is constant in [0, 1].



Sections

X a
P? a,
IPl X IPl (al, 32).

Definition

The curve C C X x P! is said to have no section in degree
< (a, b) if it has no global section of degree (c, 3) such that
a < a and 3 < e, where e is the degree over P*.



FINITE HINEAR FIBER
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Main theorems

Theorem

V: rational map of degree (d,e) on X x P!,

dim(B) =1,

C has no section in degree < (0, e) and 5% = I"5%" where

| = (Wo, Wy, Wy, W3) and I’ is an ideal generated by three general linear

combinations of the polynomials W, ... V3.
Then, for any point p in P such that the fiber over p is finite we have
that

corank M, ,)(p) = deg(£,)
for any (w,v) on such that
> if X =P?, then (u,v) € E(3d —2,e — 1) UE(2d — 2,3e — 1).

» if X = P! x P!, then (pu,v) € E(3dy — 1,2dy — 1, — 1) UE(2d; —
1,3d» — 1,e — 1) UE(2d;, — 1,2d» — 1,3e — 1).



Main theorems

101 -
E(zd-z.3e-1-
B
"J
: 13d_2-1,e1)
E(3d-2.e-1)
10!} 4
: !
100 2x10°3x106Px10°6x10° 10!
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Main theorems

Theorem

Assume that dim(B) = 1 and that C has no section in degree < (0, e).
Moreover, assume that there exists an homogeneous ideal J C R
generated by a regular sequence (g1, g2) such that | C J and (I : J)
defines a finite subscheme in X x P1. Denote by (my, n1), resp. (my, ny),
the degree of gy, resp. g, set ) := max(e — ny — np,0) and let p be a
point in P? such that its fiber is finite. Then,

corank M, ,,y(p) = deg(£,)

for any degree (u,v) such that

> if X = P2, then
(p,v) € E(3d —2,e—1+n)UE(2d —2+d —min{my, mp},3e—1).

» if X = P! x P!, then
(/.L,l/)EE(?)dl—1,2d2—1+7'27e—1+77)UE(2d1—1—|—7’1,3d2—
1 e—l+n)UE(2d1—1+7'1,2d2—1+7'2,3e—1) where

T,:_dfmln{2m1,+m2,,m,1+2m2,, i} >0, I—ﬁ%
boria

Marie Sktodowska-cur
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Coordinates of the orthogonal projections of p onto &

Inversion (for tensor product surfaces)

p : point in P3,
W : parameterization of the normal lines to the surface S.
For p = V(xo,, x1,; X2,,x3,; A), for i =0,...,r, we study
M1 p1 p2—1 H1 p2—1 M2 1 _
(XO, Xp s X0, Xo X3y X0 X3, X0 ey X3 0K ) M,,0)(P) =

= [Ll(X0r7X1r;X2r7X3r)7 e Lr(X0r7X1r;X2r7X3r)] = [07 te O]

to compute the (xo, : x1,; X2, : x3,) coordinates for i =0,--- ,r.
For that purpose, we apply generalized eigenvalues, eigenvectors
computation.



Inversion on an example

Randomly choosen 1 x 1 non-rational tensor product surface given
by the coefficients in real field with 16 digits precision having

M(2’270)(—0.485218132066873, -0.632830215530379, -0.197871354840005) Of size 9 x b of

corank 5 is
basis
x2x2 —0.563208773

0.227574516
xZx3 —0.1.56471787

Xox1X3 0.116809828

xox1xox3 | —0.0820320358
XX1%5 —0.203506639
xex3 —0.204232457
xExox3 —0.155997218

xgx3 0.0311495026

—6.92655116e 7

0.3.29036312
—0.230029242
0.226320033
—0.235511289
0.0475665548
0.155130132
0.260296192
0.185255444

1.71937220e 16
0.260535933
—0.0446379992
0.381572466
—0.291276362
0.00588636853
0.269307765
—0.297575166
0.240372238

—1.76600478e — 16

0.141610383
0.137481068
0.222591859

—0.208014459

0.440521728

—0.388216643

0.267006583
0.162035702

—2.43106876e 10
—0.265968167
0.216298448
0.0564381284
—0.0135706199
0.161882726
—0.198295637
—0.171761130
0.0136607157




Inversion on an example

The cokernel of M > is of size 9 x 5 is

basis
x2x2 —0.394942464  —0.241340484  —0.154618886  —0.36191343  —0.0425225374
xExpx3 —0.19623994  —0.0705268049 —0.0526279486 —0.630521355 —0.0740395822
x2x2 —0.575201381  —0.420409847  0.409022593 ~ —0.218509405  0.0837608474
xox1%8 —0.000230827929  —0.485981396 ~ —0.2045313904  0.0897759632  —0.536673093
X0X1 X3 —0.339622991  —0.167131632  —0.698813688  0.154667543  —0.211634739
X0x1 X3 —0.228638202  0.641057817  —0.165082076 —0.0572197227 —0.259437124
xgx3 —0.494202215  0.199657677  0.162109402  —0.413107384  —0.144011460
xgxox3 —0.0578991045  —0.197705395  0.208193449 0.620336113  0.0419302763
xgx3 —0.243816066 ~ —0.697492118 ~ —0.4230533  0.0439976225  0.750387735

red+purple rows = A,

purple+blue rows =B.

Then we compute the generalized eigenvalues and eigenvectors, i.e.
det(A— AB) =0.




Inversion on an example

There is only one real valued eigenvalue,

—1.4256434878498954 for |
X0

Its corresponding eigenvector is

(—0.37708551, —0.23906032 — 0.51589436/,
—0.23906032 + 0.51589436/, 0.17327369 + 0.10186342/,
0.17327369 — 0.10186342i.)

After multiplying it by B and by taking the proportion of first two
terms, we obtain the value

0.287755100169109 for ~>.

X2



Computations over real field (time in milliseconds)

For tensor-product surfaces

non-rational rational

matrix time (ms) time (ms) matrix time (ms) time (ms)
deg(®) size over R EDdeg Inversion size over R EDdeg Inversion
(1,1) 9 x5 1.133 5 1.394 9 x4 0.912 6 1.369
(1,2) 24 x 16 4.244 11 1.743 30 x 20 6.408 14 1.887
(1,3) 39 x 27 11.28 17 3.318 51 X 36 20.97 22 2.745
(2,2) 72 x 59 43.50 25 4.185 120 x 108 157.0 36 10.12
(2,3) 117 x 98 141.1 39 14.18 204 x 188 662.3 58 28.52
(3,3) 195 x 169 574.5 61 75.59 357 x 340 3353 94 136.6

Computations are done in SageMath.

» We find EDdegree for general tensor-product surfaces.

> A general (2 x 2) rational tensor-product surface M1 g o)
computation takes (in average) 157 ms.

> A general (3 x 3) rational tensor-product surface, M((29 16,0)
computation takes (in average) 3353 ms.
o N aYe
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For triangular surfaces

Computations over real field (time in milliseconds)

non-rational rational
matrix time (ms) time (ms) matrix time (ms) time (ms)
deg(®) size over R EDdeg Inversion size over R EDdeg Inversion
2 15 x7 2.441 9 3.143 36 x 29 15.14 13 3.448
3 66 x 51 41.87 25 4.746 153 x 150 300.9 39 13.02
4 153 x 132 314.2 49 18.82 351 x 363 2952 79 113.2

Computations are done in SageMath.

> We find EDdegree for general triangular surfaces.

> A general cubic rational triangular surface My o)
computation takes (in average) 300.9 ms.

> A general degree 4 rational triangular surface, M5 )
computation takes (in average) 2952 ms.
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Exact computation, over rational field.

For tensor-product surfaces

non-rational rational
matrix  time (ms) time (ms) | matrix  time (ms) time (ms)
deg(®P) size over R over Q size over R over Q
(1,1) 9x5 1.133 6.164 9x4 0.912 7.309
(1,2) 24 x 16 4.244 32.16 30 x 20 6.408 124.8
(1,3) 39 x 27 11.28 135.9 51 x 36 20.97 1082
(2,2) 72 x 59 43.50 1460 120 x 108 157.0 31182
(2,3) 117 x 98 141.1 10867 204 x 188 662.3 -
(3,3) 195 x 169 574.5 96704 357 x 340 3353 -

Computations over QQ are done in M2.




Exact computation, over rational field.

For triangular surfaces

non-rational rational
matrix  time (ms) time (ms) | matrix  time (ms) time (ms)
deg(P) size over R over Q size over R over Q
2 15 7 2.441 18.54 36 x 29 15.14 266.4
3 66 x 51 41.87 886.5 153 x 150 300.9 28090
4 153 x 132 314.2 32473 351 x 363 2052 -

Computations over QQ are done in M2.




Height of the coefficients of M

Notation:

heo := height with respect to .|,
hp := height with respect to |.|,, and
v ={oo,p: pis prime}.
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Height of the coefficients of M
Definition
f =Xqaax®. Then,

||, := max{|aa|,} and h,(f) := max{0, log|f]|,}.

Proposition
h, (V) := max{h, (Vo), h,(V1), h,(V2), h,(V3)}.

X = P2, deg(V) = d, r=(p+d+1)(p+d+2),
X =P x P!, deg(V)= (d17 d2), r=2(u1+di +1)(p2 + d2 + 1).

The height of the M, 0y (where p = (1, ji2), for X =P x P*) is
bounded by
1. hoo(M)) < r((r — 1)hoo(V) + log(r — 1)1 + hoo (W) + logr) + logr!,
2. hy(M) < Phy(W).

T Krick, L.M.Pardo, M.Sombra, 1999 ) Va2
C.d'Andrea, T.Krick, M.Sombra, 2012. FETARGADES



Thanks !
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