## Exploiting Fast Matrix Arithmetic in Block Low-Rank Factorizations

Theo Mary,
joint work with C.-P. Jeannerod, C. Pernet, D. Roche University of Manchester, School of Mathematics

Manchester Numerical Analysis
Structured Matrix Days 2019, Limoges

## Data sparse matrices

In many $A x=b$ applications, matrix $A$ has a block low-rank structure

$A$ block $B$ represents the interaction between two subdomains. Far away subdomains $\Rightarrow$ block of low numerical rank:

$$
\begin{array}{cccc}
B \\
b \times b & \approx & \times & Y^{\top} \\
b \times r(\varepsilon) & r(\varepsilon) \times b
\end{array}
$$

with $r(\varepsilon) \ll b$ such that $\left\|B-X Y^{\top}\right\| \leq \varepsilon$

## Flat vs hierarchical matrices

How to choose a good block partitioning of the matrix?
White: low-rank (LR) blocks (rank at most r) Gray: full-rank (FR) blocks (stored exactly)

$\mathcal{H}$-matrix

- $A=L U$ complexity $O\left(n r^{2}\right)$
- Hierarchical structure not well suited for parallel computing


BLR matrix

- Simple, flat structure ideal for parallel computing
- Superlinear complexity $O\left(n^{2} r\right)$


## Objective of this work

- How to reduce the BLR complexity $O\left(n^{2} r\right)$ without losing its non hierarchical nature? Our idea: use fast matrix arithmetic?
- Fast algorithms can multiply $b \times b$ matrices in only $O\left(b^{\omega}\right)$ flops, with $2<\omega<3$, e.g. Strassen's algorithm $\Rightarrow \omega=\log _{2} 7 \approx 2.8$
- Simplifying assumption made for this talk: all off-diagonal blocks are $L R \Rightarrow$ generalization to $O(1)$ FR blocks per row/column in the paper


In the paper


## BLR matrix LU factorization: classical algorithm



Kernel costs:


Kernel costs:

- Factor kernel: $O\left(b^{3}\right)$


Kernel costs:

- Factor kernel: $O\left(b^{3}\right)$
- Solve kernel: $O\left(b^{2} r\right)$


Kernel costs:

- Factor kernel: $O\left(b^{3}\right)$
- Solve kernel: $O\left(b^{2} r\right)$
- Update kernel:
- FR target: $O\left(b^{2} r\right)$


Kernel costs:

- Factor kernel: $O\left(b^{3}\right)$
- Solve kernel: $O\left(b^{2} r\right)$
- Update kernel:
- FR target: $O\left(b^{2} r\right)$
- LR target: $O\left(b r^{2}\right)$


Kernel costs:

- Factor kernel: $O\left(b^{3}\right) \rightarrow O\left(b^{\omega}\right)$
- Solve kernel: $O\left(b^{2} r\right) \rightarrow O\left(b^{2} r^{\omega-2}\right)$
- Update kernel:
- FR target: $O\left(b^{2} r\right) \rightarrow O\left(b^{2} r^{\omega-2}\right)$
- LR target: $O\left(b r^{2}\right) \rightarrow O\left(b r^{\omega-1}\right)$


## Complexity of the classical algorithm

- Let $p=n / b$ be the number of blocks per row/column
- Then the classical factorization algorithm costs:
- O(p) Factor kernel calls
- $O\left(p^{2}\right)$ Solve kernel calls
- $O\left(p^{2}\right)$ FR-Update and $O\left(p^{3}\right)$ LR-Update kernel calls


## Complexity of the classical algorithm

- Let $p=n / b$ be the number of blocks per row/column
- Then the classical factorization algorithm costs:
- O(p) Factor kernel calls
- $O\left(p^{2}\right)$ Solve kernel calls
- $O\left(p^{2}\right)$ FR-Update and $O\left(p^{3}\right)$ LR-Update kernel calls
- Total:

$$
O\left(p b^{\omega}+p^{2} b^{2} r^{\omega-2}+p^{3} b r^{\omega-1}\right)
$$

## Complexity of the classical algorithm

- Let $p=n / b$ be the number of blocks per row/column
- Then the classical factorization algorithm costs:
- O(p) Factor kernel calls
- $O\left(p^{2}\right)$ Solve kernel calls
- $O\left(p^{2}\right)$ FR-Update and $O\left(p^{3}\right)$ LR-Update kernel calls
- Total:

$$
\begin{aligned}
& O\left(p b^{\omega}+p^{2} b^{2} r^{\omega-2}+p^{3} b r^{\omega-1}\right) \\
\subset & O\left(n^{2} r^{\omega-2}\right) \quad \text { for } b=\Theta\left((n r)^{1 / 2}\right)
\end{aligned}
$$

## Complexity of the classical algorithm

- Let $p=n / b$ be the number of blocks per row/column
- Then the classical factorization algorithm costs:
- O(p) Factor kernel calls
- $O\left(p^{2}\right)$ Solve kernel calls
- $O\left(p^{2}\right)$ FR-Update and $O\left(p^{3}\right)$ LR-Update kernel calls
- Total:

$$
\begin{aligned}
& O\left(p b^{\omega}+p^{2} b^{2} r^{\omega-2}+p^{3} b r^{\omega-1}\right) \\
& \subset O\left(n^{2} r^{\omega-2}\right) \quad \text { for } b=\Theta\left((n r)^{1 / 2}\right)
\end{aligned}
$$

- Reduction by a factor $O\left(r^{3-\omega}\right) \Rightarrow$ underwhelming since $n \gg r$


## Complexity of the classical algorithm

- Let $p=n / b$ be the number of blocks per row/column
- Then the classical factorization algorithm costs:
- O(p) Factor kernel calls
- $O\left(p^{2}\right)$ Solve kernel calls
- $O\left(p^{2}\right)$ FR-Update and $O\left(p^{3}\right)$ LR-Update kernel calls
- Total:

$$
\begin{aligned}
& O\left(p b^{\omega}+p^{2} b^{2} r^{\omega-2}+p^{3} b r^{\omega-1}\right) \\
\subset & O\left(n^{2} r^{\omega-2}\right) \quad \text { for } b=\Theta\left((n r)^{1 / 2}\right)
\end{aligned}
$$

- Reduction by a factor $O\left(r^{3-\omega}\right) \Rightarrow$ underwhelming since $n \gg r$
- The issue lies with the low granularity of LR computations
- Factor kernel: $O\left(b^{3}\right) \rightarrow O\left(b^{\omega}\right)$
- Solve kernel: $O\left(b^{2} r\right) \rightarrow O\left(b^{2} r^{\omega-2}\right)$
- FR-Update kernel: $O\left(b^{2} r\right) \rightarrow O\left(b^{2} r^{\omega-2}\right)$
- LR-Update kernel: $O\left(b r^{2}\right) \rightarrow O\left(b r^{\omega-1}\right)$
$\Rightarrow$ Can we obtain a complexity subquadratic in $n$ ?


## New Solve kernel



- Classical: $O\left(p^{2}\right)$ calls of cost $O\left(b^{2} r^{\omega-2}\right) \Rightarrow O\left(p^{2} b^{2} r^{\omega-2}\right)$


## New Solve kernel



- Classical: $O\left(p^{2}\right)$ calls of cost $O\left(b^{2} r^{\omega-2}\right) \Rightarrow O\left(p^{2} b^{2} r^{\omega-2}\right)$
- New: $O(p)$ calls of cost $O\left(b^{\omega-1} p r\right) \Rightarrow O\left(p^{2} b^{\omega-1} r\right)$


## New Solve kernel



- Classical: $O\left(p^{2}\right)$ calls of cost $O\left(b^{2} r^{\omega-2}\right) \Rightarrow O\left(p^{2} b^{2} r^{\omega-2}\right)$
- New: $O(p)$ calls of cost $O\left(b^{\omega-1} p r\right) \Rightarrow O\left(p^{2} b^{\omega-1} r\right)$
$\Rightarrow$ Reduction by a factor $O\left((b / r)^{3-\omega}\right)$ :
- no asymptotic gain if $\omega=3$ (we only rearranged computations)
- no gain if $r \sim b$ (good enough granularity... but $O\left(n^{\omega}\right)$ complexity)
- possibly large asymptotic gain in general!


## New Update kernel



- Classical product: $O\left(p^{3}\right)$ calls of cost $O\left(b r^{\omega-1}\right) \Rightarrow O\left(p^{3} b r^{\omega-1}\right)$


## New Update kernel



- Classical product: $O\left(p^{3}\right)$ calls of cost $O\left(b r^{\omega-1}\right) \Rightarrow O\left(p^{3} b r^{\omega-1}\right)$
- New product: $O(p)$ calls of cost $O\left(p^{2} b^{\omega-2} r^{2}\right) \Rightarrow O\left(p^{3} b^{\omega-2} r^{2}\right)$
$\Rightarrow$ Reduction by a factor $O\left((b / r)^{3-\omega}\right)$


## New Update kernel



- Classical product: $O\left(p^{3}\right)$ calls of cost $O\left(b r^{\omega-1}\right) \Rightarrow O\left(p^{3} b r^{\omega-1}\right)$
- New product: $O(p)$ calls of cost $O\left(p^{2} b^{\omega-2} r^{2}\right) \Rightarrow O\left(p^{3} b^{\omega-2} r^{2}\right)$
$\Rightarrow$ Reduction by a factor $O\left((b / r)^{3-\omega}\right)$
- FR target subtractions: $O\left(p^{2} b^{2} r^{\omega-2}\right)$


## New Update kernel



- Classical product: $O\left(p^{3}\right)$ calls of cost $O\left(b r^{\omega-1}\right) \Rightarrow O\left(p^{3} b r^{\omega-1}\right)$
- New product: $O(p)$ calls of cost $O\left(p^{2} b^{\omega-2} r^{2}\right) \Rightarrow O\left(p^{3} b^{\omega-2} r^{2}\right)$
$\Rightarrow$ Reduction by a factor $O\left((b / r)^{3-\omega}\right)$
- FR target subtractions: $O\left(p^{2} b^{2} r^{\omega-2}\right)$


## New Update kernel



- Classical product: $O\left(p^{3}\right)$ calls of cost $O\left(b r^{\omega-1}\right) \Rightarrow O\left(p^{3} b r^{\omega-1}\right)$
- New product: $O(p)$ calls of cost $O\left(p^{2} b^{\omega-2} r^{2}\right) \Rightarrow O\left(p^{3} b^{\omega-2} r^{2}\right)$
$\Rightarrow$ Reduction by a factor $O\left((b / r)^{3-\omega}\right)$
- FR target subtractions: $O\left(p^{2} b^{2} r^{\omega-2}\right) \rightarrow O\left(p^{2} b^{\omega-1} r\right)$
$\Rightarrow$ Reduction by a factor $O\left((b / r)^{3-\omega}\right)$


## New Update kernel



\section*{|  |  |
| :--- | :--- |
|  | $\square$ |
|  |  |}

- Classical product: $O\left(p^{3}\right)$ calls of cost $O\left(b r^{\omega-1}\right) \Rightarrow O\left(p^{3} b r^{\omega-1}\right)$
- New product: $O(p)$ calls of cost $O\left(p^{2} b^{\omega-2} r^{2}\right) \Rightarrow O\left(p^{3} b^{\omega-2} r^{2}\right)$
$\Rightarrow$ Reduction by a factor $O\left((b / r)^{3-\omega}\right)$
- FR target subtractions: $O\left(p^{2} b^{2} r^{\omega-2}\right) \rightarrow O\left(p^{2} b^{\omega-1} r\right)$
$\Rightarrow$ Reduction by a factor $O\left((b / r)^{3-\omega}\right)$
- LR target subtractions: $O\left(p^{3} b r^{\omega-1}\right)$


## New Update kernel



- Classical product: $O\left(p^{3}\right)$ calls of cost $O\left(b r^{\omega-1}\right) \Rightarrow O\left(p^{3} b r^{\omega-1}\right)$
- New product: $O(p)$ calls of cost $O\left(p^{2} b^{\omega-2} r^{2}\right) \Rightarrow O\left(p^{3} b^{\omega-2} r^{2}\right)$
$\Rightarrow$ Reduction by a factor $O\left((b / r)^{3-\omega}\right)$
- FR target subtractions: $O\left(p^{2} b^{2} r^{\omega-2}\right) \rightarrow O\left(p^{2} b^{\omega-1} r\right)$
$\Rightarrow$ Reduction by a factor $O\left((b / r)^{3-\omega}\right)$
- LR target subtractions: $O\left(p^{3} b r^{\omega-1}\right) \rightarrow O\left(p^{2} b r^{\omega-1}+p^{3} r^{\omega}\right)$
$\Rightarrow$ Reduction by a factor $O(b / r) \Rightarrow$ gain even for $\omega=3$ !


## Complexity of the new algorithm

- Putting everything together, the complexity of the new algorithm is:

$$
O\left(p b^{\omega}+p^{2} b^{\omega-1} r+p^{3} b^{\omega-2} r^{2}\right)
$$

- Putting everything together, the complexity of the new algorithm is:

$$
\begin{aligned}
& O\left(p b^{\omega}+p^{2} b^{\omega-1} r+p^{3} b^{\omega-2} r^{2}\right) \\
\subset & O\left(n^{(\omega+1) / 2} r^{(\omega-1) / 2}\right) \quad \text { for } b=\Theta\left((n r)^{1 / 2}\right)
\end{aligned}
$$

- Putting everything together, the complexity of the new algorithm is:

$$
\begin{aligned}
& O\left(p b^{\omega}+p^{2} b^{\omega-1} r+p^{3} b^{\omega-2} r^{2}\right) \\
& \subset O\left(n^{(\omega+1) / 2} r(\omega-1) / 2\right) \quad \text { for } b=\Theta\left((n r)^{1 / 2}\right)
\end{aligned}
$$

- $\omega=3 \Rightarrow O\left(n^{2} r\right)$
- $\omega=2 \Rightarrow O\left(n^{3 / 2} r^{1 / 2}\right) \equiv$ BLR storage complexity $\Rightarrow$ nice!
- $\omega=\log _{2} 7 \Rightarrow O\left(n^{1.9} r^{0.9}\right)$


## Numerical experiments

Experimental validation with a Poisson problem ( $r=O(1)$ )


Standard Strassen (classical) Strassen (new)
Theory
$O\left(n^{2}\right) \quad O\left(n^{2}\right)$
$O\left(n^{1.9}\right)$
Experiments $O\left(n^{1.8}\right) \quad O\left(n^{1.8}\right)$
$O\left(n^{1.7}\right)$

## Conclusion

- Block low-rank (BLR) matrices can be factored very efficiently on parallel computers in $O\left(n^{2} r\right)$ flops. We investigated the use of fast matrix arithmetic to reduce this complexity
- The classical BLR algorithm is not suited for fast arithmetic and only achieves $O\left(n^{2} r^{\omega-2}\right)$ complexity
- We proposed a new algorithm of higher granularity achieving $O\left(n^{(\omega+1) / 2} r^{(\omega-1) / 2}\right)$ complexity
- Related work: Pernet \& Storjohann show $O\left(n r^{2}\right) \rightarrow O\left(n r^{\omega-1}\right)$ complexity for $\mathcal{H}$ matrices. BLR/H complexity ratio: $O\left((n / r)^{(\omega-1) / 2}\right) \Rightarrow$ fast matrix arithmetic can help bridging the gap between BLR and $\mathcal{H}$ matrices!

Slides and paper available here

> bit.ly/theomary

## Open questions/perspectives

1. High performance implementation: $40 \%$ reduction in flops for $n \sim 50,000 \Rightarrow$ how much can be converted in effective time gains? Which fast algorithms will be practical? (Strassen?)

New algorithm could be beneficial even outside the context of fast arithmetic (e.g., for GPU architectures)
2. Fast numerical rank revealing factorization (NRRF): our complexity analysis requires a NRRF of cost $O\left(m n r^{\omega-2}\right)$ $\Rightarrow$ actually not straightforward, no papers on this topic?

Classical NRRF cannot efficiently exploit fast arithmetic, e.g., truncated CPQR requires $O(m n r)$ BLAS-2 flops. Randomized approaches could be a solution?

1. $S \leftarrow A \Omega$
$\rightarrow O\left(m n r^{\omega-2}\right)$
2. $Q \leftarrow \operatorname{qr}(S)$
$\rightarrow O\left(m r^{\omega-1}\right)$
3. $Y \leftarrow A^{\top} Q \quad \rightarrow O\left(m n r^{\omega-2}\right)$
( $A \approx Q Q^{\top} A$ and thus $Q Y^{\top}$ is a LR approximation of $A$ )
