
Exploiting Fast Matrix Arithmetic
in Block Low-Rank Factorizations

Theo Mary,
joint work with C.-P. Jeannerod, C. Pernet, D. Roche
University of Manchester, School of Mathematics

\
Structured Matrix Days 2019, Limoges



Data sparse matrices

In many Ax = b applications, matrix A has a block low-rank structure

σ

τ

B
ρ σ

τ

r(ε) ≪ b

r(ε) ≃ b

A block B represents the interaction between two subdomains.
Far away subdomains⇒ block of low numerical rank:

B ≈ X YT

b× b b× r(ε) r(ε)× b

with r(ε)≪ b such that ∥B− XYT∥ ≤ ε

2/12 Exploiting Fast Matrix Arithmetic in BLR Factorizations Theo Mary



Flat vs hierarchical matrices

How to choose a good block partitioning of the matrix?

White: low-rank (LR) blocks (rank at most r)
Gray: full-rank (FR) blocks (stored exactly)

H-matrix BLR matrix

• A = LU complexity O(nr2)
• Hierarchical structure not well
suited for parallel computing

• Simple, flat structure ideal for
parallel computing

• Superlinear complexity O(n2r)
3/12 Exploiting Fast Matrix Arithmetic in BLR Factorizations Theo Mary



Objective of this work

• How to reduce the BLR complexity O(n2r) without losing its
non hierarchical nature? Our idea: use fast matrix arithmetic?

• Fast algorithms can multiply b× b matrices in only O(bω) flops,
with 2 < ω < 3, e.g. Strassen’s algorithm ⇒ ω = log2 7 ≈ 2.8

• Simplifying assumption made for this talk: all off-diagonal
blocks are LR ⇒ generalization to O(1) FR blocks per
row/column in the paper

In this talk In the paper

4/12 Exploiting Fast Matrix Arithmetic in BLR Factorizations Theo Mary



BLR matrix LU factorization: classical algorithm

Kernel costs:

• Factor kernel: O(b3)

→ O(bω)

• Solve kernel: O(b2r)

→ O(b2rω−2)

• Update kernel:
◦ FR target: O(b2r)

→ O(b2rω−2)
◦ LR target: O(br2)

→ O(brω−1)

5/12 Exploiting Fast Matrix Arithmetic in BLR Factorizations Theo Mary



BLR matrix LU factorization: classical algorithm

→

Kernel costs:
• Factor kernel: O(b3)

→ O(bω)
• Solve kernel: O(b2r)

→ O(b2rω−2)

• Update kernel:
◦ FR target: O(b2r)

→ O(b2rω−2)
◦ LR target: O(br2)

→ O(brω−1)

5/12 Exploiting Fast Matrix Arithmetic in BLR Factorizations Theo Mary



BLR matrix LU factorization: classical algorithm

=

=

Kernel costs:
• Factor kernel: O(b3)

→ O(bω)

• Solve kernel: O(b2r)

→ O(b2rω−2)

• Update kernel:
◦ FR target: O(b2r)

→ O(b2rω−2)
◦ LR target: O(br2)

→ O(brω−1)

5/12 Exploiting Fast Matrix Arithmetic in BLR Factorizations Theo Mary



BLR matrix LU factorization: classical algorithm

= ×

= −

Kernel costs:
• Factor kernel: O(b3)

→ O(bω)

• Solve kernel: O(b2r)

→ O(b2rω−2)

• Update kernel:
◦ FR target: O(b2r)

→ O(b2rω−2)
◦ LR target: O(br2)

→ O(brω−1)

5/12 Exploiting Fast Matrix Arithmetic in BLR Factorizations Theo Mary



BLR matrix LU factorization: classical algorithm

= ×

= −

Kernel costs:
• Factor kernel: O(b3)

→ O(bω)

• Solve kernel: O(b2r)

→ O(b2rω−2)

• Update kernel:
◦ FR target: O(b2r)

→ O(b2rω−2)

◦ LR target: O(br2)

→ O(brω−1)

5/12 Exploiting Fast Matrix Arithmetic in BLR Factorizations Theo Mary



BLR matrix LU factorization: classical algorithm

Kernel costs:
• Factor kernel: O(b3)→ O(bω)
• Solve kernel: O(b2r)→ O(b2rω−2)

• Update kernel:
◦ FR target: O(b2r)→ O(b2rω−2)
◦ LR target: O(br2) → O(brω−1)

5/12 Exploiting Fast Matrix Arithmetic in BLR Factorizations Theo Mary



Complexity of the classical algorithm

• Let p = n/b be the number of blocks per row/column
• Then the classical factorization algorithm costs:
◦ O(p) Factor kernel calls
◦ O(p2) Solve kernel calls
◦ O(p2) FR-Update and O(p3) LR-Update kernel calls

• Total:
O(pbω + p2b2rω−2 + p3brω−1)

⊂ O(n2rω−2) for b = Θ((nr)1/2)

• Reduction by a factor O(r3−ω)⇒ underwhelming since n≫ r
• The issue lies with the low granularity of LR computations
◦ Factor kernel: O(b3)→ O(bω)
◦ Solve kernel: O(b2r)→ O(b2rω−2)
◦ FR-Update kernel: O(b2r)→ O(b2rω−2)
◦ LR-Update kernel: O(br2)→ O(brω−1)

⇒ Can we obtain a complexity subquadratic in n?

6/12 Exploiting Fast Matrix Arithmetic in BLR Factorizations Theo Mary



Complexity of the classical algorithm

• Let p = n/b be the number of blocks per row/column
• Then the classical factorization algorithm costs:
◦ O(p) Factor kernel calls
◦ O(p2) Solve kernel calls
◦ O(p2) FR-Update and O(p3) LR-Update kernel calls

• Total:
O(pbω + p2b2rω−2 + p3brω−1)

⊂ O(n2rω−2) for b = Θ((nr)1/2)

• Reduction by a factor O(r3−ω)⇒ underwhelming since n≫ r
• The issue lies with the low granularity of LR computations
◦ Factor kernel: O(b3)→ O(bω)
◦ Solve kernel: O(b2r)→ O(b2rω−2)
◦ FR-Update kernel: O(b2r)→ O(b2rω−2)
◦ LR-Update kernel: O(br2)→ O(brω−1)

⇒ Can we obtain a complexity subquadratic in n?

6/12 Exploiting Fast Matrix Arithmetic in BLR Factorizations Theo Mary



Complexity of the classical algorithm

• Let p = n/b be the number of blocks per row/column
• Then the classical factorization algorithm costs:
◦ O(p) Factor kernel calls
◦ O(p2) Solve kernel calls
◦ O(p2) FR-Update and O(p3) LR-Update kernel calls

• Total:
O(pbω + p2b2rω−2 + p3brω−1)

⊂ O(n2rω−2) for b = Θ((nr)1/2)

• Reduction by a factor O(r3−ω)⇒ underwhelming since n≫ r
• The issue lies with the low granularity of LR computations
◦ Factor kernel: O(b3)→ O(bω)
◦ Solve kernel: O(b2r)→ O(b2rω−2)
◦ FR-Update kernel: O(b2r)→ O(b2rω−2)
◦ LR-Update kernel: O(br2)→ O(brω−1)

⇒ Can we obtain a complexity subquadratic in n?

6/12 Exploiting Fast Matrix Arithmetic in BLR Factorizations Theo Mary



Complexity of the classical algorithm

• Let p = n/b be the number of blocks per row/column
• Then the classical factorization algorithm costs:
◦ O(p) Factor kernel calls
◦ O(p2) Solve kernel calls
◦ O(p2) FR-Update and O(p3) LR-Update kernel calls

• Total:
O(pbω + p2b2rω−2 + p3brω−1)

⊂ O(n2rω−2) for b = Θ((nr)1/2)

• Reduction by a factor O(r3−ω)⇒ underwhelming since n≫ r

• The issue lies with the low granularity of LR computations
◦ Factor kernel: O(b3)→ O(bω)
◦ Solve kernel: O(b2r)→ O(b2rω−2)
◦ FR-Update kernel: O(b2r)→ O(b2rω−2)
◦ LR-Update kernel: O(br2)→ O(brω−1)

⇒ Can we obtain a complexity subquadratic in n?

6/12 Exploiting Fast Matrix Arithmetic in BLR Factorizations Theo Mary



Complexity of the classical algorithm

• Let p = n/b be the number of blocks per row/column
• Then the classical factorization algorithm costs:
◦ O(p) Factor kernel calls
◦ O(p2) Solve kernel calls
◦ O(p2) FR-Update and O(p3) LR-Update kernel calls

• Total:
O(pbω + p2b2rω−2 + p3brω−1)

⊂ O(n2rω−2) for b = Θ((nr)1/2)

• Reduction by a factor O(r3−ω)⇒ underwhelming since n≫ r
• The issue lies with the low granularity of LR computations
◦ Factor kernel: O(b3)→ O(bω)
◦ Solve kernel: O(b2r)→ O(b2rω−2)
◦ FR-Update kernel: O(b2r)→ O(b2rω−2)
◦ LR-Update kernel: O(br2)→ O(brω−1)

⇒ Can we obtain a complexity subquadratic in n?

6/12 Exploiting Fast Matrix Arithmetic in BLR Factorizations Theo Mary



New Solve kernel

=

=

• Classical: O(p2) calls of cost O(b2rω−2)⇒ O(p2b2rω−2)

• New: O(p) calls of cost O(bω−1pr)⇒ O(p2bω−1r)

⇒ Reduction by a factor O((b/r)3−ω):
◦ no asymptotic gain if ω = 3 (we only rearranged computations)
◦ no gain if r ∼ b (good enough granularity… but O(nω) complexity)
◦ possibly large asymptotic gain in general!

7/12 Exploiting Fast Matrix Arithmetic in BLR Factorizations Theo Mary



New Solve kernel

=

=

• Classical: O(p2) calls of cost O(b2rω−2)⇒ O(p2b2rω−2)

• New: O(p) calls of cost O(bω−1pr)⇒ O(p2bω−1r)

⇒ Reduction by a factor O((b/r)3−ω):
◦ no asymptotic gain if ω = 3 (we only rearranged computations)
◦ no gain if r ∼ b (good enough granularity… but O(nω) complexity)
◦ possibly large asymptotic gain in general!

7/12 Exploiting Fast Matrix Arithmetic in BLR Factorizations Theo Mary



New Solve kernel

=

=

• Classical: O(p2) calls of cost O(b2rω−2)⇒ O(p2b2rω−2)

• New: O(p) calls of cost O(bω−1pr)⇒ O(p2bω−1r)

⇒ Reduction by a factor O((b/r)3−ω):
◦ no asymptotic gain if ω = 3 (we only rearranged computations)
◦ no gain if r ∼ b (good enough granularity… but O(nω) complexity)
◦ possibly large asymptotic gain in general!

7/12 Exploiting Fast Matrix Arithmetic in BLR Factorizations Theo Mary



New Update kernel

= ×

• Classical product: O(p3) calls of cost O(brω−1)⇒ O(p3brω−1)

• New product: O(p) calls of cost O(p2bω−2r2)⇒ O(p3bω−2r2)

⇒ Reduction by a factor O((b/r)3−ω)

• FR target subtractions: O(p2b2rω−2)

→ O(p2bω−1r)

⇒ Reduction by a factor O((b/r)3−ω)

• LR target subtractions: O(p3brω−1)

→ O(p2brω−1 + p3rω)

⇒ Reduction by a factor O(b/r) ⇒ gain even for ω = 3!

8/12 Exploiting Fast Matrix Arithmetic in BLR Factorizations Theo Mary



New Update kernel

= ×

• Classical product: O(p3) calls of cost O(brω−1)⇒ O(p3brω−1)

• New product: O(p) calls of cost O(p2bω−2r2)⇒ O(p3bω−2r2)

⇒ Reduction by a factor O((b/r)3−ω)

• FR target subtractions: O(p2b2rω−2)

→ O(p2bω−1r)

⇒ Reduction by a factor O((b/r)3−ω)

• LR target subtractions: O(p3brω−1)

→ O(p2brω−1 + p3rω)

⇒ Reduction by a factor O(b/r) ⇒ gain even for ω = 3!

8/12 Exploiting Fast Matrix Arithmetic in BLR Factorizations Theo Mary



New Update kernel

= −

• Classical product: O(p3) calls of cost O(brω−1)⇒ O(p3brω−1)

• New product: O(p) calls of cost O(p2bω−2r2)⇒ O(p3bω−2r2)

⇒ Reduction by a factor O((b/r)3−ω)

• FR target subtractions: O(p2b2rω−2)

→ O(p2bω−1r)

⇒ Reduction by a factor O((b/r)3−ω)

• LR target subtractions: O(p3brω−1)

→ O(p2brω−1 + p3rω)

⇒ Reduction by a factor O(b/r) ⇒ gain even for ω = 3!

8/12 Exploiting Fast Matrix Arithmetic in BLR Factorizations Theo Mary



New Update kernel

= − −

• Classical product: O(p3) calls of cost O(brω−1)⇒ O(p3brω−1)

• New product: O(p) calls of cost O(p2bω−2r2)⇒ O(p3bω−2r2)

⇒ Reduction by a factor O((b/r)3−ω)

• FR target subtractions: O(p2b2rω−2)

→ O(p2bω−1r)

⇒ Reduction by a factor O((b/r)3−ω)

• LR target subtractions: O(p3brω−1)

→ O(p2brω−1 + p3rω)

⇒ Reduction by a factor O(b/r) ⇒ gain even for ω = 3!

8/12 Exploiting Fast Matrix Arithmetic in BLR Factorizations Theo Mary



New Update kernel

B

= −B

• Classical product: O(p3) calls of cost O(brω−1)⇒ O(p3brω−1)

• New product: O(p) calls of cost O(p2bω−2r2)⇒ O(p3bω−2r2)

⇒ Reduction by a factor O((b/r)3−ω)

• FR target subtractions: O(p2b2rω−2)→ O(p2bω−1r)

⇒ Reduction by a factor O((b/r)3−ω)

• LR target subtractions: O(p3brω−1)

→ O(p2brω−1 + p3rω)

⇒ Reduction by a factor O(b/r) ⇒ gain even for ω = 3!

8/12 Exploiting Fast Matrix Arithmetic in BLR Factorizations Theo Mary



New Update kernel

= −

• Classical product: O(p3) calls of cost O(brω−1)⇒ O(p3brω−1)

• New product: O(p) calls of cost O(p2bω−2r2)⇒ O(p3bω−2r2)

⇒ Reduction by a factor O((b/r)3−ω)

• FR target subtractions: O(p2b2rω−2)→ O(p2bω−1r)

⇒ Reduction by a factor O((b/r)3−ω)

• LR target subtractions: O(p3brω−1)

→ O(p2brω−1 + p3rω)

⇒ Reduction by a factor O(b/r) ⇒ gain even for ω = 3!

8/12 Exploiting Fast Matrix Arithmetic in BLR Factorizations Theo Mary



New Update kernel

= −

• Classical product: O(p3) calls of cost O(brω−1)⇒ O(p3brω−1)

• New product: O(p) calls of cost O(p2bω−2r2)⇒ O(p3bω−2r2)

⇒ Reduction by a factor O((b/r)3−ω)

• FR target subtractions: O(p2b2rω−2)→ O(p2bω−1r)

⇒ Reduction by a factor O((b/r)3−ω)

• LR target subtractions: O(p3brω−1)→ O(p2brω−1 + p3rω)

⇒ Reduction by a factor O(b/r) ⇒ gain even for ω = 3!
8/12 Exploiting Fast Matrix Arithmetic in BLR Factorizations Theo Mary



Complexity of the new algorithm

• Putting everything together, the complexity of the new
algorithm is:

O(pbω + p2bω−1r+ p3bω−2r2)

⊂ O(n(ω+1)/2r(ω−1)/2) for b = Θ((nr)1/2)

• ω = 3⇒ O(n2r)
• ω = 2⇒ O(n3/2r1/2) ≡ BLR storage complexity ⇒ nice!
• ω = log2 7⇒ O(n1.9r0.9)

9/12 Exploiting Fast Matrix Arithmetic in BLR Factorizations Theo Mary



Complexity of the new algorithm

• Putting everything together, the complexity of the new
algorithm is:

O(pbω + p2bω−1r+ p3bω−2r2)

⊂ O(n(ω+1)/2r(ω−1)/2) for b = Θ((nr)1/2)

• ω = 3⇒ O(n2r)
• ω = 2⇒ O(n3/2r1/2) ≡ BLR storage complexity ⇒ nice!
• ω = log2 7⇒ O(n1.9r0.9)

9/12 Exploiting Fast Matrix Arithmetic in BLR Factorizations Theo Mary



Complexity of the new algorithm

• Putting everything together, the complexity of the new
algorithm is:

O(pbω + p2bω−1r+ p3bω−2r2)

⊂ O(n(ω+1)/2r(ω−1)/2) for b = Θ((nr)1/2)

• ω = 3⇒ O(n2r)
• ω = 2⇒ O(n3/2r1/2) ≡ BLR storage complexity ⇒ nice!
• ω = log2 7⇒ O(n1.9r0.9)

9/12 Exploiting Fast Matrix Arithmetic in BLR Factorizations Theo Mary



Numerical experiments

Experimental validation with a Poisson problem (r = O(1))

Standard Strassen (classical) Strassen (new)

Theory O(n2) O(n2) O(n1.9)
Experiments O(n1.8) O(n1.8) O(n1.7)

10/12 Exploiting Fast Matrix Arithmetic in BLR Factorizations Theo Mary



Conclusion
• Block low-rank (BLR) matrices can be factored very efficiently
on parallel computers in O(n2r) flops. We investigated the use
of fast matrix arithmetic to reduce this complexity

• The classical BLR algorithm is not suited for fast arithmetic and
only achieves O(n2rω−2) complexity

• We proposed a new algorithm of higher granularity achieving
O(n(ω+1)/2r(ω−1)/2) complexity

• Related work: Pernet & Storjohann show O(nr2)→ O(nrω−1)
complexity for H matrices. BLR/H complexity ratio:
O((n/r)(ω−1)/2)⇒ fast matrix arithmetic can help bridging the
gap between BLR and H matrices!

Slides and paper available here

bit.ly/theomary

11/12 Exploiting Fast Matrix Arithmetic in BLR Factorizations Theo Mary

http://bit.ly/theomary


Open questions/perspectives

1. High performance implementation: 40% reduction in flops for
n ∼ 50, 000 ⇒ how much can be converted in effective time
gains? Which fast algorithms will be practical? (Strassen?)

New algorithm could be beneficial even outside the context of
fast arithmetic (e.g., for GPU architectures)

2. Fast numerical rank revealing factorization (NRRF): our
complexity analysis requires a NRRF of cost O(mnrω−2)
⇒ actually not straightforward, no papers on this topic?

Classical NRRF cannot efficiently exploit fast arithmetic, e.g.,
truncated CPQR requires O(mnr) BLAS-2 flops. Randomized
approaches could be a solution?
1. S← AΩ → O(mnrω−2)
2. Q← qr(S) → O(mrω−1)
3. Y← ATQ → O(mnrω−2)

(A ≈ QQTA and thus QYT is a LR approximation of A)

12/12 Exploiting Fast Matrix Arithmetic in BLR Factorizations Theo Mary


