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Structured matrices

» n x n dense matrices with “patterns”.
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Structured matrices

» n x n dense matrices with

» Examples:

ao a_—1 a_»2
Toeplitz a1 a0 a-1
az a1 ao

1 x1 X2
Vandermonde |1 x» x2
1 x3 x3

» Features:

“patterns”.

ao
ai
az

ai
az
as

1

az
asz | Hankel
ds4

xX1-y1
1

xX1-y2
1

xX1-Yy3
1

xX2—y1
1

xX2—-y2
1

Cauchy

X2—-y3
1

X3—Yy1

X3—Yy2

e can be represented by a few parameters:
e fast multiplication by a vector:
e related to univariate polynomial arithmetic.

X3—Yy3

here, O(n).
O"(n) by FFT.



Structured matrices

» Generalizations — “still structured but maybe a bit less” (%)
o T =[Ty] with T; Toeplitz [block, mosaic, ...]
e T1Tp, T, Schur complement, ... [Toeplitz-like]
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» Generalizations — “still structured but maybe a bit less” (%)

o T =[Ty] with T; Toeplitz [block, mosaic, ...]
e T1Tp, T, Schur complement, ... [Toeplitz-like]
°o ...

» Displacement structure = a way to formalize (%):
e Parametrization size: O(an) for some 1 < a < n

< a nice continuum of structures.

e Algorithms designed in 1980-2000's for AB, A=, A=1b, ...
use O”(a?n) field operations [Morf, Bitmead—Anderson, Gohberg,
Kaltofen, Olshevsky, Pan, Shokrollahi, ...]
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e ...
» Displacement structure = a way to formalize (x):
e Parametrization size: O(an) for some 1 < a < n
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Great for oo — 1, but not so nice for & — n, since dense
unstructured linear algebra has cost O(n¥) with w < 2.38.

Our objective: replace o? by o~ ! in these cost bounds.



Structured matrices

» Generalizations — “still structured but maybe a bit less” (%)
o T =[Ty] with T; Toeplitz [block, mosaic, ...]
e T1Tp, T, Schur complement, ... [Toeplitz-like]

e ...
» Displacement structure = a way to formalize (x):
e Parametrization size: O(an) for some 1 < a < n
< a nice continuum of structures.

e Algorithms designed in 1980-2000's for AB, A=, A=1b, ...

use O”(a?n) field operations [Morf, Bitmead—Anderson, Gohberg,
Kaltofen, Olshevsky, Pan, Shokrollahi, ...]

Great for oo — 1, but not so nice for & — n, since dense
unstructured linear algebra has cost O(n¥) with w < 2.38.
Our objective: replace o? by o~ ! in these cost bounds.

Remark: in some important cases, costs in O”(a~'n) via o-bases
[Beckermann—Labahn'94, ..., Neiger'16, ...].



Continuums of complexity: basic examples

Block dot products:

» ABeK™™ — ATBin Z.a¥+ (2 —1)-a®= O(a” !n).

n
«

» Cost ranges from O(n) to O(n®).




Continuums of complexity: basic examples

Block dot products:
» ABeK™™ — ATBin 2.a¥ 4+ (2 -1)-a? = O(a“ 'n).
» Cost ranges from O(n) to O(n®).

Polynomial matrix products:
» A BeK[X ii/aa — ABin O(a® - M(n/a)) C O"(a“ *n).
» Cost ranges from O7(n) to O(n*).

Compression of rank-r matrices:
» ACK™" — G,H e K™ st. A= GHT in O(r*2n?).
» Cost ranges from O(n?) to O(n®).

|
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1. Displacement rank



Example: Toeplitz structure

ao a—1 a_»2 ao a—1 a—»2
ail ao a—1 — 1 ail ao a—1
ar EN ao 1 a» a1 ao
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Example: Toeplitz structure

ao a—1 a_»2 ao a—1 a—»2
ail ao a—1 — 1 ail ao a—1
ar EN ao 1 a» a1 ao




Example: Toeplitz structure

< rank < 2 for all n.

<  Stein's displacement operator: A+— A — MAN.



Example: Toeplitz structure




Example: Toeplitz structure

ao a—1 a_2
1 ai ao a—1
1 a2 a ao
M A
0 0 0
ao a—1 a_2
ail ao a—1



Example: Toeplitz structure

a-2

do a a-1 a-2 1
1 ai  a a- — ai a a-1 1
1 a2 a ao a a1 ao 1
M A A N
0 0 0 a1 a-» ao
ao a—1 a_»2 — ao a— al
ai ao 1 ai ao az



Example:

>
%

Toeplitz structure

ao a—1 a_»2 ao a—1 a_»2 1
1 ai ao a—i — ai ao a—1 1
1 a a1 ao a a1 ao 1
M A A N
—a—1 —a_2 —ao
= 0 0 a_2 —ai
0 0 a—1 — az

rank < 2 for all n.

Sylvester's displacement operator: A +— MA — AN.
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Example: Vandermonde structure

1 x1 X3
1 x2 x2
1

X3 X3




Example:

Vandermonde structure

1 x1 x12 1 x1 X12 1
L 1 x x2 - 1 x x2 1
2 2 2
1 1 x3 x5 1 x3 x3

o
[
&

o o
[ =
555
-

X1 T 1 x
= | X5 | X2 —
X3 11 xs



Example: Vandermonde structure

% ) 1 x5 xlz X1 X12 1
SR I Pl ol 1
X3
A A N

< rank 1 for all n.

o o



General framework [Kailath—-Kung—Morf79]

Definitions:
» displacement: Vi n(A) = MA — AN,
» displacement rank: a = rank (Vv n(A)),
» generator: G, H such that Vi n(A) = GHT.
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General framework [Kailath—-Kung—Morf79]

Definitions:
» displacement: Vi n(A) = MA — AN,
» displacement rank: a = rank (Vv n(A)),
» generator: G, H such that Vi n(A) = GHT.

Remarks:
» there exist G and H of dimensions n x «,
> vec(GHT) = (/ ®M—NT ® /) vec(A)

Eanxnz
— compact representation

— compress, operate, recover
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Choices for M and N

» Classically, cyclic shifts and diagonals:
¥ X1
Z, = _ ., Zl, D)=
. 1

Toeplitz-like and Hankel-like when two shifts, Cauchy-like
when two diagonals, Vandermonde-like when one of each.
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Choices for M and N

» Classically, cyclic shifts and diagonals:
¥ X1
Z, = . ) ij—» D(x) =

1 Xn

Toeplitz-like and Hankel-like when two shifts, Cauchy-like
when two diagonals, Vandermonde-like when one of each.

» More generally, Jordan forms [Olshevsky—Shokrollahi’99-00] or
block-diagonal companion forms [Bostan, J., Mouilleron, Schost'17]:

Mp = diag(Cp,), Cp, := companion matrix of P; € K[X],
with the P; pairwise coprime.
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Recovering A from a generator (G, H)

» Let /@M — NT ® I be nonsingular

— for example, M invertible and N nilpotent.

» Pre- and post-multiply MA — AN = GHT by powers of M and
N to recover A as

A=M1. Z Krylov(M, G, ;) Krylov(N, H, ;) .
j=1

[Pan-Wang'03]
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Recovering A from a generator (G, H)

» Let /@M — NT ® I be nonsingular

— for example, M invertible and N nilpotent.

» Pre- and post-multiply MA — AN = GHT by powers of M and
N to recover A as

A=M1. Z Krylov(M, G, ;) Krylov(N, H, ;) .
j=1

[Pan-Wang'03]

= fast matrix-vector multiplication: for our choices of M, N,
these Krylov matrices are special enough to allow for Av in O7(an).
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Displacement structure after basic operations

Structure can be preserved by
» transposition, inversion: a ~~ «
» addition, multiplication: o, o/ ~ < a + o

» submatrix extraction and Schur complement: o ~~ « + ¢,
with € < rank(Mj2) + rank(Nayp).

Compression of generators: moving from width O(«) to minimal
width a can be done in time O(a“~'n) via fast LU decomposition.
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lllustration: solving structured linear systems

EE
* ¥ X ¥ %
EE T
* ¥ X X %
T

compress
] S GHT =

* ¥ X %X %
EE T

14



Hlustration:

EE
* ¥ X ¥ %

solving structured linear systems

* * * * *
X ox o x compress * ok
* * * E— GHT = * * [ * * *
* * *
* * * * *
* * * * *
‘ inversion
* *
YZT J— * * [ * * *
_— * *
* * *
* *
* *

14



Hlustration:

EE
* ¥ X ¥ %

EE
* ¥ X ¥ %

I 3

solving structured linear systems

* * * * *
* * * compress * *
* * * E— GHT = * * [ : : :
* * * * *
* * * * *
‘ inversion
* * * *
* recover *
* * — YZT = * * [ : i :
* * * *
* * * *

14



Hlustration:

EE T
* ¥ X X %

>

L

o=

i
-
* ¥ X X X

solving structured linear systems

* * * * *
* * * compress T * *
* * * —_— GH = * * { * * *
* * *
* * * * *
* * ok * *
’ inversion
* *
recover YZT _ : i . .
* * *
* *
* *

14



2. Transformation techniques

15



Example: from Toeplitz-like to Vandermonde-like

Let A be Toeplitz-like with

Z1A — AZg = GHT, Z, =

» Fourier diagonalizes circulants: Z; = F7!DF, D = diag(Fa).

» Hence D-FA —FA-Zo = (FG)-HT and so FA is
Vandermonde-like.

16



Example: from Toeplitz-like to Vandermonde-like

Let A be Toeplitz-like with

Z1A — AZg = GHT, Z, =

» Fourier diagonalizes circulants: Z; = F7!DF, D = diag(Fa).

» Hence D-FA —FA-Zo = (FG)-HT and so FA is
Vandermonde-like.

Overheads:

» to generate FA: left multiply G € K" by F in O7(an);
> to recover Av, multiply the vector (FA)v by F~1, in O7(n).
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Fast reductions to V ;7

More generally, multiplicative transforms
A — LAR

to reduce a structure to another one, at negligible cost.
[Pan'90]

Theorem: reductions from Vi, ng to simpler vaZI in
O”(an) for MUL and LINSOLVE,
O"(an) + O(a“~1n) for INV.

[Bostan, J., Mouilleron, Schost'17]
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Multiplicative transforms for regularizing A

Toeplitz pre-conditioning: [Kaltofen—Saunders'91]

A := T1AT, with Ty, T2 unit upper/lower triangular Toeplitz
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Multiplicative transforms for regularizing A

Toeplitz pre-conditioning: [Kaltofen—Saunders'91]

A := T1AT, with Ty, T2 unit upper/lower triangular Toeplitz

> If Ais Toeplitz- or Hankel-like, then so is A, with o + O(1).
» If entries of T1, T, at random from S C K, then

r(r+1).

has generic rank profile with proba > 1 — 5]

>

I
P "
* % % %
* % % %
* % % %

Proof via Schwartz—Zippel.
» Again, low overhead: O7(an).
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Multiplicative transforms for regularizing A

Toeplitz pre-conditioning: [Kaltofen—Saunders'91]

A := T1AT, with Ty, T2 unit upper/lower triangular Toeplitz

> If Ais Toeplitz- or Hankel-like, then so is A, with o + O(1).
» If entries of T1, T, at random from S C K, then

has generic rank profile with proba > 1 — r(|r;r|l).

>

I
P "
* % % %
* % % %

Proof via Schwartz—Zippel.
» Again, low overhead: O7(an).

A variant: from Toeplitz-like to Cauchy-like via two random
Vandermonde V1, V5. [Hyun—Lebreton-Schost'17]
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3. Structured matrix multiplication
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Generating AB from generators of A and B

» Let A,B € K"" have displacement rank « for some
compatible displacement operators:

MA — AN = GHT, NB — BP = XY,
Then

M(AB) — (AB)P = GHTB + AXY T
= [GIAX][B"H|Y]"

and it suffices to be able to multiply A and B by « vectors.

20



Generating AB from generators of A and B

» Let A,B € K"" have displacement rank « for some
compatible displacement operators:

MA — AN = GHT, NB — BP = XY,
Then

M(AB) — (AB)P = GHTB + AXY T
= [GIAX][B"H|Y]"

and it suffices to be able to multiply A and B by « vectors.

» Obvious solution has cost 2cv x O"(an) C O (a?n).

20



Incorporating polynomial matrix multiplication

[Bostan, J., Schost’07]

» Rewrite “(reconstruction formula of A) x (« vectors)” as

UT(VWT mod X"), U,V,W eK[X]2,.

21



Incorporating polynomial matrix multiplication

[Bostan, J., Schost’07]

» Rewrite “(reconstruction formula of A) x (« vectors)” as

UT(VWT mod X"), U,V,W eK[X]2,.

» Split V = Vo + V4 - X2 and similarly for W:

VW mod X" = VoW +([Vo VAW W] mod X7/2)-x"/2

e Outer product has width x2 and modulus degree /2.
e We can continue down to X"/,

21



Computing R = UT(VWT mod X")

R
——

+ Xn/2

O(log o)

+ Xn/a

—

—
deg < 3

deg < n deg < 5

—

D deg < 7

deg < n deg< j

deg < n

deg < 2 deg < 2

mod X"/

+ one product of two polynomial matrices of

dimensions o x o and degree < Z: O"(a‘*’*ln)

22



4. Structured matrix inversion
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Block recursive inversion [Strassen’69]

Partition A, assume det(A11) # 0, and let S = Ay — A21AI11A12:

/ A A | [ A AL _ | A
—AnA 1] A Az / S
—_—

—_——
E F

—1
= A_le[All S_l}E.

24



Block recursive inversion [Strassen’69]

Partition A, assume det(A11) # 0, and let S = Ay — A21AI11A12:

/ A A | [ A AL _ | A
—AnA 1] A Az / S
—_—

—_——
E F

—1
=  Al=F [All s—l} E.

» If A is strongly regular, then so are A;; and S.
» Reduction to MUL: C|Nv(n) = 2C|Nv(n/2) + O(n“’) = O(n“)

24



Structured block recursive inversion (MBA)
[Morf/Bitmead—-Anderson’80]

Same scheme as Strassen'’s:

A A 1 g |AF
A= [A21 A22] = AT =F [ S-1 E,

but now with every matrix represented by a generator.

25



Structured block recursive inversion (MBA)

[Morf/Bitmead—-Anderson’80]
Same scheme as Strassen's:
A A 1 g |AF
A_[Azl o e
but now with every matrix represented by a generator.

» Trick: reveal same structure for A1; and S as for A.

» Recursion on n > «:

Ginv(a, n) = 2Gny(a, n/2) + O(Cuyr(a, ).

» Total cost in ON(a“_ln) thanks to our fast structured MUL.

» Requirement: strongly regularity of A.

25



Handling arbitrary matrices A [Kaltofen’94-95], [Pan’99]

0.
1.
2.

input: gen(A)
output: “A is singular” or gen(A~1)

Choose entries of Ty, To € K™ at random in S C K
Compute gen(A) for A = T1AT,

Compute r and gen(A1), where

e r:=rank(A) = rank(A),
e A, := largest leading principal submatrix being strongly regular

Precond. failed iff Schur complement nonzero.
If not failed then

4.1 if r < n then return “A is singular’
4.2 else compute and return gen(To A~ Ty).
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Handling arbitrary matrices A [Kaltofen’94-95], [Pan’99]

input: gen(A)
output: “A is singular” or gen(A~1)

0. Choose entries of Ty, To, € K™ at random in S C K

. Compute gen(A) for A = T;AT,

[

. Compute r and gen(A; 1), where

e r:=rank(A) = rank(A),

e A, := largest leading principal submatrix being strongly regular

N

3. Precond. failed iff Schur complement nonzero.

4. If not failed then

4.1 if r < n then return “A is singular’
4.2 else compute and return gen(To A~ Ty).

» Adapts to LINSOLVE.
» Inherits our previous costs in O"(a“’_ln).
» Probability of failure < 1/2 if |S| > 2n(n+ 1).
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Conclusion

Summary:
» MUL, INV, LINSOLVE in time O"(aw_ln) for Vmp,Ng-
» A continuum of cost bounds, from quasi-linear ones to O(n*).

» Generalized operators.

On-going and future work:
» Derandomization of INV and LINSOLVE for finite fields.

Broader M and N for the same cost.

v

v

Nullspace bases.

v

More links with polynomial matrices (Beckermann—Labahn).

v

Beyond one-level structures.
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