Multiplication and Inversion Algorithms for Matrices with Displacement Structure

Claude-Pierre Jeannerod

Inria - Université de Lyon
Laboratoire LIP (CNRS, ENSL, Inria, UCBL)
05.2019

Based on joint work with A. Bostan, C. Mouilleron, and É. Schost.

UNIV=RSIT D \equiv LYON

Structured matrices

- $n \times n$ dense matrices with "patterns".

Structured matrices

- $n \times n$ dense matrices with "patterns".
- Examples:

$$
\begin{aligned}
& \text { Toeplitz }\left[\begin{array}{ccc}
a_{0} & a_{-1} & a_{-2} \\
a_{1} & a_{0} & a_{-1} \\
a_{2} & a_{1} & a_{0}
\end{array}\right] \quad\left[\begin{array}{lll}
a_{0} & a_{1} & a_{2} \\
a_{1} & a_{2} & a_{3} \\
a_{2} & a_{3} & a_{4}
\end{array}\right] \text { Hankel } \\
& \text { Vandermonde }\left[\begin{array}{ccc}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
1 & x_{3} & x_{3}^{2}
\end{array}\right] \quad\left[\begin{array}{lll}
\frac{1}{x_{1}-y_{1}} & \frac{1}{x_{1}-y_{2}} & \frac{1}{x_{1}-y_{3}} \\
\frac{1}{x_{2}-y_{1}} & \frac{1}{x_{2}}-y_{2} & \frac{1}{x_{2}-y_{3}} \\
\frac{1}{x_{3}-y_{1}} & \frac{1}{x_{3}-y_{2}} & \frac{1}{x_{3}-y_{3}}
\end{array}\right] \text { Cauchy }
\end{aligned}
$$

Structured matrices

- $n \times n$ dense matrices with "patterns".
- Examples:

$$
\begin{aligned}
& \text { Toeplitz }\left[\begin{array}{ccc}
a_{0} & a_{-1} & a_{-2} \\
a_{1} & a_{0} & a_{-1} \\
a_{2} & a_{1} & a_{0}
\end{array}\right] \quad\left[\begin{array}{lll}
a_{0} & a_{1} & a_{2} \\
a_{1} & a_{2} & a_{3} \\
a_{2} & a_{3} & a_{4}
\end{array}\right] \text { Hankel } \\
& \text { Vandermonde }\left[\begin{array}{lll}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
1 & x_{3} & x_{3}^{2}
\end{array}\right] \quad\left[\begin{array}{lll}
\frac{1}{x_{1}-y_{1}} & \frac{1}{x_{1}-y_{2}} & \frac{1}{x_{1}-y_{3}} \\
\frac{x_{2}}{x_{2}-y_{1}} & \frac{1}{x_{1}-y_{2}} & \frac{1}{x_{2}-y_{3}} \\
\frac{x_{3}-y_{1}}{} & \frac{1}{x_{3}-y_{2}} & \frac{1}{x_{3}-y_{3}}
\end{array}\right] \text { Cauchy }
\end{aligned}
$$

- Features:
- can be represented by a few parameters:
here, $O(n)$.
- fast multiplication by a vector:
- related to univariate polynomial arithmetic.

Structured matrices

- Generalizations \rightarrow "still structured but maybe a bit less" (\star)
- $T=\left[T_{i j}\right]$ with $T_{i j}$ Toeplitz [block, mosaic, ...]
- $T_{1} T_{2}, T^{-1}$, Schur complement, ...
[Toeplitz-like]

Structured matrices

- Generalizations \rightarrow "still structured but maybe a bit less" (\star)
- $T=\left[T_{i j}\right]$ with $T_{i j}$ Toeplitz [block, mosaic, ...]
- $T_{1} T_{2}, T^{-1}$, Schur complement, ...
[Toeplitz-like]
- Displacement structure $=$ a way to formalize ($*$):
- Parametrization size: $O(\alpha n)$ for some $1 \leqslant \alpha \leqslant n$
\hookrightarrow a nice continuum of structures.
- Algorithms designed in 1980-2000's for $A B, A^{-1}, A^{-1} b, \ldots$ use $O^{\sim}\left(\alpha^{2} n\right)$ field operations [Morf, Bitmead-Anderson, Gohberg, Kaltofen, Olshevsky, Pan, Shokrollahi, ...]

Structured matrices

- Generalizations \rightarrow "still structured but maybe a bit less" (\star)
- $T=\left[T_{i j}\right]$ with $T_{i j}$ Toeplitz [block, mosaic, ...]
- $T_{1} T_{2}, T^{-1}$, Schur complement, ...
[Toeplitz-like]
- Displacement structure $=$ a way to formalize ($*$):
- Parametrization size: $O(\alpha n)$ for some $1 \leqslant \alpha \leqslant n$
\hookrightarrow a nice continuum of structures.
- Algorithms designed in 1980-2000's for $A B, A^{-1}, A^{-1} b, \ldots$ use $O^{\sim}\left(\alpha^{2} n\right)$ field operations [Morf, Bitmead-Anderson, Gohberg, Kaltofen, Olshevsky, Pan, Shokrollahi, ...]

Great for $\alpha \rightarrow 1$, but not so nice for $\alpha \rightarrow n$, since dense unstructured linear algebra has cost $O\left(n^{\omega}\right)$ with $\omega<2.38$.

Our objective: replace α^{2} by $\alpha^{\omega-1}$ in these cost bounds.

Structured matrices

- Generalizations \rightarrow "still structured but maybe a bit less" (\star)
- $T=\left[T_{i j}\right]$ with $T_{i j}$ Toeplitz
- $T_{1} T_{2}, T^{-1}$, Schur complement, ...
[block, mosaic, ...]
[Toeplitz-like]
- Displacement structure $=$ a way to formalize (\star):
- Parametrization size: $O(\alpha n)$ for some $1 \leqslant \alpha \leqslant n$
\hookrightarrow a nice continuum of structures.
- Algorithms designed in 1980-2000's for $A B, A^{-1}, A^{-1} b, \ldots$ use $O^{\sim}\left(\alpha^{2} n\right)$ field operations [Morf, Bitmead-Anderson, Gohberg, Kaltofen, Olshevsky, Pan, Shokrollahi, ...]

Great for $\alpha \rightarrow 1$, but not so nice for $\alpha \rightarrow n$, since dense unstructured linear algebra has cost $O\left(n^{\omega}\right)$ with $\omega<2.38$.

Our objective: replace α^{2} by $\alpha^{\omega-1}$ in these cost bounds.
Remark: in some important cases, costs in $O^{\sim}\left(\alpha^{\omega-1} n\right)$ via σ-bases [Beckermann-Labahn'94, ..., Neiger'16, ...].

Continuums of complexity: basic examples

Block dot products:

- $A, B \in \mathbb{K}^{n \times \alpha} \longrightarrow A^{T} B$ in $\frac{n}{\alpha} \cdot \alpha^{\omega}+\left(\frac{n}{\alpha}-1\right) \cdot \alpha^{2}=O\left(\alpha^{\omega-1} n\right)$.
- Cost ranges from $O(n)$ to $O\left(n^{\omega}\right)$.

$$
\left[\begin{array}{ll|ll}
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{cc}
* & * \\
* & * \\
\hdashline * & * \\
* & *
\end{array}\right]
$$

Continuums of complexity: basic examples

Block dot products:

- $A, B \in \mathbb{K}^{n \times \alpha} \longrightarrow A^{T} B$ in $\frac{n}{\alpha} \cdot \alpha^{\omega}+\left(\frac{n}{\alpha}-1\right) \cdot \alpha^{2}=O\left(\alpha^{\omega-1} n\right)$.
- Cost ranges from $O(n)$ to $O\left(n^{\omega}\right)$. $\quad\left[\begin{array}{ll|ll}* & * \\ * & * & * & * \\ * & *\end{array}\right]\left[\begin{array}{ll}* & * \\ * & * \\ \hline * & * \\ * & *\end{array}\right]$

Polynomial matrix products:

- $A, B \in \mathbb{K}[X]_{<n / \alpha}^{\alpha \times \alpha} \longrightarrow A B$ in $O\left(\alpha^{\omega} \cdot \mathrm{M}(n / \alpha)\right) \subset O^{\sim}\left(\alpha^{\omega-1} n\right)$.
- Cost ranges from $O^{\sim}(n)$ to $O\left(n^{\omega}\right)$.

Compression of rank- r matrices:

- $A \in \mathbb{K}^{n \times n} \longrightarrow G, H \in \mathbb{K}^{n \times r}$ s.t. $A=G H^{T}$ in $O\left(r^{\omega-2} n^{2}\right)$.
- Cost ranges from $O\left(n^{2}\right)$ to $O\left(n^{\omega}\right)$.

$$
\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]=\left[\begin{array}{ll}
* & * \\
* & * \\
* & * \\
* & *
\end{array}\right]\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & *
\end{array}\right]
$$

1. Displacement rank
2. Transformation techniques
3. Structured matrix multiplication
4. Structured matrix inversion

1. Displacement rank

2. Transformation techniques
3. Structured matrix multiplication
4. Structured matrix inversion

Example: Toeplitz structure

$$
\underbrace{\left[\begin{array}{ccc}
a_{0} & a_{-1} & a_{-2} \\
a_{1} & a_{0} & a_{-1} \\
a_{2} & a_{1} & a_{0}
\end{array}\right]}_{\mathrm{A}}-\underbrace{\left[\begin{array}{ll}
1 & \\
& 1
\end{array}\right]}_{\mathrm{M}} \underbrace{\left[\begin{array}{lll}
a_{0} & a_{-1} & a_{-2} \\
a_{1} & a_{0} & a_{-1} \\
a_{2} & a_{1} & a_{0}
\end{array}\right]}_{\mathrm{A}} \underbrace{\left[\begin{array}{ll}
1 & \\
& 1 \\
&
\end{array}\right]}_{\mathrm{N}}
$$

Example: Toeplitz structure

$$
\begin{gathered}
\underbrace{\left[\begin{array}{lll}
a_{0} & a_{-1} & a_{-2} \\
a_{1} & a_{0} & a_{-1} \\
a_{2} & a_{1} & a_{0}
\end{array}\right]}_{\mathrm{A}}-\underbrace{\left[\begin{array}{ll}
1 & \\
& 1
\end{array}\right]}_{\mathrm{M}} \underbrace{\left[\begin{array}{lll}
{\left[\begin{array}{lll}
a_{0} & a_{-1} & a_{-2} \\
a_{1} & a_{0} & a_{-1} \\
a_{2} & a_{1} & a_{0}
\end{array}\right]} & \underbrace{\left[\begin{array}{ll}
1 \\
& 1 \\
a_{1} & a_{-1} \\
a_{1} & a_{0} \\
a_{2} & a_{1} \\
a_{-1} \\
a_{0}
\end{array}\right]}_{\mathrm{N}} &
\end{array}\right]}_{\mathrm{A}} \begin{aligned}
{\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & a_{0} & a_{-1} \\
0 & a_{1} & a_{0}
\end{array}\right] }
\end{aligned}
\end{gathered}
$$

Example: Toeplitz structure

$$
\underbrace{\left[\begin{array}{ccc}
a_{0} & a_{-1} & a_{-2} \\
a_{1} & a_{0} & a_{-1} \\
a_{2} & a_{1} & a_{0}
\end{array}\right]}_{\mathrm{A}}-\underbrace{\left[\begin{array}{ll}
1 & \\
& 1
\end{array}\right]}_{\mathrm{M}} \underbrace{\left[\begin{array}{ccc}
a_{0} & a_{-1} & a_{-2} \\
a_{1} & a_{0} & a_{-1} \\
a_{2} & a_{1} & a_{0}
\end{array}\right]}_{\mathrm{A}} \underbrace{\left[\begin{array}{lll}
1 & \\
& 1 \\
& &
\end{array}\right]}_{\mathrm{N}}
$$

$$
\begin{gathered}
=\left[\begin{array}{ccc}
a_{0} & a_{-1} & a_{-2} \\
a_{1} & a_{0} & a_{-1} \\
a_{2} & a_{1} & a_{0}
\end{array}\right]-\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & a_{0} & a_{-1} \\
0 & a_{1} & a_{0}
\end{array}\right] \\
=\left[\begin{array}{ccc}
a_{0} & a_{-1} & a_{-2} \\
a_{1} & 0 & 0 \\
a_{2} & 0 & 0
\end{array}\right]
\end{gathered}
$$

Example: Toeplitz structure

$$
\begin{gathered}
\underbrace{\left[\begin{array}{lll}
a_{0} & a_{-1} & a_{-2} \\
a_{1} & a_{0} & a_{-1} \\
a_{2} & a_{1} & a_{0}
\end{array}\right]}_{\mathrm{A}}-\underbrace{\left[\begin{array}{ll}
1 & \\
& 1
\end{array}\right]}_{\mathrm{M}} \underbrace{\left[\begin{array}{ccc}
a_{0} & a_{-1} & a_{-2} \\
a_{1} & a_{0} & a_{-1} \\
a_{2} & a_{1} & a_{0}
\end{array}\right]}_{\mathrm{A}}-\underbrace{\left[\begin{array}{lll}
a_{0} & a_{-1} & a_{-2} \\
a_{1} & a_{0} & a_{-1} \\
a_{2} & a_{1} & a_{0}
\end{array}\right]}_{\mathrm{N}} \underbrace{\left[\begin{array}{l}
1 \\
a_{0}
\end{array}\right]}_{\underbrace{\left[\begin{array}{ll}
1 \\
0 & 0 \\
0 & a_{0}
\end{array}\right.} \begin{array}{l}
a_{-1} \\
0
\end{array} a_{1}} \\
\\
=\left[\begin{array}{ccc}
a_{0} & a_{-1} & a_{-2} \\
a_{1} & 0 & 0 \\
a_{2} & 0 & 0
\end{array}\right]
\end{gathered}
$$

$\hookrightarrow \quad$ rank $\leqslant 2$ for all n.
\hookrightarrow Stein's displacement operator: $A \mapsto A-M A N$.

Example: Toeplitz structure

$$
\underbrace{\left[\begin{array}{ccc}
a_{0} & a_{-1} & a_{-2} \\
a_{1} & a_{0} & a_{-1} \\
a_{2} & a_{1} & a_{0}
\end{array}\right]}_{\mathrm{A}}
$$

Example: Toeplitz structure

$$
\begin{array}{r}
\underbrace{\left[\begin{array}{ll}
1 & \\
& 1
\end{array}\right]}_{\mathrm{M}} \underbrace{\left[\begin{array}{ccc}
a_{0} & a_{-1} & a_{-2} \\
a_{1} & a_{0} & a_{-1} \\
a_{2} & a_{1} & a_{0}
\end{array}\right]}_{\mathrm{A}} \\
\quad=\left[\begin{array}{ccc}
0 & 0 & 0 \\
a_{0} & a_{-1} & a_{-2} \\
a_{1} & a_{0} & a_{-1}
\end{array}\right]
\end{array}
$$

Example: Toeplitz structure

$$
\begin{aligned}
\underbrace{\left[\begin{array}{ll}
1 & \\
& 1
\end{array}\right]}_{\mathrm{M}} \underbrace{\left[\begin{array}{lll}
a_{0} & a_{-1} & a_{-2} \\
a_{1} & a_{0} & a_{-1} \\
a_{2} & a_{1} & a_{0}
\end{array}\right]}_{\mathrm{A}}-\underbrace{\left[\begin{array}{lll}
a_{0} & a_{-1} & a_{-2} \\
a_{1} & a_{0} & a_{-1} \\
a_{2} & a_{1} & a_{0}
\end{array}\right]}_{\mathrm{A}} \underbrace{\left[\begin{array}{lll}
1 & & 1 \\
1
\end{array}\right.}_{\mathrm{N}} \begin{array}{l}
{\left[\begin{array}{ccc}
0 & 0 & 0 \\
a_{0} & a_{-1} & a_{-2} \\
a_{1} & a_{0} & a_{-1}
\end{array}\right]}
\end{array}]
\end{aligned}
$$

Example: Toeplitz structure

$$
\begin{gathered}
\underbrace{\left[\begin{array}{ll}
1 & \\
& 1
\end{array}\right]}_{\mathrm{M}} \underbrace{\left[\begin{array}{ccc}
a_{0} & a_{-1} & a_{-2} \\
a_{1} & a_{0} & a_{-1} \\
a_{2} & a_{1} & a_{0}
\end{array}\right]}_{\mathrm{A}}-\underbrace{\left[\begin{array}{ccc}
a_{0} & a_{-1} & a_{-2} \\
a_{1} & a_{0} & a_{-1} \\
a_{2} & a_{1} & a_{0}
\end{array}\right]}_{\mathrm{A}} \underbrace{\left[\begin{array}{ccc}
1 \\
1 & & 1 \\
& 1
\end{array}\right]}_{\mathrm{N}} \\
=\left[\begin{array}{ccc}
-a_{-1} & -a_{-2} & -a_{0} \\
0 & 0 & a_{-2}-a_{1} \\
0 & 0 & a_{-1}-a_{2}
\end{array}\right]
\end{gathered}
$$

$\hookrightarrow \quad$ rank $\leqslant 2$ for all n.
\hookrightarrow Sylvester's displacement operator: $A \mapsto M A-A N$.

Example: Vandermonde structure

$$
\underbrace{\left[\begin{array}{lll}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
1 & x_{3} & x_{3}^{2}
\end{array}\right]}_{\mathrm{A}}
$$

Example: Vandermonde structure

$$
\begin{gathered}
\underbrace{\left[\begin{array}{ccc}
\frac{1}{x_{1}} & & \\
& \frac{1}{x_{2}} & \\
& & \frac{1}{x_{3}}
\end{array}\right]}_{\mathrm{M}} \underbrace{\left[\begin{array}{lll}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
1 & x_{3} & x_{3}^{2}
\end{array}\right]}_{\mathrm{A}} \\
=\left[\begin{array}{lll}
x_{1}^{-1} & 1 & x_{1} \\
x_{2}^{-1} & 1 & x_{2} \\
x_{3}^{-1} & 1 & x_{3}
\end{array}\right]
\end{gathered}
$$

Example: Vandermonde structure

$$
\begin{gathered}
\underbrace{\left[\begin{array}{lll}
\frac{1}{x_{1}} & & \\
& \frac{1}{x_{2}} & \\
& & \frac{1}{x_{3}}
\end{array}\right]}_{\mathrm{M}} \underbrace{\left[\begin{array}{lll}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
1 & x_{3} & x_{3}^{2}
\end{array}\right]}_{\mathrm{A}}-\underbrace{\left[\begin{array}{lll}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
1 & x_{3} & x_{3}^{2}
\end{array}\right]}_{\mathrm{A}} \underbrace{\left[\begin{array}{lll}
1 & \\
& 1 \\
x_{2}^{-1} & 1 & x_{2} \\
x_{3}^{-1} & 1 & x_{3}
\end{array}\right]}_{\mathrm{N}} \\
=\left[\begin{array}{lll}
x_{1}^{-1} & 1 & x_{1} \\
x^{-1}
\end{array}\right]
\end{gathered}
$$

Example: Vandermonde structure

$$
\begin{gathered}
\underbrace{=\left[\begin{array}{lll}
x_{1}^{-1} & 0 & 0 \\
x_{2}^{-1} & 0 & 0 \\
x_{3}^{-1} & 0 & 0
\end{array}\right]}_{\underbrace{\left[\begin{array}{lll}
\frac{1}{x_{1}} & & \\
& \frac{1}{x_{2}} & \\
& & \frac{1}{x_{3}}
\end{array}\right]}_{\mathrm{M}} \underbrace{\left[\begin{array}{lll}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
1 & x_{3} & x_{3}^{2}
\end{array}\right]}_{\mathrm{A}}-\underbrace{\left[\begin{array}{lll}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
1 & x_{3} & x_{3}^{2}
\end{array}\right]}_{\mathrm{A}} \underbrace{\left[\begin{array}{lll}
1 & 1 \\
& 1
\end{array}\right]}_{\mathrm{N}}}
\end{gathered}
$$

$\hookrightarrow \quad$ rank 1 for all n.

General framework

Definitions:

- displacement: $\nabla_{\mathrm{M}, \mathrm{N}}(\mathrm{A})=\mathrm{MA}-\mathrm{AN}$,
- displacement rank: $\alpha=\operatorname{rank}\left(\nabla_{\mathrm{M}, \mathrm{N}}(\mathrm{A})\right)$,
- generator: G, H such that $\nabla_{\mathrm{M}, \mathrm{N}}(\mathrm{A})=\mathrm{GH}^{T}$.

General framework

Definitions:

- displacement: $\nabla_{\mathrm{M}, \mathrm{N}}(\mathrm{A})=\mathrm{MA}-\mathrm{AN}$,
- displacement rank: $\alpha=\operatorname{rank}\left(\nabla_{\mathrm{M}, \mathrm{N}}(\mathrm{A})\right)$,
- generator: G, H such that $\nabla_{\mathrm{M}, \mathrm{N}}(\mathrm{A})=\mathrm{GH}^{T}$.

Remarks:

- there exist G and H of dimensions $n \times \alpha$,
$-\operatorname{vec}\left(G H^{T}\right)=\underbrace{\left(I \otimes M-N^{T} \otimes I\right)}_{\in \mathbb{K}^{n^{2} \times n^{2}}} \operatorname{vec}(A)$
\rightarrow compact representation
\rightarrow compress, operate, recover

Choices for M and N

- Classically, cyclic shifts and diagonals:

$$
\mathrm{Z}_{\varphi}=\left[\begin{array}{llll}
1 & & & \varphi \\
& \ddots & \\
& & 1 &
\end{array}\right], \quad \mathrm{Z}_{\varphi}^{T}, \quad \mathrm{D}(x)=\left[\begin{array}{llll}
x_{1} & & & \\
& x_{2} & & \\
& & \ddots & \\
& & & x_{n}
\end{array}\right]
$$

Toeplitz-like and Hankel-like when two shifts, Cauchy-like when two diagonals, Vandermonde-like when one of each.

Choices for M and N

- Classically, cyclic shifts and diagonals:

$$
\mathrm{Z}_{\varphi}=\left[\begin{array}{llll}
1 & & & \varphi \\
& \ddots & & \\
& & 1 &
\end{array}\right], \quad \mathrm{Z}_{\varphi}^{T}, \quad \mathrm{D}(\mathrm{x})=\left[\begin{array}{llll}
x_{1} & & & \\
& x_{2} & & \\
& & \ddots & \\
& & & x_{n}
\end{array}\right]
$$

Toeplitz-like and Hankel-like when two shifts, Cauchy-like when two diagonals, Vandermonde-like when one of each.

- More generally, Jordan forms [Olshevsky-Shokrollahi'99-00] or block-diagonal companion forms [Bostan, J., Mouilleron, Schost'17]:
$M_{\mathbf{P}}=\operatorname{diag}\left(C_{P_{i}}\right), \quad C_{P_{i}}:=$ companion matrix of $P_{i} \in \mathbb{K}[X]$, with the P_{i} pairwise coprime.

Recovering A from a generator (G, H)

- Let $I \otimes \mathrm{M}-\mathrm{N}^{T} \otimes I$ be nonsingular
\hookrightarrow for example, M invertible and N nilpotent.
- Pre- and post-multiply $\mathrm{MA}-\mathrm{AN}=\mathrm{GH}^{T}$ by powers of M and N to recover A as

$$
\mathrm{A}=\mathrm{M}^{-1} \cdot \sum_{j=1}^{\alpha} \operatorname{Krylov}\left(\mathrm{M}, \mathrm{G}_{*, j}\right) \operatorname{Krylov}\left(\mathrm{N}, \mathrm{H}_{*, j}\right)^{T}
$$

[Pan-Wang'03]

Recovering A from a generator (G, H)

- Let $I \otimes \mathrm{M}-\mathrm{N}^{T} \otimes I$ be nonsingular
\hookrightarrow for example, M invertible and N nilpotent.
- Pre- and post-multiply $\mathrm{MA}-\mathrm{AN}=\mathrm{GH}^{T}$ by powers of M and N to recover A as

$$
\mathrm{A}=\mathrm{M}^{-1} \cdot \sum_{j=1}^{\alpha} \operatorname{Krylov}\left(\mathrm{M}, \mathrm{G}_{*, j}\right) \operatorname{Krylov}\left(\mathrm{N}, \mathrm{H}_{*, j}\right)^{T}
$$

[Pan-Wang'03]
\Rightarrow fast matrix-vector multiplication: for our choices of M, N, these Krylov matrices are special enough to allow for $A v$ in $O^{\sim}(\alpha n)$.

Displacement structure after basic operations

Structure can be preserved by

- transposition, inversion: $\alpha \rightsquigarrow \alpha$
- addition, multiplication: $\alpha, \alpha^{\prime} \rightsquigarrow \leqslant \alpha+\alpha^{\prime}$
- submatrix extraction and Schur complement: $\alpha \rightsquigarrow \alpha+\varepsilon$, with $\varepsilon \leqslant \operatorname{rank}\left(\mathrm{M}_{12}\right)+\operatorname{rank}\left(\mathrm{N}_{21}\right)$.

Compression of generators: moving from width $O(\alpha)$ to minimal width α can be done in time $O\left(\alpha^{\omega-1} n\right)$ via fast LU decomposition.

Illustration: solving structured linear systems

$$
\mathrm{A}=\left[\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{array}\right] \xrightarrow{\text { compress }} \mathrm{GH}^{T}=\left[\begin{array}{cc}
* & * \\
* & * \\
* & * \\
* & * \\
* & *
\end{array}\right]\left[\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & * & *
\end{array}\right]
$$

Illustration: solving structured linear systems

$$
\begin{aligned}
& \mathrm{A}=\left[\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{array}\right] \xrightarrow{\text { compress }} \mathrm{GH}^{T}=\left[\begin{array}{cc}
* & * \\
* & * \\
* & * \\
* & * \\
* & *
\end{array}\right]\left[\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * & *
\end{array}\right] \\
& \begin{array}{c}
\downarrow \text { inversion } \\
\mathrm{YZ}^{T}=\left[\right]\left[\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * & *
\end{array}\right]
\end{array}
\end{aligned}
$$

Illustration: solving structured linear systems

$$
\begin{aligned}
& \mathrm{A}^{-1}=\left[\begin{array}{llllll}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * \\
*
\end{array}\right] \quad \text { recover } \quad \mathrm{YZ}^{T}=\left[\begin{array}{lll}
* & * \\
* & * \\
\vdots & * \\
* & * \\
* & *
\end{array}\right]\left[\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * & *
\end{array}\right]
\end{aligned}
$$

Illustration: solving structured linear systems

$$
\begin{aligned}
& \mathrm{A}=\left[\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{array}\right] \xrightarrow{\text { compress }} \mathrm{GH}^{T}=\left[\begin{array}{cc}
* & * \\
* & * \\
* & * \\
* & * \\
* & *
\end{array}\right]\left[\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * & *
\end{array}\right] \\
& \downarrow \text { inversion } \\
& \mathrm{A}^{-1} b=\left[\begin{array}{l}
* \\
* \\
* \\
* \\
*
\end{array}\right] \quad \stackrel{\text { recover }}{ } \quad \mathrm{YZ}=\left[\begin{array}{cc}
* & * \\
* & * \\
* & * \\
* & * \\
* & *
\end{array}\right]\left[\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & * & *
\end{array}\right]
\end{aligned}
$$

1. Displacement rank
2. Transformation techniques
3. Structured matrix multiplication
4. Structured matrix inversion

Example: from Toeplitz-like to Vandermonde-like

Let A be Toeplitz-like with

$$
\mathrm{Z}_{1} \mathrm{~A}-\mathrm{A} \mathrm{Z}_{0}=\mathrm{GH}^{T}, \quad \mathrm{Z}_{\varphi}=\left[\begin{array}{llll}
1 & & & \varphi \\
& \ddots & \\
& & 1
\end{array}\right]
$$

- Fourier diagonalizes circulants: $Z_{1}=F^{-1} D F, \quad D=\operatorname{diag}\left(F_{2}\right)$.
- Hence D $\cdot F A-F A \cdot Z_{0}=(F G) \cdot H^{T}$ and so FA is

Vandermonde-like.

Example: from Toeplitz-like to Vandermonde-like

Let A be Toeplitz-like with

$$
\mathrm{Z}_{1} \mathrm{~A}-\mathrm{A} \mathrm{Z}_{0}=\mathrm{GH}^{T}, \quad \mathrm{Z}_{\varphi}=\left[\begin{array}{llll}
1 & & & \varphi \\
& \ddots & \\
& & 1
\end{array}\right]
$$

- Fourier diagonalizes circulants: $Z_{1}=F^{-1} D F, \quad D=\operatorname{diag}\left(F_{2}\right)$.
- Hence D $\cdot F A-F A \cdot Z_{0}=(F G) \cdot H^{T}$ and so FA is Vandermonde-like.

Overheads:

- to generate FA: left multiply $G \in \mathbb{K}^{n \times \alpha}$ by F in $O^{\sim}(\alpha n)$;
- to recover Av , multiply the vector (FA) v by F^{-1}, in $\mathrm{O}^{\sim}(n)$.

Fast reductions to $\nabla_{\mathrm{Z}_{0}, \mathrm{Z}_{1}^{T}}$

More generally, multiplicative transforms

$$
\mathrm{A} \quad \rightarrow \quad \mathrm{LAR}
$$

to reduce a structure to another one, at negligible cost.
[Pan'90]

Theorem: reductions from $\nabla_{\mathrm{M}_{\mathrm{P}}, \mathrm{N}_{\mathrm{Q}}}$ to simpler $\nabla_{\mathrm{Z}_{0}, \mathrm{Z}_{1}^{T}}$ in $O^{\sim}(\alpha n)$ for MUL and LINSOLVE, $O^{\sim}(\alpha n)+O\left(\alpha^{\omega-1} n\right)$ for INV.
[Bostan, J., Mouilleron, Schost'17]

Multiplicative transforms for regularizing A

Toeplitz pre-conditioning:
$\widetilde{\mathrm{A}}:=\mathrm{T}_{1} \mathrm{AT} \mathrm{T}_{2}$ with $\mathrm{T}_{1}, \mathrm{~T}_{2}$ unit upper/lower triangular Toeplitz

Multiplicative transforms for regularizing A

Toeplitz pre-conditioning:
$\widetilde{\mathrm{A}}:=\mathrm{T}_{1} \mathrm{AT} \mathrm{T}_{2}$ with $\mathrm{T}_{1}, \mathrm{~T}_{2}$ unit upper/lower triangular Toeplitz

- If A is Toeplitz- or Hankel-like, then so is $\widetilde{\mathrm{A}}$, with $\alpha+O(1)$.
- If entries of T_{1}, T_{2} at random from $S \subset \mathbb{K}$, then
$\widetilde{\mathrm{A}}=\left[\begin{array}{llll}* & * & * & * \\ * & * & * & * \\ * & * & * & * \\ * & * & * & *\end{array}\right]$ has generic rank profile with proba $\geqslant 1-\frac{r(r+1)}{|S|}$.
Proof via Schwartz-Zippel.
- Again, low overhead: $O^{\sim}(\alpha n)$.

Multiplicative transforms for regularizing A

Toeplitz pre-conditioning:
[Kaltofen-Saunders'91]
$\widetilde{\mathrm{A}}:=\mathrm{T}_{1} \mathrm{AT} \mathrm{T}_{2}$ with $\mathrm{T}_{1}, \mathrm{~T}_{2}$ unit upper/lower triangular Toeplitz

- If A is Toeplitz- or Hankel-like, then so is $\widetilde{\mathrm{A}}$, with $\alpha+O(1)$.
- If entries of T_{1}, T_{2} at random from $S \subset \mathbb{K}$, then
$\widetilde{\mathrm{A}}=\left[\begin{array}{llll}* & * & * & * \\ * & * & * & * \\ * & * & * & * \\ * & * & * & *\end{array}\right]$ has generic rank profile with proba $\geqslant 1-\frac{r(r+1)}{|S|}$.
Proof via Schwartz-Zippel.
- Again, low overhead: $O^{\sim}(\alpha n)$.

A variant: from Toeplitz-like to Cauchy-like via two random
Vandermonde $\mathrm{V}_{1}, \mathrm{~V}_{2}$.
[Hyun-Lebreton-Schost'17]

1. Displacement rank
2. Transformation techniques
3. Structured matrix multiplication
4. Structured matrix inversion

Generating $A B$ from generators of A and B

- Let $\mathrm{A}, \mathrm{B} \in \mathbb{K}^{n \times n}$ have displacement rank α for some compatible displacement operators:

$$
\mathrm{MA}-\mathrm{AN}=\mathrm{GH}^{T}, \quad \mathrm{NB}-\mathrm{BP}=\mathrm{XY} \mathrm{Y}^{T} .
$$

Then

$$
\begin{aligned}
\mathrm{M}(\mathrm{AB})-(\mathrm{AB}) \mathrm{P} & =\mathrm{GH}{ }^{T} \mathrm{~B}+\mathrm{AXY} \\
& =[\mathrm{G} \mid \mathrm{AX}]\left[\mathrm{B}^{T} \mathrm{H} \mid \mathrm{Y}\right]^{T}
\end{aligned}
$$

and it suffices to be able to multiply A and B by α vectors.

Generating $A B$ from generators of A and B

- Let $\mathrm{A}, \mathrm{B} \in \mathbb{K}^{n \times n}$ have displacement rank α for some compatible displacement operators:

$$
\mathrm{MA}-\mathrm{AN}=\mathrm{GH}^{T}, \quad \mathrm{NB}-\mathrm{BP}=\mathrm{XY} \mathrm{Y}^{T} .
$$

Then

$$
\begin{aligned}
\mathrm{M}(\mathrm{AB})-(\mathrm{AB}) \mathrm{P} & =\mathrm{GH}{ }^{T} \mathrm{~B}+\mathrm{AX} Y^{T} \\
& =[\mathrm{G} \mid \mathrm{AX}]\left[\mathrm{B}^{T} \mathrm{H} \mid \mathrm{Y}\right]^{T}
\end{aligned}
$$

and it suffices to be able to multiply A and B by α vectors.

- Obvious solution has cost $2 \alpha \times O^{\sim}(\alpha n) \subset O^{\sim}\left(\alpha^{2} n\right)$.

Incorporating polynomial matrix multiplication

[Bostan, J., Schost'07]

- Rewrite "(reconstruction formula of A$) \times(\alpha$ vectors)" as

$$
U^{T}\left(V W^{T} \bmod X^{n}\right), \quad U, V, W \in \mathbb{K}[X]_{<n}^{\alpha}
$$

Incorporating polynomial matrix multiplication

[Bostan, J., Schost'07]

- Rewrite "(reconstruction formula of A$) \times(\alpha$ vectors)" as

$$
U^{T}\left(V W^{T} \bmod X^{n}\right), \quad U, V, W \in \mathbb{K}[X]_{<n}^{\alpha} .
$$

- Split $V=V_{0}+V_{1} \cdot X^{n / 2}$ and similarly for W :

$$
V W^{T} \bmod X^{n}=V_{0} W_{0}^{T}+\left(\left[\begin{array}{ll}
V_{0} & V_{1}
\end{array}\right]\left[\begin{array}{ll}
W_{1} & W_{0}
\end{array}\right]^{T} \bmod X^{n / 2}\right) \cdot X^{n / 2}
$$

- Outer product has width $\times 2$ and modulus degree $/ 2$.
- We can continue down to $X^{n / \alpha}$.

Computing $R=U^{T}\left(V W^{T} \bmod X^{n}\right)$

$$
\begin{aligned}
& \prod_{\mathrm{deg}<\frac{n}{2}} \\
& \operatorname{deg}<\frac{n}{4} \\
& O^{\sim}\left(\alpha^{\omega-1} n\right) \\
& \sigma^{\sim}\left(\alpha^{\omega-1} n\right) \\
& O(\log \alpha) \\
& +X^{n / \alpha} . \\
& + \text { one product of two polynomial matrices of } \\
& \text { dimensions } \alpha \times \alpha \text { and degree }<\frac{n}{\alpha} \text { : } O^{\sim}\left(\alpha^{\omega-1} n\right)
\end{aligned}
$$

1. Displacement rank
2. Transformation techniques
3. Structured matrix multiplication
4. Structured matrix inversion

Block recursive inversion

Partition A, assume $\operatorname{det}\left(A_{11}\right) \neq 0$, and let $S=A_{22}-A_{21} A_{11}^{-1} A_{12}$:

$$
\begin{gathered}
\underbrace{\left[\begin{array}{cc}
I & \\
-\mathrm{A}_{21} \mathrm{~A}_{11}^{-1} & I
\end{array}\right]}_{\mathrm{E}}\left[\begin{array}{ll}
\mathrm{A}_{11} & \mathrm{~A}_{12} \\
\mathrm{~A}_{21} & \mathrm{~A}_{22}
\end{array}\right] \underbrace{\left[\begin{array}{cc}
I & -\mathrm{A}_{11}^{-1} \mathrm{~A}_{12} \\
& I
\end{array}\right]}_{\mathrm{F}}=\left[\begin{array}{ll}
\mathrm{A}_{11} & \\
& \mathrm{~S}
\end{array}\right] \\
\Rightarrow \quad \mathrm{A}^{-1}=\mathrm{F}\left[\begin{array}{ll}
\mathrm{A}_{11}^{-1} & \\
& \mathrm{~S}^{-1}
\end{array}\right] \mathrm{E}
\end{gathered}
$$

Block recursive inversion

Partition A, assume $\operatorname{det}\left(A_{11}\right) \neq 0$, and let $S=A_{22}-A_{21} A_{11}^{-1} A_{12}$:

$$
\begin{gathered}
\underbrace{\left[\begin{array}{cc}
I & \\
-\mathrm{A}_{21} \mathrm{~A}_{11}^{-1} & I
\end{array}\right]}_{\mathrm{E}}\left[\begin{array}{ll}
\mathrm{A}_{11} & \mathrm{~A}_{12} \\
\mathrm{~A}_{21} & \mathrm{~A}_{22}
\end{array}\right] \underbrace{\left[\begin{array}{cc}
I & -\mathrm{A}_{11}^{-1} \mathrm{~A}_{12} \\
l
\end{array}\right]}_{\mathrm{F}}=\left[\begin{array}{ll}
\mathrm{A}_{11} & \\
& \mathrm{~S}
\end{array}\right] \\
\Rightarrow \quad \mathrm{A}^{-1}=\mathrm{F}\left[\begin{array}{ll}
\mathrm{A}_{11}^{-1} & \\
& \mathrm{~S}^{-1}
\end{array}\right] \mathrm{E}
\end{gathered}
$$

- If A is strongly regular, then so are A_{11} and S.
- Reduction to MUL: $C_{\text {INV }}(n)=2 C_{\text {INV }}(n / 2)+O\left(n^{\omega}\right)=O\left(n^{\omega}\right)$.

Structured block recursive inversion (MBA)

[Morf/Bitmead-Anderson'80]
Same scheme as Strassen's:

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \quad \Rightarrow \quad A^{-1}=F\left[\begin{array}{ll}
A_{11}^{-1} & \\
& S^{-1}
\end{array}\right] E
$$

but now with every matrix represented by a generator.

Structured block recursive inversion (MBA)

[Morf/Bitmead-Anderson'80]

Same scheme as Strassen's:

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \quad \Rightarrow \quad A^{-1}=F\left[\begin{array}{ll}
A_{11}^{-1} & \\
& S^{-1}
\end{array}\right] E,
$$

but now with every matrix represented by a generator.

- Trick: reveal same structure for A_{11} and S as for A.
- Recursion on $n \geqslant \alpha$:

$$
C_{\mathrm{INV}}(\alpha, n)=2 C_{\mathrm{INV}}(\alpha, n / 2)+O\left(C_{\mathrm{MUL}}(\alpha, n)\right)
$$

- Total cost in $O^{\sim}\left(\alpha^{\omega-1} n\right)$ thanks to our fast structured MUL.
- Requirement: strongly regularity of A.

Handling arbitrary matrices A

input: gen (A)
output: "A is singular" or gen $\left(\mathrm{A}^{-1}\right)$
0 . Choose entries of $T_{1}, T_{2} \in \mathbb{K}^{n \times n}$ at random in $S \subset \mathbb{K}$

1. Compute gen (\widetilde{A}) for $\widetilde{A}=T_{1} A T_{2}$
2. Compute r and $\operatorname{gen}\left(\widetilde{\mathrm{A}}_{r}^{-1}\right)$, where

- $r:=\operatorname{rank}(\widetilde{\mathrm{A}})=\operatorname{rank}(\mathrm{A})$,
- $\widetilde{\mathrm{A}}_{r}:=$ largest leading principal submatrix being strongly regular

3. Precond. failed iff Schur complement nonzero.
4. If not failed then
4.1 if $r<n$ then return " A is singular"
4.2 else compute and return gen $\left(T_{2} \widetilde{A}^{-1} T_{1}\right)$.

Handling arbitrary matrices A

input: gen (A) output: "A is singular" or gen $\left(\mathrm{A}^{-1}\right)$

0 . Choose entries of $T_{1}, T_{2} \in \mathbb{K}^{n \times n}$ at random in $S \subset \mathbb{K}$

1. Compute gen (\widetilde{A}) for $\widetilde{A}=T_{1} A T_{2}$
2. Compute r and $\operatorname{gen}\left(\widetilde{\mathrm{A}}_{r}^{-1}\right)$, where

- $r:=\operatorname{rank}(\widetilde{\mathrm{A}})=\operatorname{rank}(\mathrm{A})$,
- $\widetilde{\mathrm{A}}_{r}:=$ largest leading principal submatrix being strongly regular

3. Precond. failed iff Schur complement nonzero.
4. If not failed then
4.1 if $r<n$ then return " A is singular"
4.2 else compute and return gen $\left(T_{2} \widetilde{A}^{-1} T_{1}\right)$.

- Adapts to LINSOLVE.
- Inherits our previous costs in $O^{\sim}\left(\alpha^{\omega-1} n\right)$.
- Probability of failure $<1 / 2$ if $|S| \geqslant 2 n(n+1)$.

Conclusion

Summary:

- MUL, INV, LINSOLVE in time $O^{\sim}\left(\alpha^{\omega-1} n\right)$ for $\nabla_{M_{P}, N_{Q}}$.
- A continuum of cost bounds, from quasi-linear ones to $O\left(n^{\omega}\right)$.
- Generalized operators.

On-going and future work:

- Derandomization of INV and LINSOLVE for finite fields.
- Broader M and N for the same cost.
- Nullspace bases.
- More links with polynomial matrices (Beckermann-Labahn).
- Beyond one-level structures.

