Characterization of Régnier's matrices in classification

Olivier Hudry

Télécom ParisTech

olivier.hudry@telecom-paristech.fr

Structured Matrix Days 2019 - Limoges

A clustering problem (Régnier's problem)

- A set $X = \{1, 2, ..., n\}$ of *n* objects.
- A collection Π, called a *profile*, of *p* equivalence relations
 (= partitions) defined on *X*:

$$\Pi = (E_1, E_2, \ldots, E_p).$$

Each equivalence relation corresponds with a criterion gathering the objects sharing the same feature w.r.t. this criterion.

• We want to gather the *n* objects into clusters "as well as possible", i.e. so that the objects of any cluster look similar while the objects of two distinct clusters look dissimilar.

An example

n = 5, X = {a, b, c, d, e}: a is a large red rectangle; b is a small yellow triangle; c is a small blue rectangle; d is a small red triangle; e is a small red rectangle.

• p = 3:

* E_1 (geometrical shape): *a*, *c* and *e* together (they are rectangles), *b* and *d* together (they are triangles): $E_1 = a c e | b d$

* E_2 (colour): *a*, *d* and *e* together (they are red), *b* alone (the only yellow form), *c* alone (the only blue form): $E_2 = a d e | b / c$

* E_3 (size): *a* alone (the only large form); *b*, *c*, *d* and *e* together (they are small): $E_3 = a \mid c \mid b \mid d \mid e$.

• How to gather *a*, *b*, *c*, *d* and *e*?

Median equivalence relation of Π

To specify what "as well as possible" means, consider the *symmetric difference distance* δ between two binary relations *R* and *S* defined on *X*:

 $\delta(R, S) = |\{(x, y) \in X^2 \text{ with } [xRy \text{ and } not xSy] \\ \text{or } [not xRy \text{ and } xSy]\}|$

 $\rightarrow \delta(R, S)$ measures the number of disagreements between R and S.

• Then define the *remoteness* $\rho_{\Pi}(R)$ of R from $\Pi = (E_1, E_2, ..., E_p)$ by: $\rho_{\Pi}(R) = \sum_{i=1}^{p} \delta(R, E_i)$

 $\rightarrow \rho_{\Pi}(R)$ measures the total number of disagreements between R and Π .

Median equivalence relation of Π

• A median equivalence relation (or median partition, or also a *central partition*) of Π is an equivalence relation E^* minimizing ρ_{Π} : $\rho_{\Pi}(E^*) = \min \rho_{\Pi}(E)$

for $E \in \{$ equivalence relations defined on $X \}$.

- What is the complexity of the computation of a median equivalence relation of a profile of equivalence relations (Régnier's problem, 1965)?
- Rk. The computation of a median equivalence relation of a profile of symmetric relations is known to be NP-hard (M. Krivanek, J. Moravek, 1986; Y. Wakabayashi, 1986)

Computation of $\rho_{\Pi}(E)$

• Let $(e_{xy})_{(x, y) \in X^2}$ be the *characteristic matrix* of *E*:

 $e_{xy} = 1$ if E gathers x and y and $e_{xy} = 0$ otherwise.

• $p_{xy} = 2|\{i: 1 \le i \le p \text{ and } E_i \text{ gathers } x \text{ and } y\}| - p = p_{yx}.$

• Then:
$$\rho_{\Pi}(E) = C - \sum_{(x, y) \in X^2} p_{xy} e_{xy}$$

with :

$$\begin{array}{ll} \forall x \in X, \, e_{xx} = 1 & (reflexivity) \\ \forall (x, y) \in X^2, \, e_{xy} = e_{yx} & (symmetry) \\ \forall (x, y, z) \in X^3, \, e_{xy} + e_{yz} - e_{xz} \leq 1 & (transitivity) \\ \forall (x, y) \in X^2, \, e_{xy} \in \{0, 1\} & (binarity) \end{array}$$

Majority matrix of Π

• The quantities p_{xy} summarize Π utterly:

 $p_{xy} = 2 \times (|\{i: 1 \le i \le p \text{ and } E_i \text{ gathers } x \text{ and } y\}| - p/2).$

* $p_{xy} > 0$ means that x and y are rather similar, and $p_{xy} < 0$ means that x and y are rather dissimilar;

- * $p_{xy} = p_{yx};$
- * $p_{xx} = p;$
- * $-p \leq p_{xy} \leq p;$
- * all the p_{xy} have the parity of p.
- The *majority matrix* of Π is the matrix $P = (p_{xy})_{x,y}$.

•
$$E_1 = a \ c \ e \ | \ b \ d; E_2 = a \ d \ e \ | \ b \ / \ c; E_3 = a \ | \ c \ b \ d \ e.$$

p_{xy}	a	b	С	d	e
a	3	-3	-1	-1	1
b	-3	3	-1	1	-1
С	-1	-1	3	-1	1
d	-1	1	-1	3	1
e	1	-1	1	1	3

• Median equivalence relation?

•
$$E_1 = a \ c \ e \ | \ b \ d; E_2 = a \ d \ e \ | \ b \ / \ c; E_3 = a \ | \ c \ b \ d \ e.$$

p_{xy}	a	e	b	d	С	p_{xy}	a	С	e	b	d
a	3	1	-3	-1	-1	a	3	-1	1	-3	-1
e	1	3	-1	1	1	С	-1	3	1	-1	-1
b	-3	-1	3	1	-1	e	1	1	3	-1	1
d	-1	1	1	3	-1	b	-3	-1	-1	3	1
С	-1	1	-1	-1	3	d	-1	-1	1	1	3

• Then *a e* | *b d* | *c* or *a c e* | *b d* are median equivalence relations.

TELECO ParisTec

• $n = 5, X = \{a, b, c, d, e\}, \text{ for } a e \mid b d \mid c$

(*a* is a large red rectangle; *b* is a small yellow triangle; *c* is a small blue rectangle; *d* is a small red triangle; *e* is a small red rectangle).

Building a profile from a matrix?

- Theorem 1. Let $P = (p_{xy})_{x,y}$ be a symmetric matrix with nonnegative or nonpositive integers p_{xy} such that:
- 1. all the p_{xy} 's have the same parity;
- 2. all the p_{xx} 's have the same value p and this value is positive;
- 3. *p* is large enough w.r.t. to the other entries p_{xy} .

Then there exists a profile of equivalence relations with *P* as its majority matrix.

Rk. If the p_{xy} are bounded by a constant, p is about n^3 .

Sketch of the proof for p even

Main steps:

1. For x < y, we build a profile Π^{+}_{xy} of two equivalence relations such that the entries of the majority matrix of Π^{+}_{xy} are equal to 0 except p_{xy} , p_{yx} and the diagonal entries p_{zz} , which are equal to 2.

2. For x < y, we build a profile Π_{xy}^{-} of 4n - 6 equivalence relations such that the entries of the majority matrix of Π_{xy}^{-} are equal to 0 except p_{xy} , p_{yx} , which are equal to -2, and the diagonal entries p_{zz} , which are equal to 4n - 6.

Sketch of the proof for p even

3. We obtain the profile Π associated to *P* as the concatenation, for all *x* and *y* with *x* < *y*, of $p_{xy}/2$ times Π^+_{xy} if p_{xy} is positive and of $|p_{xy}|/2$ times Π^-_{xy} if p_{xy} is negative.

The obtained profile Π contains

$$2\sum_{(x < y \text{ with } p_{xy} > 0)} p_{xy}/2 + (4n - 6)\sum_{(x < y \text{ with } p_{xy} < 0)} |p_{xy}|/2$$

equivalence relations.

p_{xy}	а	b	С	d	е		p_{xy}	а	b	С	d	е		p_{xy}	a	b	С	d	е
а	24	-2	0	0	4		a	10	0	0	0	4		а	14	-2	0	0	0
b	-2	24	0	2	0		b	0	10	0	2	0		b	-2	14	0	0	0
С	0	0	24	0	2	=	С	0	0	10	0	2	+	С	0	0	14	0	0
d	0	2	0	24	2		d	0	2	0	10	2		d	0	0	0	14	0
е	4	0	2	2	24		е	4	0	2	2	10		е	0	0	0	0	14

	Example																		
p_{xy}	а	b	С	d	е		p_{xy}	а	b	С	d	е		p_{xy}	а	b	С	d	е
а	10	0	0	0	4		a	2	0	0	0	2		a	2	0	0	0	0
b	0	10	0	2	0	- 2	b	0	2	0	0	0		b	0	2	0	2	0
С	0	0	10	0	2	$= 2 \times$	С	0	0	2	0	0	+	С	0	0	2	0	0
d	0	2	0	10	2		d	0	0	0	2	0		d	0	2	0	2	0
е	4	0	2	2	10		е	2	0	0	0	2		е	0	0	0	0	2
				p_{xy}	а	b	С	d	е		p_{xy}	a	b	С	d	е			
	P^+				a	2	0	0	0	0		a	2	0	0	0	0		
		-				I	b	0	2	0	0	0	I	b	0	2	0	0	0
						Ŧ	С	0	0	2	0	2	T	С	0	0	2	0	0
						d	0	0	0	2	0		d	0	0	0	2	2	
					е	0	0	2	0	2		е	0	0	0	2	2		

						Exan	npl	le					
p_{xy}	a	b	С	d	е		p_{xy}	a	b	С	d	е	
а	2	0	0	0	2		a	2	0	0	0	0	
b	0	2	0	0	0	$ae \mid b \mid c \mid d$	b	0	2	0	2	0	bd a c e
С	0	0	2	0	0	\rightarrow abcde	С	0	0	2	0	0	\rightarrow abcde
d	0	0	0	2	0		d	0	2	0	2	0	
е	2	0	0	0	2		е	0	0	0	0	2	
p_{xy}	а	b	С	d	е		p_{xy}	а	b	С	d	е	
а	2	0	0	0	0		a	2	0	0	0	0	
b	0	2	0	0	0	$ce \mid a \mid b \mid d$	b	0	2	0	0	0	$de \mid a \mid b \mid c$
С	0	0	2	0	2	\rightarrow abcde	С	0	0	2	0	0	\rightarrow abcde
d	0	0	0	2	0		d	0	0	0	2	2	
е	0	0	2	0	2		е	0	0	0	2	2	

p_{xy}	а	b	С	d	е
а	10	0	0	0	4
b	0	10	0	2	0
С	0	0	10	0	2
d	0	2	0	10	2
е	4	0	2	2	10

 P^+

 $ae \mid b \mid c \mid d$ $ae \mid b \mid c \mid d$ $bd \mid a \mid c \mid e$ *ce* | *a* | *b*| *d* $de \mid a \mid b \mid c$ abcde abcde abcde abcde abcde

 Π^+

TELECOM ParisTech

p_{xy}	а	b	С	d	е
а	14	-2	0	0	0
b	-2	14	0	0	0
С	0	0	14	0	0
d	0	0	0	14	0
е	0	0	0	0	14

 P^{-}

a | bcde b | acde ab | c | d| e ac | b | d| e ad | b | c| e ae | b | c| d bc | a | d| e bd | a | c| e be | a | c| d abcde × 5

 Π^{-}

TELECOM ParisTech

p_{xy}	а	b	С	d	е
а	24	-2	0	0	4
b	-2	24	0	2	0
С	0	0	24	0	2
d	0	2	0	24	2
е	4	0	2	2	24

ae | b | c | d ae | b | c | d bd | a | c | e ce | a | b | d de | a | b | c $abcde \times 5$

a / bcde b / acde ab | c | d| e ac | b | d| e ad | b | c| e ae | b | c| d bc | a | d| e bd | a | c| e be | a | c| d abcde × 5

 $P = P^+ + P^-$

 $\Pi = \Pi^+ \cup \Pi^-$

- Régnier's problem: given a profile Π of pequivalence relations, compute a median equivalence relation, i.e. an equivalence relation E minimizing $\rho_{\Pi}(E)$.
- Zahn's problem (1964): given a symmetric relation
 S, compute an equivalence relation *E* minimizing
 δ(*S*, *E*).
- Theorem 2 (M. Krivanek, J. Moravek, 1986): Zahn's problem is NP-hard.

- **Theorem 3**: Régnier's problem is NP-hard.
- Sketch of the proof.

We transform Zahn's problem into Régnier's problem. For this, consider a symmetric relation *S* defined on *X*. Associate the majority matrix *P* with *S*: the entry p_{xy} is equal to 1 if *x* and *y* are in relation by *S*, or to -1 otherwise.

T 1	p_{xy}	а	b	С	d	е
Example:	a	1	1	1	1	1
aSe	u	1	-1	-1	-1	1
hSd	b	-1	1	-1	1	-1
-	С	-1	-1	1	-1	1
cSe	J	1	1	1	1	1
dSe	a	-1	I	-1	1	1
	e	1	-1	1	1	1

- We obtain a matrix *P* fulfilling the statement of Theorem 1.
- So, by Theorem 1, there exists a profile Π of equivalence relations s.t., for any equivalence relation *E*, ρ_Π(*E*) is minimum if and only if δ(*S*, *E*) is minimum.
- The transformation is polynomial since, here, all the entries of *P* are –1 or 1.

Two open problems

• Problem 1:

Given a majority matrix *P*, is it possible to design a construction of a profile of equivalence relations requiring less equivalence relations?

• Problem 2:

What is the complexity of Régnier's problem if the number *p* of equivalence relations of the profile is a (large enough) constant?

Thank you for your attention!

