Characterization of Régnier's matrices in classification

Olivier Hudry

Télécom ParisTech olivier.hudry@telecom-paristech.fr

Structured Matrix Days 2019 - Limoges

A clustering problem (Régnier's problem)

- A set $X=\{1,2, \ldots, n\}$ of n objects.
- A collection Π, called a profile, of p equivalence relations (= partitions) defined on X :

$$
\Pi=\left(E_{1}, E_{2}, \ldots, E_{p}\right) .
$$

Each equivalence relation corresponds with a criterion gathering the objects sharing the same feature w.r.t. this criterion.

- We want to gather the n objects into clusters "as well as possible", i.e. so that the objects of any cluster look similar while the objects of two distinct clusters look dissimilar.

An example

- $n=5, X=\{a, b, c, d, e\}: a$ is a large red rectangle; b is a small yellow triangle; c is a small blue rectangle; d is a small red triangle; e is a small red rectangle.
b
c

An example

- $p=3$:
* E_{1} (geometrical shape): a, c and e together (they are rectangles), b and d together (they are triangles): $E_{1}=a c e \mid b d$
* E_{2} (colour): a, d and e together (they are red), b alone (the only yellow form), c alone (the only blue form): $E_{2}=a d e|b| c$
* E_{3} (size): a alone (the only large form); b, c, d and e together (they are small): $E_{3}=a \mid c b d e$.
- How to gather a, b, c, d and e ?

Median equivalence relation of Π

- To specify what "as well as possible" means, consider the symmetric difference distance δ between two binary relations R and S defined on X :

$$
\begin{gathered}
\delta(R, S)=\mid\left\{(x, y) \in X^{2} \text { with }[x R y \text { and not } x S y]\right. \\
\text { or }[\operatorname{not} x R y \text { and } x S y]\} \mid
\end{gathered}
$$

$\rightarrow \delta(R, S)$ measures the number of disagreements between R and S.

- Then define the remoteness $\rho_{\Pi}(R)$ of R from $\Pi=\left(E_{1}, E_{2}, \ldots, E_{p}\right)$ by:

$$
\rho_{\Pi}(R)=\sum_{i=1}^{p} \delta\left(R, E_{i}\right)
$$

$\rightarrow \rho_{\Pi}(R)$ measures the total number of disagreements between R and Π.

Median equivalence relation of Π

- A median equivalence relation (or median partition, or also a central partition) of Π is an equivalence relation E^{*} minimizing ρ_{Π} :

$$
\rho_{\Pi}\left(E^{*}\right)=\min \rho_{\Pi}(E)
$$

for $E \in\{$ equivalence relations defined on $X\}$.

- What is the complexity of the computation of a median equivalence relation of a profile of equivalence relations (Régnier's problem, 1965)?
- Rk. The computation of a median equivalence relation of a profile of symmetric relations is known to be NP-hard (M. Krivanek, J. Moravek, 1986; Y. Wakabayashi, 1986)

Computation of $\rho_{\Pi}(E)$

- Let $\left(e_{x y}\right)_{(x, y) \in X^{2}}$ be the characteristic matrix of E : $e_{x y}=1$ if E gathers x and y and $e_{x y}=0$ otherwise.
- $p_{x y}=2 \mid\left\{i: 1 \leq i \leq p\right.$ and E_{i} gathers x and $\left.y\right\} \mid-p=p_{y x}$.
- Then: $\rho_{\Pi}(E)=C-\sum p_{x y} e_{x y}$
with :
$\forall x \in X, e_{x x}=1$
(reflexivity)
$\forall(x, y) \in X^{2}, e_{x y}=e_{y x}$
(symmetry)
$\forall(x, y, z) \in X^{3}, e_{x y}+e_{y z}-e_{x z} \leq 1$
(transitivity)
$\forall(x, y) \in X^{2}, e_{x y} \in\{0,1\}$
(binarity)

Majority matrix of Π

- The quantities $p_{x y}$ summarize Π utterly:

$$
p_{x y}=2 \times\left(\mid\left\{i: 1 \leq i \leq p \text { and } E_{i} \text { gathers } x \text { and } y\right\} \mid-p / 2\right) .
$$

* $p_{x y}>0$ means that x and y are rather similar, and $p_{x y}<0$ means that x and y are rather dissimilar;
* $p_{x y}=p_{y x}$;
* $p_{x x}=p$;
* $-p \leq p_{x y} \leq p$;
* all the $p_{x y}$ have the parity of p.
- The majority matrix of Π is the matrix $P=\left(p_{x y}\right)_{x, y}$.

Example

- $E_{1}=a c e\left|b d ; E_{2}=a d e\right| b\left|c ; E_{3}=a\right| c b d e$.

$p_{x y}$	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	\boldsymbol{d}	\boldsymbol{e}
\boldsymbol{a}	3	-3	-1	-1	1
\boldsymbol{b}	-3	3	-1	1	-1
\boldsymbol{c}	-1	-1	3	-1	1
\boldsymbol{d}	-1	1	-1	3	1
\boldsymbol{e}	1	-1	1	1	3

- Median equivalence relation?

Example

- $E_{1}=a c e\left|b d ; E_{2}=a d e\right| b\left|c ; E_{3}=a\right| c b d e$.

$p_{x y}$	a	e	b	d	c	$p_{x y}$	a	c	e	b	d
\boldsymbol{a}	$\mathbf{3}$	$\mathbf{1}$	-3	-1	-1	\boldsymbol{a}	$\mathbf{3}$	$\mathbf{- 1}$	$\mathbf{1}$	-3	-1
\boldsymbol{e}	$\mathbf{1}$	$\mathbf{3}$	-1	1	1	c	$-\mathbf{1}$	$\mathbf{3}$	$\mathbf{1}$	-1	-1
b	-3	-1	3	$\mathbf{1}$	-1	\boldsymbol{e}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}$	-1	1
d	-1	1	$\mathbf{1}$	$\mathbf{3}$	-1	b	-3	-1	-1	3	$\mathbf{1}$
\boldsymbol{c}	-1	1	-1	-1	$\mathbf{3}$	d	-1	-1	1	$\mathbf{1}$	3

- Then $a e|b d| c$ or $a c e \mid b d$ are median $\underset{\substack{\text { TELEcomm } \\ \text { Parsicon }}}{ }$ equivalence relations.

Example

- $n=5, X=\{a, b, c, d, e\}$, for $\boldsymbol{a} \boldsymbol{e}|\boldsymbol{b} \boldsymbol{d}| \boldsymbol{c}$
(a is a large red rectangle; b is a small yellow triangle; c is a small blue rectangle; d is a small red triangle; e is a small red rectangle).

Building a profile from a matrix?

- Theorem 1. Let $P=\left(p_{x y}\right)_{x, y}$ be a symmetric matrix with nonnegative or nonpositive integers $p_{x y}$ such that:

1. all the $p_{x y}$'s have the same parity;
2. all the $p_{x x}$'s have the same value p and this value is positive;
3. p is large enough w.r.t. to the other entries $p_{x y}$.

Then there exists a profile of equivalence relations with P as its majority matrix.

Rk. If the $p_{x y}$ are bounded by a constant, p is about n^{3}.

Sketch of the proof for p even

Main steps:

1. For $x<y$, we build a profile $\Pi^{+}{ }_{x y}$ of two equivalence relations such that the entries of the majority matrix of $\Pi^{+}{ }_{x y}$ are equal to 0 except $p_{x y}, p_{y x}$ and the diagonal entries $p_{z z}$, which are equal to 2 .
2. For $x<y$, we build a profile $\Pi_{x y}^{-}$of $4 n-6$ equivalence relations such that the entries of the majority matrix of $\Pi_{x y}^{-}$are equal to 0 except $p_{x y}, p_{y x}$, which are equal to -2 , and the diagonal entries $p_{z z}$, which are equal to $4 n-6$.

Sketch of the proof for p even

3. We obtain the profile Π associated to P as the concatenation, for all x and y with $x<y$, of $p_{x y} / 2$ times $\Pi_{x y}^{+}$if $p_{x y}$ is positive and of $\left|p_{x y}\right| / 2$ times $\Pi_{x y}^{-}$if $p_{x y}$ is negative.

The obtained profile Π contains

$$
2 \sum_{\left(x<y \text { with } p_{x y}>0\right)} p_{x y} / 2+(4 n-6) \sum_{\left(x<y \text { with } p_{x y}<0\right)} \mid p_{x y} / 2
$$

equivalence relations.

Example

| $p_{x y}$ | a | b | c | d | e | $p_{x y}$ | a | b | c | d | e | $p_{x y}$ | a | b | c | d | e | | |
| :---: |
| a | 24 | -2 | 0 | 0 | 4 | a | 10 | 0 | 0 | 0 | 4 | | a | 14 | -2 | 0 | 0 | 0 | |
| b | -2 | 24 | 0 | 2 | 0 | | | | | | | | | | | | | | |
| c | 0 | b | 0 | 10 | 0 | 2 | 0 | | b | -2 | 14 | 0 | 0 | 0 | | | | | |
| c | 0 | 0 | 24 | 0 | 2 | $=$ | c | 0 | 0 | 10 | 0 | 2 | | c | 0 | 0 | 14 | 0 | 0 |
| d | 0 | 2 | 0 | 24 | 2 | | d | 0 | 2 | 0 | 10 | 2 | | d | 0 | 0 | 0 | 14 | 0 |
| e | 4 | 0 | 2 | 2 | 24 | e | 4 | 0 | 2 | 2 | 10 | e | 0 | 0 | 0 | 0 | 14 | | |

Example

Example

Example

Example

$p_{x y}$	a	b	c	d	e	$a \mid b c d e$ $b \mid a c d e$
a	14	-2	0	0	0	
b	-2	14	0	0	0	$a b\|c\| d \mid e$ $a c\|b\| d \mid e$
c	0	0	14	0	0	
$a d\|b\| c \mid e$						

$$
P^{-}
$$

Example

Complexity of Régnier's problem

- Régnier's problem: given a profile Π of p equivalence relations, compute a median equivalence relation, i.e. an equivalence relation E minimizing $\rho_{\Pi}(E)$.
- Zahn's problem (1964): given a symmetric relation S, compute an equivalence relation E minimizing $\delta(S, E)$.
- Theorem 2 (M. Krivanek, J. Moravek, 1986): Zahn's problem is NP-hard.

Complexity of Régnier's problem

- Theorem 3: Régnier's problem is NP-hard.
- Sketch of the proof.

We transform Zahn's problem into Régnier's problem. For this, consider a symmetric relation S defined on X. Associate the majority matrix P with S : the entry $p_{x y}$ is equal to 1 if x and y are in relation by S, or to -1 otherwise.

Complexity of Régnier's problem

- Example:

$$
\begin{array}{|c|c|c|c|c|c|}
\hline p_{x y} & a & b & c & d & e \\
\hline a & 1 & -1 & -1 & -1 & 1 \\
\hline b & -1 & 1 & -1 & 1 & -1 \\
\hline c & -1 & -1 & 1 & -1 & 1 \\
\hline d & -1 & 1 & -1 & 1 & 1 \\
\hline e & 1 & -1 & 1 & 1 & 1 \\
\hline
\end{array}
$$

Complexity of Régnier's problem

- We obtain a matrix P fulfilling the statement of Theorem 1.
- So, by Theorem 1 , there exists a profile Π of equivalence relations s.t., for any equivalence relation $E, \rho_{\Pi}(E)$ is minimum if and only if $\delta(S, E)$ is minimum.
- The transformation is polynomial since, here, all the entries of P are -1 or 1 .

Two open problems

- Problem 1:

Given a majority matrix P, is it possible to design a construction of a profile of equivalence relations requiring less equivalence relations?

- Problem 2:

What is the complexity of Régnier's problem if the number p of equivalence relations of the profile is a (large enough) constant?

Thank you for your attention!

