Generalized Sparse Matrices and Applications to Decoding and
Cryptography

Maxime BROS

University of Limoges (France)
XLIM Research Institute, UMR 7252

maxime.bros@etu.unilim.fr

May 23, 2019

INSTITUT
DE RECHERCHE

L e, QLM

Maxime BROS Sparse Matrices and Applications to Decoding and Cryptography




© Introduction
© Decoding codes with sparse parity check matrix

© Applications in Cryptography

Maxime BROS Sparse Matrices and Applications to Decoding and Cryptography



Introduction q q
Reminder about Error Correcting Codes

D

Reminder about Error Correcting Codes

Error correcting codes are used to transmit informations (satellites, DVD,
telecommunications, ...) but also for cryptographic purpose.
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Reminder about Error Correcting Codes

Error correcting codes are used to transmit informations (satellites, DVD,
telecommunications, ...) but also for cryptographic purpose.

Code (definition)

A code C is vector space of GF(q)" of dimension k.
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Reminder about Error Correcting Codes

Error correcting codes are used to transmit informations (satellites, DVD,
telecommunications, ...) but also for cryptographic purpose.

Code (definition)

A code C is vector space of GF(q)" of dimension k.

5:GF(q)k —  GF(q)"
m — mG
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(- m ) m red )
k k n—=k

Maxime BROS Sparse Matrices and Applications to Decoding and Cryptography



Introduction q q
Reminder about Error Correcting Codes

Decoding and Syndrome ng Problems

Reminder about Error Correcting Codes

Parity Check Matrix

H is a parity check matrix for the code C if for every word ¢ € GF(q)" :

ceC <= Hc" =0,«
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Decoding and Syndrome Decoding Problems

Hard Problems in Coding Theory

Decoding Problem (computational)

o Let G be a matrix k x n over a field K,
y a vector of length n (with coefficients in K)
and w € N.

o Find m € Kk such that weight(y — mG) for a given metric is smaller
or equal to w.

Syndrome Decoding Problem (computational)
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Hard Problems in Coding Theory

Decoding Problem (computational)

o Let G be a matrix k x n over a field K,
y a vector of length n (with coefficients in K)
and w € N.

o Find m € Kk such that weight(y — mG) for a given metric is smaller
or equal to w.

Syndrome Decoding Problem (computational)

o Let H be a matrix (n — k) x n over a field K,
s a vector of length (n — k) (with coefficients in K)
and w € N.

e Find e € K" with weight smaller or equal to w for a given metric
such that Het = s ?
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Hard Problems in Coding Theory

o These 2 problems are equivalent.
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Decoding and Syndrome Decoding Problems

Hard Problems in Coding Theory

o These 2 problems are equivalent.

e Proven NP-complete with Hamming metric in 1978 by Berlekamp,
McEliece and Tilborg.

Maxime BROS Sparse Matrices and Applications to Decoding and Cryptography



Introduction =
Reminder about Error Corr

Decoding and Syndrome Decoding Problems

Hard Problems in Coding Theory

o These 2 problems are equivalent.

e Proven NP-complete with Hamming metric in 1978 by Berlekamp,
McEliece and Tilborg.

e Proven to be probabilistically NP-complete with rank metric in 2017
by Gaborit and Zémor.
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Decoding codes with sparse parity check matrix

e We will study two codes (MDPC and LRPC) for which one uses the
sparsity of their parity check matrix to decode.
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Decoding codes with sparse parity check matrix

e We will study two codes (MDPC and LRPC) for which one uses the
sparsity of their parity check matrix to decode.

o The notion of sparsity one uses depends on the chosen metric.
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LRPC

o For MDPC codes sparse means : majority of zeros in the matrix

(only O(4/n) 1's per row)
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MDPC
Decoding codes with sparse parity check matrix Rank Metric

LRPC

o For MDPC codes sparse means : majority of zeros in the matrix
(only O(4/n) 1's per row)
e Only H is sparse = "Moderate Density Parity Check”.
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Gallager's algorithm

only the error contributes to the syndrome.

Reminder :

»n
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Gallager's algorithm

only the error contributes to the syndrome. More precisely

He +HeT

Reminder :

HyT =

»n
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Gallager's algorithm

only the error contributes to the syndrome. More precisely

He +HeT

Reminder :

HyT =
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Gallager's algorithm

only the error contributes to the syndrome. More precisely

He +HeT

Reminder :
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Gallager's algorithm

only the error contributes to the syndrome. More precisely

He +HeT
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Gallager's algorithm

only the error contributes to the syndrome. More precisely

He +HeT

Reminder :
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Decoding codes with sparse parity check matrix

Gallager's algorithm

Reminder : only the error contributes to the syndrome. More precisely
HyT = Hc” +HeT
N~

=0

Y1

y2
10100000001000011001 73 0
11010000000000001100 va 1
01101000000100000110 Y5 0
00110100000010000011 Y6 1
00011010000000000001 Y 1
00001101000101000000 8 = |1
00000110100110100000 Yo 0
00000011010010010000 y1o 1
00000001101001001000 yi 1
10000000110001100100 V12 0
01000000011000110010 ﬁi 0

Y20

#(common 1's)={1,1,1,3,2,2,2,3,1,1,1,1,2,2,0,1,2,1, 1, 2}
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Decoding codes with sparse parity check matrix

Gallager's algorithm

Reminder : only the error contributes to the syndrome. More precisely
HyT = Hc” +HeT
N~

=0

Y1

y2
10100000001000011001 73 0
11010000000000001100 va 1
01101000000100000110 Y5 0
00110100000010000011 Y6 1
00011010000000000001 Y 1
00001101000101000000 8 = |1
00000110100110100000 Yo 0
00000011010010010000 y1o 1
00000001101001001000 yi 1
10000000110001100100 V12 0
01000000011000110010 ﬁi 0

Y20

#(common 1's)=4{1,1,1,3,2,2,2,3,1,1,1,1,2,2,0,1,2,1, 1, 2}
Let 7 = 3 be our threshold.
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Decoding codes with sparse parity check matrix

Gallager's algorithm

Reminder : only the error contributes to the syndrome. More precisely
HyT = Hc” +HeT
N~

=0

Y1

y2
10100000001000011001 73 0
11010000000000001100 va 1
01101000000100000110 Y5 0
00110100000010000011 Y6 1
00011010000000000001 Y 1
00001101000101000000 8 = |1
00000110100110100000 Yo 0
00000011010010010000 y1o 1
00000001101001001000 yi 1
10000000110001100100 V12 0
01000000011000110010 ﬁi 0

Y20

#(common 1's)={1,1,1,3,2,2,2,3,1,1,1,1,2,2,0,1,2,1, 1, 2}
Let 7 = 3 be our threshold.

Maxime BROS Sparse Matrices and Applications to Decoding and Cryptography



Decoding codes with sparse parity check matrix

Gallager's algorithm

Reminder : only the error contributes to the syndrome. More precisely
HyT = Hc” +HeT
N~

=0

Y1

y2
10100000001000011001 73 N 0
11010000000000001100 ya+ 1
01101000000100000110 Y5 0
00110100000010000011 Y6 1
00011010000000000001 Y 1
00001101000101000000 8 = |1
00000110100110100000 Yo 0
00000011010010010000 y1o 1
00000001101001001000 yi 1
10000000110001100100 V12 0
01000000011000110010 ﬁi 0

Y20

#(common 1's)={1,1,1,3,2,2,2,3,1,1,1,1,2,2,0,1,2,1, 1, 2}
Let 7 = 3 be our threshold.
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Decoding codes with sparse parity check matrix

Gallager's algorithm

Reminder : only the error contributes to the syndrome. More precisely
HyT = Hc” +HeT
N~

=0

Y1

y2
10100000001000011001 73 N 0
11010000000000001100 ya+ 1
01101000000100000110 Y5 0
00110100000010000011 Y6 1
00011010000000000001 Y 1 1
00001101000101000000 yerdlf |4
00000110100110100000 Yo 0
00000011010010010000 y1o 1
00000001101001001000 yi 1
10000000110001100100 V12 0
01000000011000110010 ﬁi 0

Y20

#(common 1's)={1,1,1,3,2,2,2,3,1,1,1,1,2,2,0,1,2,1, 1, 2}
Let 7 = 3 be our threshold.
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Decoding codes with sparse parity check matrix

Gallager's algorithm

One receives a word y := mG + e = codeword + error.

Bit-flipping algorithm
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Gallager's algorithm

One receives a word y := mG + e = codeword + error.

B g algorithm

@ Compute the syndrome s = Hy "
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Decoding codes with sparse parity check matrix

Gallager's algorithm

One receives a word y := mG + e = codeword + error.

B g algorithm

@ Compute the syndrome s = Hy "

@ For each of the n columns of H, count the number of common 1's between
the syndrome and this column
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Decoding codes with sparse parity check matrix

Gallager's algorithm

One receives a word y := mG + e = codeword + error.

Bit-flipping algorithm

@ Compute the syndrome s = Hy "

@ For each of the n columns of H, count the number of common 1's between
the syndrome and this column

© For a given column i, if this number of common 1's is greater than a
threshold 7, then change the i* bit of y
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Gallager's algorithm

One receives a word y := mG + e = codeword + error.

Bit-flipping algorithm

@ Compute the syndrome s = Hy "

@ For each of the n columns of H, count the number of common 1's between
the syndrome and this column

© For a given column i, if this number of common 1's is greater than a
threshold 7, then change the i* bit of y

@ Call this new vector y again, and go back to the first step, until either
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Gallager's algorithm

One receives a word y := mG + e = codeword + error.

Bit-flipping algorithm

@ Compute the syndrome s = Hy "

@ For each of the n columns of H, count the number of common 1's between
the syndrome and this column

© For a given column i, if this number of common 1's is greater than a
threshold 7, then change the i* bit of y
@ Call this new vector y again, and go back to the first step, until either

o s=0,_x =—> RETURN the last y,
which is the codeword
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MDPC
Decoding codes with sparse parity check matrix Rank Metric
LRPC

Gallager's algorithm

One receives a word y := mG + e = codeword + error.

Bit-flipping algorithm

@ Compute the syndrome s = Hy "

@ For each of the n columns of H, count the number of common 1's between
the syndrome and this column

© For a given column i, if this number of common 1's is greater than a
threshold 7, then change the i* bit of y
@ Call this new vector y again, and go back to the first step, until either
o s=0,_k —> RETURN the last y,
which is the codeword

e a certain number
of iterations is reached —- RETURN FAIL
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Rank Decoding Problem

e In 1985, Gabidulin, a Russian researcher, introduced rank-codes over

an extension field
(the use of rank metric started in 1951 by Hua and then in 1978 by Delsarte who
introduced rank distance for matrix-codes).
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Rank Decoding Problem

e In 1985, Gabidulin, a Russian researcher, introduced rank-codes over

an extension field
(the use of rank metric started in 1951 by Hua and then in 1978 by Delsarte who
introduced rank distance for matrix-codes).

Figure: Ernst Gabidulin (1937 (U.S.S.R) - aged 81 today)
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Rank Decoding Problem

e In 1985, Gabidulin, a Russian researcher, introduced rank-codes over
an extension field
(the use of rank metric started in 1951 by Hua and then in 1978 by Delsarte who

introduced rank distance for matrix-codes).
e Using this metric instead of the Hamming metric :

Figure: Ernst Gabidulin (1937 (U.S.S.R) - aged 81 today)
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Rank Decoding Problem

e In 1985, Gabidulin, a Russian researcher, introduced rank-codes over
an extension field
(the use of rank metric started in 1951 by Hua and then in 1978 by Delsarte who

introduced rank distance for matrix-codes).
e Using this metric instead of the Hamming metric :
e Decoding Problem =—> Rank Decoding Problem (RD)

Figure: Ernst Gabidulin (1937 (U.S.S.R) - aged 81 today)
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Rank Decoding Problem

e In 1985, Gabidulin, a Russian researcher, introduced rank-codes over
an extension field
(the use of rank metric started in 1951 by Hua and then in 1978 by Delsarte who

introduced rank distance for matrix-codes).
e Using this metric instead of the Hamming metric :
o Decoding Problem = Rank Decoding Problem (RD)
e Syndrome Decoding Problem = Rank Syndrome Decoding Pb. (RSD)

Figure: Ernst Gabidulin (1937 (U.S.S.R) - aged 81 today)
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Reminder about finite fields

GF(q") < finite field with ¢"" elements

m

GF(q) <— finite field with q elements
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Reminder about finite fields

GF(q") < finite field with ¢"" elements

m

GF(q) <— finite field with q elements

GF(q™) is a GF(q)-vector space of dimension m

Maxime BROS Sparse Matrices and Applications to Decoding and Cryptography
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Rank metric

m =4, and let e € GF(2%)*

e=(1+a%a,1,0?

O E

e R
w N
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Rank metric

m =4, and let e € GF(2%)*

e=(1+a%a,1,0?

1 /1
a |0
M_a2 1
a? \0
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Rank metric

m =4, and let e € GF(2%)*

e=(1+a%a,1,0?

wMQH
O R O

e e

o or o
N eNeN
o~ OO
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Rank metric

m =4, and let e € GF(2%)*

e=(1+a%a,1,0?

1 /1010
a0 100
M_a2 1001
a>\0 000

e can be represented by a matrix M of GF(2)

Maxime BROS Sparse Matrices and Applications to Decoding and Cryptography
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Rank metric

m =4, and let e € GF(2%)*

e=(1+a%a,1,0?

1
Mo @

O R O
O O~ O
o O O
O = O O

= 2
a3

e can be represented by a matrix M of GF(2)
We define Rank(e) = Rank(M) =3

Maxime BROS Sparse Matrices and Applications to Decoding and Cryptography
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Rank metric

Notation : all presentation long, g is a power of a prime p and
m,n € N*.

Rank of a GF(g™)" word

Let e = (e1, e,...,€,) be a vector of GF(qg™)".

Given a basis B = (B1, Bz, ...,Bm) of GF(q™) over GF(q), one gets :
Vie{l,..,n},3 (ei1,€2,...,€ m) € GF(q)™ such that

€ = ijzl €ij- Bj.

The rank of e, noted Rank(e), is defined by the rank of the matrix

(i) 1<i<n-
1<j<m

Maxime BROS Sparse Matrices and Applications to Decoding and Cryptography
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Rank metric

Notation : all presentation long, g is a power of a prime p and
m,n € N*.

Rank of a GF(g™)" word

Let e = (e1, e,...,€,) be a vector of GF(qg™)".

Given a basis B = (B1, Bz, ...,Bm) of GF(q™) over GF(q), one gets :
Vie{l,..,n},3 (ei1,€2,...,€ m) € GF(q)™ such that

€ = ijzl €ij- Bj.

The rank of e, noted Rank(e), is defined by the rank of the matrix

(i) 1<i<n-
1<j<m

Rank distance

d: GF(g™" x GF(g™" — N
(e1,€) — Rank(e; — &)

is a distance (or a metric) over GF(g™)".

Maxime BROS Sparse Matrices and Applications to Decoding and Cryptography
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Code properties in Rank metric

What are the differences between code with Hamming and Rank metric ?

Minimal distance of a code with rank metric

Let C be a [n, k, d]-code over GF(g™) for the rank metric
As long as C is additive :

d = min{Rank(c) | c € C}

Maxime BROS Sparse Matrices and Applications to Decoding and Cryptography
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Code properties in Rank metric

What are the differences between code with Hamming and Rank metric ?

Minimal distance of a code with rank metric

Let C be a [n, k, d]-code over GF(g™) for the rank metric
As long as C is additive :

d = min{Rank(c) | c € C}

| A

Support of a word in C

The support of an element x = (xq,...,x,) € GF(g™)" is the
GF(q)-vector space of GF(q)™ generated by the coordinates x; of x.

Maxime BROS Sparse Matrices and Applications to Decoding and Cryptography
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Support of a word

e=(14+0%a,1,0%) € GF(2")* and Rank(e) =3

support(e) =<

o = OO

coro LS
o oo oo+

1
0
1
0
1
0
0
0
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Decoding codes with sparse parity check matrix

Support of a word

o]
>
o

e=(1+0%a,1,0%) € GF(2*)* Rank(e) = 3

support(e) =<

o = OO

OO MR O OoOK
coro LS
o OO0 oo+

support(e) is a vector space E of GF(2)* of dimension 3
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o In this context, rank metric, sparse means with values in a vector
space of small dimension d, as seen before it uses the generalization
of the support to rank metric.
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Decoding codes with sparse parity check matrix Rank Metric
LRPC

o In this context, rank metric, sparse means with values in a vector
space of small dimension d, as seen before it uses the generalization
of the support to rank metric.

o The sparse matrix is still H = "Low Rank Parity Check”.
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Decoding codes with sparse parity check matrix Rank Metric
LRPC

Decoding LRPC

As for the Hamming metric, the knowledge of the support of the error is
enough to decode.
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Decoding codes with sparse parity check matrix Rank Metric
LRPC

Decoding LRPC

As for the Hamming metric, the knowledge of the support of the error is
enough to decode.

o Let H be the parity check matrix of an LRPC code, with coefficients
in F C GF(2)N of dimension d.
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Decoding codes with sparse parity check matrix Rank Metric
LRPC

Decoding LRPC

As for the Hamming metric, the knowledge of the support of the error is
enough to decode.

o Let H be the parity check matrix of an LRPC code, with coefficients
in F C GF(2)N of dimension d.

o Let e be the error, with coefficients in E C GF(2)N of dimension r.
i.e supp(e) = E.
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Decoding codes with sparse parity check matrix Rank Metric
LRPC

Decoding LRPC

As for the Hamming metric, the knowledge of the support of the error is
enough to decode.

o Let H be the parity check matrix of an LRPC code, with coefficients
in F C GF(2)N of dimension d.

o Let e be the error, with coefficients in E C GF(2)N of dimension r.
i.e supp(e) = E.

o From the syndrome s := HyT = He, one gets the vector space
S =<s1,...,5 k>
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Decoding codes with sparse parity check matrix Rank Metric
LRPC

Decoding LRPC

As for the Hamming metric, the knowledge of the support of the error is
enough to decode.

o Let H be the parity check matrix of an LRPC code, with coefficients
in F C GF(2)N of dimension d.

o Let e be the error, with coefficients in E C GF(2)N of dimension r.
i.e supp(e) = E.

o From the syndrome s := HyT = He, one gets the vector space
S =<s1,...,5 k>

e This vector space is a subset of the product space < EF > of
dimension at most rd.
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Decoding codes with sparse parity check matrix Rank Metric
LRPC

Decoding LRPC

As for the Hamming metric, the knowledge of the support of the error is
enough to decode.

o Let H be the parity check matrix of an LRPC code, with coefficients
in F C GF(2)N of dimension d.

o Let e be the error, with coefficients in E C GF(2)N of dimension r.
i.e supp(e) = E.

o From the syndrome s := HyT = He, one gets the vector space
S =<s1,...,5 k>

e This vector space is a subset of the product space < EF > of
dimension at most rd.

e Since rd < (n— k), it is very likely that S =< EF >.
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Decoding LRPC

Let F; be the ith element of a basis of F, let's consider the vector space

F! < EiFy, EFy, ... E.Fi,
EiF>, ExFy, ... E.F,,

EiF; ExF, ... E.F;,

Ele, E2Fd, Eer, >
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Decoding LRPC

Let F; be the it" element of a basis of F, let's considerer the vector space

F1s =

1

< F'EF, F'BFR, ... F'EF,
FlEFR, F'EBFR, ... F'EFR,

F'EF, F'EBF, ... F'EF,

Fl'EFy, F 'ExFyq, ... F 'E.Fy, >
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Decoding LRPC

Let F; be the it" element of a basis of F, let's considerer the vector space
Fls =

1

< F'EFR, F'BFf, ... F'Ef,
FlEFR, F'EFR, ... F'EFR,

Ela E2, E,,

F 'EiFy, F 'ExFyq, ... F 'EFy, >
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Decoding LRPC

Let F; be the it" element of a basis of F, let's considerer the vector space

F's =
< F'BFR, F'BFR, ... F'EF,
FlEFR, F'EFR, ... F'EFR,
Ela E27 Eh

F 'EiFy, F 'ExFyq, ... F 'EFy, >

Sowe have E C F'S, Vie{l,...,d}.
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Decoding LRPC

oE C F'S:=S5 Vie{l,...,d}
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Decoding LRPC

oE C F'S:=S5 Vie{l,...,d}
o The co-space of E in F,-_15 is very likely to be different for i’ # i.
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LRPC

Decoding LRPC

oE C F'S:=S5 Vie{l,...,d}
o The co-space of E in F,-_15 is very likely to be different for i’ # i.

e And so the key to the decoding algorithm of LRPC is that (with high
probability)

‘e
n
Il
M

Il
-
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Decoding codes with sparse parity check matrix Rank Metric
LRPC

Decoding LRPC

oE C F'S:=S5 Vie{l,...,d}
o The co-space of E in F,-_15 is very likely to be different for i’ # i.

e And so the key to the decoding algorithm of LRPC is that (with high
probability)

S = E

e

i=1
e Knowing the support of the error, one has to solve a linear system
with more equations than unknowns to find the error and so to

decode y.
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Decoding LRPC

e This decoding is probabilistic, but the failure probability decreases
exponentially according to the parameters.
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Decoding codes with sparse parity check matrix Rank Metric
LRPC

Decoding LRPC

e This decoding is probabilistic, but the failure probability decreases
exponentially according to the parameters.

o For instance, with parameters [n =94, k = 47, N = 47,d = r = 5]
for a binary LRPC, P(failure) = 2723,
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Asymmetric Cryptography

Asymmetric Cryptography (or Public Key Cryptography)

Public Key  Private Key

P

:)'/')/-)/}\
- )JP\ \/
O\ )

)
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Applications in Cryptography

Asymmetric Cryptography

Hiding the
e random case

=ije =ilje ==Hje =il)e

Sparse Matrices and Applications to Decoding
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Hiding the structure

— . A e random c
Applications in Cryptography le (el Mo Ei2 (Emelsm

Asymmetric Cryptography
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Asymmetric Cryptography
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Asymmetric Cryptography
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Asymmetric Cryptography
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Applications in Cryptography

Asymmetric Cryptography

Maxime BROS Sparse Matrices and Applications to Decoding and Cryptography



Hiding the structure

A . Algebraic attacks in the random case
Applications in Cryptography LSS el ST

McEliece cryptosystem

Robert McEliece (1942 - 2019) started code-based cryptography in 1978,
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Applications in Cryptography

McEliece cryptosystem

Robert McEliece (1942 - 2019) started code-based cryptography in 1978,
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Applications in Cryptography Algebraic attacks in the random cas

McEliece cryptosystem

McEliece cryptosystem (or setting)

Let C be a linear code [n, k, d]-code, decodable up to t = (d —1)/2
errors in polynomial time with an algorithm D.

Private Key : the generator matrix G of C (usually in systematic form),
S a non-singular k x k matrix and P a n X n permutation matrix.
Public Key : G’ = SGP

Encryption : let m be the plaintext (of length k), the cipher text is
y = mG’ + e with w(e) < t (e random).
Decryption :

o Compute yP~! = (mS)G + eP~!

o Decode mSG = D(yP™?)

o Recover mS and then m (using S—1)
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A . Algebraic attacks in the random case
Applications in Cryptography LSS el ST

Application to Cryptography : hiding the structure

o Attack : recovering the plaintext
—> Decoding Random Code Problem under the assumption that
C’ is indistinguishable from a random code.
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A . c attacks in the random case
Applications in Cryptography

Application to Cryptography : hiding the structure

o Attack : recovering the plaintext
—> Decoding Random Code Problem under the assumption that
C’ is indistinguishable from a random code.

o This is not the case if C has a “strong” algebraic structure
(Reed-Solomon or Gabidulin for instance).
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Application to Cryptography : hiding the structure

o Attack : recovering the plaintext
—> Decoding Random Code Problem under the assumption that
C’ is indistinguishable from a random code.

o This is not the case if C has a “strong” algebraic structure
(Reed-Solomon or Gabidulin for instance).

e One wants to get rid of the “scrambling” step.
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Algebraic attacks in the random case

Applications in Cryptography

MDPC cryptosystem

New variant of McEliece cryptosystem [MTSB13] et [GMRZ13]

Let C be an MDPC [n, k, d]-code, decodable up to t = (d — 1)/2 errors in
polynomial time with a probabilistic decoding algorithm Dy (using its sparse
parity check matrix H = (ho|h1)).

Private Key : the parity check matrix H of C
Public Key : the generator matrix G = (/|(hoh;*)") of C (systematic form).

Encryption : let m be the plaintext (of length k), the cipher text is
y = mG + e with w(e) < t (e random).
Decryption :

o Decode mG = Dy(y)

@ Recover m (extracting the first k components of mG)
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Applications in Cryptography

MDPC cryptosystem

New variant of McEliece cryptosystem [MTSB13] et [GMRZ13]

Let C be an MDPC [n, k, d]-code, decodable up to t = (d — 1)/2 errors in
polynomial time with a probabilistic decoding algorithm Dy (using its sparse
parity check matrix H = (ho|h1)).

Private Key : the parity check matrix H of C
Public Key : the generator matrix G = (/|(hoh;*)") of C (systematic form).

Encryption : let m be the plaintext (of length k), the cipher text is
y = mG + e with w(e) < t (e random).
Decryption :

o Decode mG = Dy(y)

@ Recover m (extracting the first k components of mG)

Note : LRPC cryptosystem described in 2013 by Gaborit, Murat, Ruatta and
Zémor is similar but uses rank metric and the LRPC decoding previously
described.

Maxime BROS Sparse Matrices and Applications to Decoding and Cryptography



Hiding the structure

arse pan Algebraic attacks in the random case
Applications in Cryptography Algebraic attacks in the random cas

MDPC cryptosystem

New variant of McEliece cryptosystem [MTSB13] et [GMRZ13]

Let C be an MDPC [n, k, d]-code, decodable up to t = (d — 1)/2 errors in
polynomial time with a probabilistic decoding algorithm Dy (using its sparse
parity check matrix H = (ho|h1)).

Private Key : the parity check matrix H of C
Public Key : the generator matrix G = (/|(hoh;*)") of C (systematic form).

Encryption : let m be the plaintext (of length k), the cipher text is
y = mG + e with w(e) < t (e random).
Decryption :

o Decode mG = Dy(y)

@ Recover m (extracting the first k components of mG)

Note : LRPC cryptosystem described in 2013 by Gaborit, Murat, Ruatta and
Zémor is similar but uses rank metric and the LRPC decoding previously
described.

Disclaimer : this system has to be modified to be used in practice, since the
systematic form would lead to leaks of the original message.
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Hiding the structure

Advantages of MDPC and LRPC :
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Hiding the structure

Advantages of MDPC and LRPC :

e Almost no algebraic structure.
Thus the security doesn’t rely on masking the structure but only on
the hardness of decoding random codes under the assumption of
indistinguability of MDPC and LRPC.
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Hiding the structure

Advantages of MDPC and LRPC :

e Almost no algebraic structure.
Thus the security doesn’t rely on masking the structure but only on
the hardness of decoding random codes under the assumption of
indistinguability of MDPC and LRPC.

o Thus, the “scrambling” step is replaced by going from the sparse H
to the dense G.
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Hiding the structure

Few visual examples : M of size 20 x 20,
coefficients in GF(2%°) ~ 1 million elements, dim(F) = 2.

AR
atrice

wh362254 b W'362256 w362254 W'362256 wN71106 WA362256 362256 o
WA362254 WA733999 wP471106 o wgzvca WA362256 WA362254 WA362254 whA71186 WA733990
b w7106 w7399 W'733990  wh733990 w7599 wiTiios o w362256 w7110 0 Wh362256 wA733990 WA733990 whA7106

w7110 whTIIOS W399 WeaTiie wA3E2250 We759%8 wha228d 471106 wrsason wesszasl wei7iios 8 w'733990 WA71106 WAi71106 © w3622 wr362254]

2256 w71106 G Whigiios w7300 wAslm0 wha2284 whiTilas wiae225e weiTiied 0 whi71166 B wh362256 WALT1106 WA733990 WA362254]

WN71106 WA733990 0 Wh362256 wAA7LI06 WA733990 wh471106 733990 0 w7106 733990 0 w733990 0 w7339 w'733990]

WNT1106 whiT1106 © WA733990 WA733990 WA362254 WNATLleE wA733998 WA362254 WH471106 W'362254 WA362254 WAGTLLEE w'733990 0 wh3s2250

WA733990 wA362256 0 wi71166 ° o 6 w7106 w7106 ] 8 W'733990 WA733990 WALT1106 362256 0 w7106 o 6 wA362254]

w\733999 o w'733990 w7110 ° 0 w7106 WAA71106 o 0 w6225 w'362256 Wh471106 WA362254 0 we3s2256 ] 0 wi71106 wA733990]

WA733998 whi71106 0 wh362250 wd71106 o o ] ] 8 w7106 w7106 [ © We362254 WA362254 wA73399 8]

wh71106 B WML71106 WA733990 WAL71106 wA733990 WA73399 WALTL06 WA362254 WA733990 8 w\733990 w733998 733990 0 w7106 0 w7116 0]

WNATI106 WA733990 w'733990 wA733990 wh733990 w362254 WA362256 WALTI06 WA733990 WA362254 WA362254 0 wh733990 B W'733990 W362254 WA733999 W'A71106 WA362254 wA733990]

0 w7399 Wi471106 WA362254 WA733999 wA471106 wA733990 B w7116 wA71166 WA733990 ] 8 wh362256 w'362254 WA733998 WA733990 o whaziios weae22se)

1106 0 w7106 WA733990 0 WA362256 WA362254 wA733990 6 w7106 WA733990 WAG71106 WA362254 WA471186 WAAT1106 W'733990 WA362254 wA733990]

WN71106 Wh471106 471106 0 W7LI06 wi471106 WAA71106 WALTLIO6 WA733990 WA733990 WA362254 WMA7LLO WA733999 WAATLLO6 362254 WA733990 b W'362256 WA362254 wA362254]

WNT1106 w471106 w'733990 wA733990 WAG7LLOG w362254 WNG71106 WALTI106 wA362254 WA733990 WA362254 w'733990 WA362254 WA362254 @ w7399 WALTL08 w4716 o wh362254

WA362256 WA362256 W'362256 wA733990 WALTL06 wA733990 8 WA71106 WA36225L WAG71106 WA362254 WA73399 WALTL06 wA471106 0 WAG71186 WALTLI06 WA36225L WAAT1106 WA362254)

] o 0 we362256 o wTise waeasst w4Ti100 w7339 0 Wh362256 w'362254 WA362256 WA362254 WA733990 o waense winiioe w7300 wrssn]

WA362254 WA733990 733990 o ] 6 we733990 8 733998 wh362254 ] 6 w362250 ° 8 WA733990 733990 WA733990 WAQ71106)

WA733990 wAi71106 @ WA733990 WALT1106 wA471186 o woas990 wiaerzs weacrze 8 w\733990 WA733990 WA733990 WA362254  wA733999 0 WA362254 wA362254]
SRRRRRBERRARREND

rice WA (-1

W'362256  wh362254 B W'362256 w733998 WA733990 471106 ) 0]
WIS TS99 wasnse WTING WATLIOE wdTiLes 0 WA362250 WAL71106]

W'B63025 WAB98705 WA139S2 w623210 WAS9LB37 WABGTS2 WA105343  WA2B264 WAOUSO33 WABBBTB7 WAG17636 WA265976 W169205  WA9L7L WABLTS9  WAG2989 WAGOTOSS wWA699552]
WATB0678 WNG18924 WA1000929 WP4GBA46 WNI6LA6D WATL9OG6 WALQA69S3 WA9S9233 WA76U287 W'B24678 WAT76250 WA3S6SBS W'304173 WAG3TSI0 wA637281 WALLLAOL WAT74659 wA902573]
WAL1BA2G WAB11426 WNSL9BS6 wA728662 WV156367 WAL42081 W 106927 WA633380  wAG3E9B WH639272 WA220801 WABSDS WLT167 WAG12283 WA9B2778 WP644957 wAD18985 w704658)
WA296538 WAG67087 WAB31522 w221167 WA288209 WALGB3OL WA297189 WAZ6G5L WAG37310 wA720237  WA99700 WAG95907 wA25363L WAG91839 WAS24141 wAS51022 WA223229 WAB7506)
WIA7B192 WAB10S65 Wh141922 w942306 WNL17904 WAI3543 WAB19778 w5759 WABSS073 wi1Blel WABBB3G2 WA24ILeT WiA47A72 WA4GS924 WA7631S1 wABD77LS wN278322 w361l46]
W'127936 wA273301 WABA7058 w172200 Wi348363 WA3L4845 WA263618  WM3923 WAG9SEI9  WASTB2 W614572 wA312980 wA1905808 WA757163 wAB36479 w'283298 WA351206 w195139)
W'225921 WA3B1198 WA114839 wAG4222 WAB12786 WA910129 wAB0GO21 WMBSBLL WALOBB12 WA5L5490 WALES519 WAGSB939 WA795331 WAG9S753 WAB17364 wA930985 WA3LO5T WALL3TIU)
WI546219 WA342348 WHGL3T93 wPl63160 WIILLOL WAS96068  wh4GSBA wM933333 WA234G22 WM977B27 WA797738 WA777330 W204160 WAB26510 wM425208 wA9L6S1S w"1010002  wA28974]
W'3B7187 wi622828  w'9B356 w175592 WN578483 WA7SS515 wA624990 wM1821246 WA715397 W'345528 W915186 WA4SEB94 w8470 WABB6395 WA913260 W3ATT6L  WAI2665  w199167)
WA266480 WASBT969 WABLB6BE W26BLSL WA260662 WAT6T743 WAS66267 WA2B1909 WABA9597 WH577204 WAGL9731 WA230250 WS22123 WAGO1763 WAO9AEEL WAT6699 WAGE2170  wh19346)
WIST7188 944193  w'76009 w72114 WN168346 WALBBIB7 WAL007068 wA7B32 WASA33SE wi734432  WA33B20 WAGL7557 w755605 WAL23461 wABABO74 wA717020 wN239070 wA45B273]
W'613708 1029328 WA73L945 737731 WA257473 WAL2995 wA2023BL WAY1B616 wA295557 w'889336 wAIBI0N2 WAIEB277 W25269 WA100947 w2813 WAG9492 WAB16486 WA1003168)
WA375392 WA928977 WAB12964 WA318570 WA96694L WA9SEL2 WA1027964 WAGL994L WABSQ9TL Wh296038 WA603907 WALl WALBTSD WAGSA77 WAIT9296 wA732234 WA9LB721 wA361762]
WI923340 WA214480 WA747262 W926785 WNGB9EBB WA9S2228 WAAUST76 WMA23943 WAGA9072  wA22829 WA356036 WAT06505 W'939B12 WAD20048 WA394764 WALOZ4k27 WN670614 wA723510]
WISL6103 WAB23319 WMUB7960 WA792252 WNTBAT91 WMA42528 WA95G3B9 WM636815 WA499427 WM651800 WA325780 WA98276 W259759 WA7043.0 wA738285 w'423883 w\788285 wB64859)
WA63523 WASOTSE6 WAB99547  WAGG21D WA771166 WM76B4B WA73999 WMIBLZ145 WAB9G9IL WA29708 WALOI139 WALLEOL3 WB6O6L7 WA9DSBLY WABB69S7 WASS5279  wA11908 wA393060)
W'838926 WA523104 WA13I7L wWA21235 WAI76245 WAG75466 WA2SIOLL WA239901 wA012958 wi945009 WA722834 WALGA74l W191877 WAL27222 wAl63984 wA206531 w"1095897 wA628569]
W'738973 wh215016 Wh65B662 WP195917 WiB9133 WA9B3ES7 WAAG1472 WA344280 WAG1718L W'E77925 WA705133  W'AL732 wAB2903 WABITB7 WAL6S912 wP268532 wMi78086 w938553)
W'E36066 WA729970 WA123721 wAT56989 WNG6B630 WAG36987 WAUSLD34  WAB1525 WAG740D4 Wh30B632 WAL61191 WA137995 w3641 WAGG74SL WALO3991 wA9B6525 WASE3448 160312
W'755090 WA178200 whB28283 wA733597 WABS93B4 WAS6934E WAL46891 WALL6635 WALQ4028 wi7S9077 WALSS720 WABO992 w303886 WA1B1497B wA790097 wA325774 WN2283B1 278762
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Hiding the structure

Few visual examples : M of size 20 x 20,
coefficients in GF(2%°) ~ 1 million elements, dim(F) = 2.
dim(support(M~1)) = 19.

AR
atrice

wh362254 b W'362256 w362254 W'362256 wN71106 WA362256 362256 o
WA362254 WA733999 wP471106 o wgzvca WA362256 WA362254 WA362254 whA71186 WA733990
b w7106 w7399 W'733990  wh733990 w7599 wiTiios 362256 w7110 0 Wh362256 wA733990 WA733990 whA7106

w7110 whTIIOS W399 WeaTiie wA3E2250 We759%8 wha228d w7110 wrsason wesszasl wei7iios 8 w'733990 WA71106 WAi71106 © w3622 wr362254]

2256 w71106 G Whigiios w7300 wAslm0 wha2284 whiTilas wiae225e weiTiied 0 whi71166 B wh362256 WALT1106 WA733990 WA362254]

WN71106 WA733990 0 Wh362256 wAA7LI06 WA733990 wh471106 733990 0 w7106 733990 0 w733990 0 w7339 w'733990]

WNT1106 whiT1106 © WA733990 WA733990 WA362254 WNATLleE wA733998 © Wh362254 WALTLI06 WA362254 WN362254 w7110 wA733990 0 wh3s2250

WA733990 wA362256 0 wi71166 ° o 6 w7106 w7106 ] 8 W'733990 WA733990 WALT1106 362256 0 w7106 o 6 wA362254]
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mathis-130:beamer bros$ magma

Magma V2.23-1 (STUDENT) Wed May 22 2019 10:06:37 [Seed = 16089088471
Type ? for help. Type <Ctrl>-D to quit.

> load "H.magma";

Loading "H.magma"

n =
250

r =

160

affichage =

2]

Trial 1 => dimension support(M) = 18, dimension support(M~(-1)) = 250 (max=258)
Trial 2 => dimension support(M) = 10, dimension support(M*(-1)) = 250 (max=250)
Trial 3 => dimension support(M) = 18, dimension support(M*(-1)) = 258 (max=250)
Trial 4 => dimension support(M) = 10, dimension support(M*(-1)) = 250 (max=250)
Trial § => dimension support(M) = 18, dimension support(MA(-1)) = 250 (max=250)
Trial 6 => dimension support(M) = 18, dimension support(M~(-1)) = 256 (max=250)
Trial 7 => dimension support(M) = 18, dimension support(M~(-1)) = 250 (max=258)
Trial 8 => dimension support(M) = 10, dimension support(M*(-1)) = 250 (max=250)
Trial 9 => dimension support(M) = 18, dimension support(M*(-1)) = 258 (max=250)
Trial 10 => dimension support(M) = 10, dimension support(M*(-1)) = 250 (max=250)
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Conclusion about sparsity and coding theory

Conclusion about sparsity and coding theory :

@ One could think that the more structured a code is, the more it can
decode (Reed-Solomon, Reed-Muller, Gabidulin, ...)
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Conclusion about sparsity and coding theory :

@ One could think that the more structured a code is, the more it can
decode (Reed-Solomon, Reed-Muller, Gabidulin, ...)

o But a sparse parity check matrix is enough :
—the sparser its parity check matrix is, the more a code can
decode.
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Conclusion about sparsity and coding theory

Conclusion about sparsity and coding theory :

@ One could think that the more structured a code is, the more it can
decode (Reed-Solomon, Reed-Muller, Gabidulin, ...)

o But a sparse parity check matrix is enough :
—the sparser its parity check matrix is, the more a code can
decode.

e For instance, LDPC (H with O(1) 1’ per row) can decode up to
O(n) errors.
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Conclusion about sparsity and coding theory :
@ One could think that the more structured a code is, the more it can
decode (Reed-Solomon, Reed-Muller, Gabidulin, ...)

o But a sparse parity check matrix is enough :
—the sparser its parity check matrix is, the more a code can
decode.

e For instance, LDPC (H with O(1) 1’ per row) can decode up to
O(n) errors.

o Nevertheless, in cryptography, we prefer to use MDPC codes :
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Conclusion about sparsity and coding theory

Conclusion about sparsity and coding theory :
@ One could think that the more structured a code is, the more it can
decode (Reed-Solomon, Reed-Muller, Gabidulin, ...)

o But a sparse parity check matrix is enough :
—the sparser its parity check matrix is, the more a code can
decode.

e For instance, LDPC (H with O(1) 1’ per row) can decode up to
O(n) errors.

o Nevertheless, in cryptography, we prefer to use MDPC codes :
o We do not want to correct errors but to increase the complexity of attacks.
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Conclusion about sparsity and coding theory

Conclusion about sparsity and coding theory :

@ One could think that the more structured a code is, the more it can
decode (Reed-Solomon, Reed-Muller, Gabidulin, ...)

o But a sparse parity check matrix is enough :
—the sparser its parity check matrix is, the more a code can
decode.

e For instance, LDPC (H with O(1) 1’ per row) can decode up to
O(n) errors.

o Nevertheless, in cryptography, we prefer to use MDPC codes :

o We do not want to correct errors but to increase the complexity of attacks.
e For instance, attacks on LDPC codes would be too easy due to a small
private key size.
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Algebraic Attack against RSD

As seen previously, the security of rank-based cryptosystems relies on the
RSD problem.
From now on, | will consider code over GF(2M).
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Algebraic Attack against RSD

As seen previously, the security of rank-based cryptosystems relies on the
RSD problem.
From now on, | will consider code over GF(2M).

o From He = s one gets a system of equations.
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Algebraic Attack against RSD

As seen previously, the security of rank-based cryptosystems relies on the
RSD problem.
From now on, | will consider code over GF(2M).

o From He = s one gets a system of equations.
e Very particular form : Quadratic, quasi-bihomogeneous
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Algebraic Attack against RSD

As seen previously, the security of rank-based cryptosystems relies on the

RSD problem.

From now on, | will consider code over GF(2M).

o From He = s one gets a system of equations.

e Very particular form : Quadratic, quasi-bihomogeneous

Maxime BROS Sparse Matrices and Applications to Decoding and Cryptography

E 1 5% 41 + E_1 1%e 5.1 + E_1_2%e 5.
E1 2%e 4 1 + E_1_dke_4_1 + E_1_2%e 5.
E1 1%e 4 1 + E_1 3%e 4 1 + E_1 5ke &
E1 bke 4_1 + E_1_b%e 51 + 1,

E1 1%e 4 1 + E_1_é%e_4_1 + E_1_1ke 5.
E1 2% 4.1 + E_1 2% 5.1 + 1,
E1 3% 4 1 + E_1 éxe 4 1 + E_1_3%e 5.
E 1 4ke 4 1 + E_1_éke 4 _1 + E_1_bke 5.
E 1 5% &4 1 + E_1 5%e 5.1,

E1 2%e 4 1 + E_1 3%e 4 1 + E_1_bke_ &
E1 2%e 4 1 + E_1_dke 4_1 + E_1_bke_&.
E13%e 4 1+ E15%e 41+ E_1 1ke 5
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Algebraic Attack against RSD

e Take advantage of the small rank of e
= over-constrained system of equations
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Algebraic Attack against RSD

e Take advantage of the small rank of e
= over-constrained system of equations

e Number of unknowns : Nr-+nr. Nr for the basis of E, nr for e.
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Algebraic Attack against RSD

e Take advantage of the small rank of e
= over-constrained system of equations

e Number of unknowns : Nr-+nr. Nr for the basis of E, nr for e.

o Number of equations : (n — k) equations in GF(2V), so N(n — k)
equations.
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Algebraic Attack against RSD

Take advantage of the small rank of e
= over-constrained system of equations

e Number of unknowns : Nr-+nr. Nr for the basis of E, nr for e.
Number of equations : (n — k) equations in GF(2V), so N(n — k)
equations.

o Usually n = N,k = n/2 and r = O(y/n), so 2n%/? unknowns for
(1/2)n? equations.
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Algebraic Attack against RSD

Take advantage of the small rank of e
= over-constrained system of equations

e Number of unknowns : Nr-+nr. Nr for the basis of E, nr for e.
Number of equations : (n — k) equations in GF(2V), so N(n — k)
equations.

o Usually n = N,k = n/2 and r = O(y/n), so 2n%/? unknowns for
(1/2)n? equations.

One way to solve this system is to use Grobner basis

computation, but their complexity is poorly known for system
which are not semi-regular.
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Algebraic Attack against RSD

e More precisely, if the system were random with
# unknowns ~ # equations, we would have some complexity
bounds ([Bar04]).
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Algebraic Attack against RSD

e More precisely, if the system were random with
# unknowns ~ # equations, we would have some complexity

bounds ([Bar04]).
e But in our case, the system is over-constrainted and it has a strong
structure coming from the structure of GF(2").
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Algebraic Attack against RSD

e More precisely, if the system were random with
# unknowns ~ # equations, we would have some complexity
bounds ([Bar04]).

e But in our case, the system is over-constrainted and it has a strong
structure coming from the structure of GF(2").

o Nowadays, GB computation complexity for over-constrainted
systems over GF(2) is still an open question.
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Algebraic Attack against RSD

e More precisely, if the system were random with
# unknowns ~ # equations, we would have some complexity
bounds ([Bar04]).

But in our case, the system is over-constrainted and it has a strong
structure coming from the structure of GF(2").

o Nowadays, GB computation complexity for over-constrainted
systems over GF(2) is still an open question.

Conjecture/Heuristic for the case “quadratically” over-constrainted.
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Algebraic Attack against RSD

e More precisely, if the system were random with
# unknowns ~ # equations, we would have some complexity
bounds ([Bar04]).

But in our case, the system is over-constrainted and it has a strong
structure coming from the structure of GF(2").

o Nowadays, GB computation complexity for over-constrainted
systems over GF(2) is still an open question.

Conjecture/Heuristic for the case “quadratically” over-constrainted.

o Observations on small RSD instances
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Algebraic Attack against RSD

e More precisely, if the system were random with
# unknowns ~ # equations, we would have some complexity
bounds ([Bar04]).

e But in our case, the system is over-constrainted and it has a strong
structure coming from the structure of GF(2").

o Nowadays, GB computation complexity for over-constrainted
systems over GF(2) is still an open question.

o Conjecture/Heuristic for the case “quadratically” over-constrainted.

o Observations on small RSD instances
= drop in complexity in comparison to random systems.
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Algebraic Attack against RSD

[unknowns, equations] | d.eg random system | d.eg for RSD systems
[48, 48] 8 (Bardet) [8,8,2,3] = 5
[48, 48] 8 (Bardet) [12,12,8,2] = 4
[58, 70] 7 or 8 (%) [10,10,2,4] = b5

(x) 7 is a prediction using my conjecture for over-constrained system
whereas 8 would be the result of Bardet's method for semi-regular system.
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Merci |
Thank you !

References : [McET78], [MTSB13], [GMRZ13], [Bar04].
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