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Reminder about Error Correcting Codes
Decoding and Syndrome Decoding Problems

Reminder about Error Correcting Codes

Error correcting codes are used to transmit informations (satellites, DVD,
telecommunications, ...) but also for cryptographic purpose.

Code (definition)

A code C is vector space of GF (q)n of dimension k.
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Reminder about Error Correcting Codes

Parity Check Matrix

H is a parity check matrix for the code C if for every word c ∈ GF (q)n :

c ∈ C ⇐⇒ HcT = 0n−k
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Reminder about Error Correcting Codes
Decoding and Syndrome Decoding Problems

Hard Problems in Coding Theory

Decoding Problem (computational)

Let G be a matrix k × n over a field K,
y a vector of length n (with coefficients in K)
and ω ∈ N.

Find m ∈ Kk such that weight(y −mG ) for a given metric is smaller
or equal to ω.

Syndrome Decoding Problem (computational)

Let H be a matrix (n − k)× n over a field K,
s a vector of length (n − k) (with coefficients in K)
and ω ∈ N.

Find e ∈ Kn with weight smaller or equal to ω for a given metric
such that Het = s ?
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Reminder about Error Correcting Codes
Decoding and Syndrome Decoding Problems

Hard Problems in Coding Theory

These 2 problems are equivalent.

Proven NP-complete with Hamming metric in 1978 by Berlekamp,
McEliece and Tilborg.

Proven to be probabilistically NP-complete with rank metric in 2017
by Gaborit and Zémor.
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MDPC
Rank Metric
LRPC

Decoding codes with sparse parity check matrix

We will study two codes (MDPC and LRPC) for which one uses the
sparsity of their parity check matrix to decode.

The notion of sparsity one uses depends on the chosen metric.
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MDPC

For MDPC codes sparse means : majority of zeros in the matrix
(only O(

√
n) 1’s per row)

Only H is sparse =⇒ “Moderate Density Parity Check”.
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MDPC
Rank Metric
LRPC

Gallager’s algorithm

Reminder : only the error contributes to the syndrome.

More precisely
HyT = HcT︸︷︷︸

=0

+HeT



1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0
0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1
0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 0 0
1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0
0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0





y1
y2
y3
y4+1
y5
y6
y7
y8+1
y9
y10
y11
y12
y13
y14
. . .
y20



=



0
1
0
1
1
1
0
1
1
0
0



#(common 1’s)= {1 , 1 , 1 , 3, 2, 2, 2, 3, 1, 1, 1, 1, 2, 2, 0, 1, 2, 1, 1, 2}
Let τ = 3 be our threshold.
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Rank Metric
LRPC

Gallager’s algorithm

One receives a word y := mG + e = codeword + error .

Bit-flipping algorithm

1 Compute the syndrome s = HyT

2 For each of the n columns of H, count the number of common 1’s between
the syndrome and this column

3 For a given column i , if this number of common 1’s is greater than a
threshold τ , then change the i th bit of y

4 Call this new vector y again, and go back to the first step, until either

s = 0n−k =⇒ RETURN the last y ,
which is the codeword

a certain number
of iterations is reached =⇒ RETURN FAIL

Maxime BROS Sparse Matrices and Applications to Decoding and Cryptography



Introduction
Decoding codes with sparse parity check matrix

Applications in Cryptography

MDPC
Rank Metric
LRPC

Gallager’s algorithm

One receives a word y := mG + e = codeword + error .

Bit-flipping algorithm

1 Compute the syndrome s = HyT

2 For each of the n columns of H, count the number of common 1’s between
the syndrome and this column

3 For a given column i , if this number of common 1’s is greater than a
threshold τ , then change the i th bit of y

4 Call this new vector y again, and go back to the first step, until either

s = 0n−k =⇒ RETURN the last y ,
which is the codeword

a certain number
of iterations is reached =⇒ RETURN FAIL

Maxime BROS Sparse Matrices and Applications to Decoding and Cryptography



Introduction
Decoding codes with sparse parity check matrix

Applications in Cryptography

MDPC
Rank Metric
LRPC

Gallager’s algorithm

One receives a word y := mG + e = codeword + error .

Bit-flipping algorithm

1 Compute the syndrome s = HyT

2 For each of the n columns of H, count the number of common 1’s between
the syndrome and this column

3 For a given column i , if this number of common 1’s is greater than a
threshold τ , then change the i th bit of y

4 Call this new vector y again, and go back to the first step, until either

s = 0n−k =⇒ RETURN the last y ,
which is the codeword

a certain number
of iterations is reached =⇒ RETURN FAIL

Maxime BROS Sparse Matrices and Applications to Decoding and Cryptography



Introduction
Decoding codes with sparse parity check matrix

Applications in Cryptography

MDPC
Rank Metric
LRPC

Gallager’s algorithm

One receives a word y := mG + e = codeword + error .

Bit-flipping algorithm

1 Compute the syndrome s = HyT

2 For each of the n columns of H, count the number of common 1’s between
the syndrome and this column

3 For a given column i , if this number of common 1’s is greater than a
threshold τ , then change the i th bit of y

4 Call this new vector y again, and go back to the first step, until either

s = 0n−k =⇒ RETURN the last y ,
which is the codeword

a certain number
of iterations is reached =⇒ RETURN FAIL

Maxime BROS Sparse Matrices and Applications to Decoding and Cryptography



Introduction
Decoding codes with sparse parity check matrix

Applications in Cryptography

MDPC
Rank Metric
LRPC

Gallager’s algorithm

One receives a word y := mG + e = codeword + error .

Bit-flipping algorithm

1 Compute the syndrome s = HyT

2 For each of the n columns of H, count the number of common 1’s between
the syndrome and this column

3 For a given column i , if this number of common 1’s is greater than a
threshold τ , then change the i th bit of y

4 Call this new vector y again, and go back to the first step, until either

s = 0n−k =⇒ RETURN the last y ,
which is the codeword

a certain number
of iterations is reached =⇒ RETURN FAIL

Maxime BROS Sparse Matrices and Applications to Decoding and Cryptography



Introduction
Decoding codes with sparse parity check matrix

Applications in Cryptography

MDPC
Rank Metric
LRPC

Gallager’s algorithm

One receives a word y := mG + e = codeword + error .

Bit-flipping algorithm

1 Compute the syndrome s = HyT

2 For each of the n columns of H, count the number of common 1’s between
the syndrome and this column

3 For a given column i , if this number of common 1’s is greater than a
threshold τ , then change the i th bit of y

4 Call this new vector y again, and go back to the first step, until either
s = 0n−k =⇒ RETURN the last y ,

which is the codeword

a certain number
of iterations is reached =⇒ RETURN FAIL

Maxime BROS Sparse Matrices and Applications to Decoding and Cryptography



Introduction
Decoding codes with sparse parity check matrix

Applications in Cryptography

MDPC
Rank Metric
LRPC

Gallager’s algorithm

One receives a word y := mG + e = codeword + error .

Bit-flipping algorithm

1 Compute the syndrome s = HyT

2 For each of the n columns of H, count the number of common 1’s between
the syndrome and this column

3 For a given column i , if this number of common 1’s is greater than a
threshold τ , then change the i th bit of y

4 Call this new vector y again, and go back to the first step, until either
s = 0n−k =⇒ RETURN the last y ,

which is the codeword
a certain number
of iterations is reached =⇒ RETURN FAIL

Maxime BROS Sparse Matrices and Applications to Decoding and Cryptography



Introduction
Decoding codes with sparse parity check matrix

Applications in Cryptography

MDPC
Rank Metric
LRPC

Rank Decoding Problem

In 1985, Gabidulin, a Russian researcher, introduced rank-codes over
an extension field
(the use of rank metric started in 1951 by Hua and then in 1978 by Delsarte who

introduced rank distance for matrix-codes).

Using this metric instead of the Hamming metric :

Decoding Problem =⇒ Rank Decoding Problem (RD)
Syndrome Decoding Problem =⇒ Rank Syndrome Decoding Pb. (RSD)

Figure: Ernst Gabidulin (1937 (U.S.S.R) - aged 81 today)
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Reminder about finite fields

GF (qm) is a GF (q)-vector space of dimension m
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Rank metric

m = 4, and let e ∈ GF (24)4

e = (1 + α2, α, 1, α2)

M =

1
α
α2

α3


1 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0


e can be represented by a matrix M of GF (2)
We define Rank(e) = Rank(M) = 3
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Rank metric

Notation : all presentation long, q is a power of a prime p and
m, n ∈ N∗.

Rank of a GF (qm)n word

Let e = (e1, e2, . . . , en) be a vector of GF (qm)n.
Given a basis B = (B1,B2, . . . ,Bm) of GF (qm) over GF (q), one gets :
∀i ∈ {1, .., n},∃! (ei,1, ei,2, . . . , ei,m) ∈ GF (q)m such that
ei =

∑m
j=1 ei,j · Bj .

The rank of e, noted Rank(e), is defined by the rank of the matrix
(ei,j)1≤i≤n

1≤j≤m
.

Rank distance

d : GF (qm)n × GF (qm)n → N
(e1, e2) 7→ Rank(e1 − e2)

is a distance (or a metric) over GF (qm)n.
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Code properties in Rank metric

What are the differences between code with Hamming and Rank metric ?

Minimal distance of a code with rank metric

Let C be a [n, k, d ]-code over GF (qm) for the rank metric
As long as C is additive :

d = min{Rank(c) | c ∈ C}

Support of a word in C

The support of an element x = (x1, . . . , xn) ∈ GF (qm)n is the
GF (q)-vector space of GF (q)m generated by the coordinates xi of x .
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Support of a word

e = (1 + α2, α, 1, α2) ∈ GF (24)4 and Rank(e) = 3

support(e) =<


1
0
1
0

 ,


0
1
0
0

 ,


1
0
0
0

 ,


0
0
1
0

 >

=<


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 >

support(e) is a vector space E of GF (2)4 of dimension 3
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LRPC

In this context, rank metric, sparse means with values in a vector
space of small dimension d , as seen before it uses the generalization
of the support to rank metric.

The sparse matrix is still H =⇒“Low Rank Parity Check”.
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Decoding LRPC

As for the Hamming metric, the knowledge of the support of the error is
enough to decode.

Let H be the parity check matrix of an LRPC code, with coefficients
in F ⊂ GF (2)N of dimension d .

Let e be the error, with coefficients in E ⊂ GF (2)N of dimension r .
i.e supp(e) = E .

From the syndrome s := HyT = HeT , one gets the vector space
S :=< s1, . . . , sn−k >

This vector space is a subset of the product space < EF > of
dimension at most rd .

Since rd < (n − k), it is very likely that S =< EF >.
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Decoding LRPC

Let Fi be the i th element of a basis of F , let’s consider the vector space

F−1i S =

F−1i < F−1i E1F1, F−1i E2F1, . . . F−1i ErF1,
F−1i E1F2, F−1i E2F2, . . . F−1i ErF2,

. . . . . . . . . . . .
F−1i E1Fi , F−1i E2Fi , . . . F−1i ErFi ,

. . . . . . . . . . . .
F−1i E1Fd , F−1i E2Fd , . . . F−1i ErFd , >

So we have E ⊂ F−1i S forall i from 1 to d
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Decoding LRPC

E ⊂ F−1i S := Si ∀ i ∈ {1, . . . , d}

The co-space of E in F−1i S is very likely to be different for i ′ 6= i .

And so the key to the decoding algorithm of LRPC is that (with high
probability)

d⋂
i=1

Si = E

Knowing the support of the error, one has to solve a linear system
with more equations than unknowns to find the error and so to
decode y .
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Decoding LRPC

This decoding is probabilistic, but the failure probability decreases
exponentially according to the parameters.

For instance, with parameters [n = 94, k = 47,N = 47, d = r = 5]
for a binary LRPC, P(failure) = 2−23.

Maxime BROS Sparse Matrices and Applications to Decoding and Cryptography



Introduction
Decoding codes with sparse parity check matrix

Applications in Cryptography

MDPC
Rank Metric
LRPC

Decoding LRPC

This decoding is probabilistic, but the failure probability decreases
exponentially according to the parameters.

For instance, with parameters [n = 94, k = 47,N = 47, d = r = 5]
for a binary LRPC, P(failure) = 2−23.

Maxime BROS Sparse Matrices and Applications to Decoding and Cryptography



Introduction
Decoding codes with sparse parity check matrix

Applications in Cryptography

Hiding the structure
Algebraic attacks in the random case

Asymmetric Cryptography

Asymmetric Cryptography (or Public Key Cryptography)
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McEliece cryptosystem

Robert McEliece (1942 - 2019) started code-based cryptography in 1978.
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McEliece cryptosystem (or setting)

Let C be a linear code [n, k , d ]-code, decodable up to t = (d − 1)/2
errors in polynomial time with an algorithm D.

Private Key : the generator matrix G of C (usually in systematic form),
S a non-singular k × k matrix and P a n × n permutation matrix.
Public Key : G ′ = SGP

Encryption : let m be the plaintext (of length k), the cipher text is
y = mG ′ + e with w(e) ≤ t (e random).
Decryption :

Compute yP−1 = (mS)G + eP−1

Decode mSG = D(yP−1)

Recover mS and then m (using S−1)
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Application to Cryptography : hiding the structure

Attack : recovering the plaintext
=⇒ Decoding Random Code Problem under the assumption that
C′ is indistinguishable from a random code.

This is not the case if C has a “strong” algebraic structure
(Reed-Solomon or Gabidulin for instance).

One wants to get rid of the “scrambling” step.
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MDPC cryptosystem

New variant of McEliece cryptosystem [MTSB13] et [GMRZ13]

Let C be an MDPC [n, k, d ]-code, decodable up to t = (d − 1)/2 errors in
polynomial time with a probabilistic decoding algorithm DH (using its sparse
parity check matrix H = (h0|h1)).

Private Key : the parity check matrix H of C
Public Key : the generator matrix G = (I |(h0h−1

1 )T ) of C (systematic form).

Encryption : let m be the plaintext (of length k), the cipher text is
y = mG + e with w(e) ≤ t (e random).
Decryption :

Decode mG = DH(y)

Recover m (extracting the first k components of mG)

Note : LRPC cryptosystem described in 2013 by Gaborit, Murat, Ruatta and
Zémor is similar but uses rank metric and the LRPC decoding previously
described.
Disclaimer : this system has to be modified to be used in practice, since the
systematic form would lead to leaks of the original message.
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Hiding the structure

Advantages of MDPC and LRPC :

Almost no algebraic structure.
Thus the security doesn’t rely on masking the structure but only on
the hardness of decoding random codes under the assumption of
indistinguability of MDPC and LRPC.

Thus, the “scrambling” step is replaced by going from the sparse H
to the dense G .
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Hiding the structure

Few visual examples : M of size 20× 20,
coefficients in GF (220) ≈ 1 million elements, dim(F ) = 2.

dim(support(M−1)) = 19.
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Conclusion about sparsity and coding theory

Conclusion about sparsity and coding theory :

One could think that the more structured a code is, the more it can
decode (Reed-Solomon, Reed-Muller, Gabidulin, ...)

But a sparse parity check matrix is enough :
=⇒the sparser its parity check matrix is, the more a code can
decode.

For instance, LDPC (H with O(1) 1′ per row) can decode up to
O(n) errors.

Nevertheless, in cryptography, we prefer to use MDPC codes :

We do not want to correct errors but to increase the complexity of attacks.
For instance, attacks on LDPC codes would be too easy due to a small
private key size.
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Algebraic Attack against RSD

As seen previously, the security of rank-based cryptosystems relies on the
RSD problem.
From now on, I will consider code over GF (2N).

From HeT = s one gets a system of equations.

Very particular form : Quadratic, quasi-bihomogeneous
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Algebraic Attack against RSD

Take advantage of the small rank of e
=⇒ over-constrained system of equations

Number of unknowns : Nr+nr. Nr for the basis of E , nr for e.

Number of equations : (n − k) equations in GF (2N), so N(n − k)
equations.

Usually n = N, k = n/2 and r = O(
√
n), so 2n3/2 unknowns for

(1/2)n2 equations.

One way to solve this system is to use Gröbner basis
computation, but their complexity is poorly known for system
which are not semi-regular.
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Algebraic Attack against RSD

More precisely, if the system were random with
# unknowns ≈ # equations, we would have some complexity
bounds ([Bar04]).

But in our case, the system is over-constrainted and it has a strong
structure coming from the structure of GF (2N).

Nowadays, GB computation complexity for over-constrainted
systems over GF (2) is still an open question.

Conjecture/Heuristic for the case “quadratically” over-constrainted.

Observations on small RSD instances

=⇒ drop in complexity in comparison to random systems.
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Algebraic Attack against RSD

[unknowns, equations] dreg random system dreg for RSD systems
[48, 48] 8 (Bardet) [8, 8, 2, 3] =⇒ 5
[48, 48] 8 (Bardet) [12, 12, 8, 2] =⇒ 4
[58, 70] 7 or 8 (∗) [10, 10, 2, 4] =⇒ 5

(∗) 7 is a prediction using my conjecture for over-constrained system
whereas 8 would be the result of Bardet’s method for semi-regular system.
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:-)

Merci !

Thank you !

References : [McE78], [MTSB13], [GMRZ13], [Bar04].
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Étude des systèmes algébriques surdéterminés. Applications aux codes
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