Exploiting fast linear algebra in the computation of multivariate relations

Éric Schost
U. Waterloo, Canada
Vincent Neiger
U. Limoges, France

Structured Matrix Days 2019, XLIM, Limoges, France May 23, 2019

x
Université de Limoges

Outline

- Multivariate relations and linear algebra
- Computing relations (known multiplication matrices)
- Computing the multiplication matrices
- Multivariate relations and linear algebra
- Computing relations (known multiplication matrices)
- Computing the multiplication matrices

$$
\left[\begin{array}{lll}
p_{1} & \cdots & p_{m}
\end{array}\right]\left[\begin{array}{c}
\mathfrak{f}_{1} \\
\vdots \\
f_{m}
\end{array}\right]=0 \bmod \mathcal{M}
$$

Over $\mathbb{K}=\mathbb{Z} / 7 \mathbb{Z}, \mathrm{~m}=4, \mathcal{M}=\left\langle\mathrm{X}^{4}\right\rangle$:

$$
\left[\begin{array}{llll}
p_{1} & p_{2} & p_{3} & p_{4}
\end{array}\right]\left[\begin{array}{c}
5 X^{3}+4 X^{2}+6 X+4 \\
2 X^{3}+X^{2}+X+3 \\
2 X+1 \\
4 X^{3}+X^{2}+4 X
\end{array}\right]=0 \bmod X^{4}
$$

trivial relation $\rightsquigarrow p=\left[\begin{array}{llll}X^{4} & 0 & 0 & 0\end{array}\right]$
relation of small degree $\rightsquigarrow \quad \mathbf{p}=\left[\begin{array}{llll}X+5 & 1 & 5 & 1\end{array}\right]$
basis of relations $\left.\rightsquigarrow \mathcal{B}=\left\{\begin{array}{llll}{[X+2} & 0 & 6 & 0], \\ {\left[X^{2}\right.} & X^{2} & 0 & 0\end{array}\right],\left\{\begin{array}{llll}X+2 & 3 X+2 & X & 0\end{array}\right],\right\}$

Université
$\mathcal{M}=$ set of polynomials $p(X, Y)$ vanishing at points in \mathbb{K}^{2} :
$\{(24,80),(31,73),(15,73),(32,35),(83,66),(27,46),(20,91),(59,64)\}$

All interpolants are relations:

$$
p(X, Y) \in \mathcal{M} \quad \Leftrightarrow \quad p(X, Y) 1=0 \bmod \mathcal{M}
$$

$\rightsquigarrow ~ " m a t r i c e s " ~ o v e r ~ \mathbb{K}[\mathrm{X}, \mathrm{Y}]$
$\mathcal{M}=$ set of polynomials $p(X, Y)$ vanishing at points in \mathbb{K}^{2} :
$\{(24,80),(31,73),(15,73),(32,35),(83,66),(27,46),(20,91),(59,64)\}$

All interpolants are relations:

$$
p(X, Y) \in \mathcal{M} \quad \Leftrightarrow \quad p(X, Y) 1=0 \bmod \mathcal{M}
$$

$\rightsquigarrow ~ " m a t r i c e s " ~ o v e r ~ \mathbb{K}[\mathrm{X}, \mathrm{Y}]$

$$
\left.\begin{array}{l}
\mathrm{G}=(\mathrm{X}-24) \cdots(\mathrm{X}-59) \\
\mathrm{L}=\text { Lagrange interpolant }
\end{array}\right\} \rightarrow \mathcal{M}=\langle\mathrm{G}(\mathrm{X}), \mathrm{Y}-\mathrm{L}(\mathrm{X})\rangle
$$

Interpolants $p(X, Y)=p_{0}(X)+p_{1}(X) Y+p_{2}(X) Y^{2}$:

$$
\left[\begin{array}{lll}
p_{0} & p_{1} & p_{2}
\end{array}\right]\left[\begin{array}{l}
1 \\
\mathrm{~L} \\
\mathrm{~L}^{2}
\end{array}\right]=0 \bmod G
$$

\rightsquigarrow structured matrices over $\mathbb{K}[X]$
$\mathcal{M}=$ set of polynomials $p(X, Y)$ vanishing at points in \mathbb{K}^{2} :
$\{(24,80),(31,73),(15,73),(32,35),(83,66),(27,46),(20,91),(59,64)\}$
$=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right),\left(x_{4}, y_{4}\right),\left(x_{5}, y_{5}\right),\left(x_{6}, y_{6}\right),\left(x_{7}, y_{7}\right),\left(x_{8}, y_{8}\right)\right\}$

Interpolants $p_{00}+p_{01} X+p_{02} X^{2}+p_{03} X^{3}+p_{04} X^{4}+\left(p_{10}+p_{11} X+p_{12} X^{2}\right) Y+p_{20} Y^{2}:$
$\left[\begin{array}{lllllllll}p_{00} & p_{01} & p_{02} & p_{03} & p_{04} & p_{10} & p_{11} & p_{12} & p_{20}\end{array}\right]\left[\begin{array}{cccc}1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & \cdots & x_{8} \\ x_{1}^{2} & x_{2}^{2} & \cdots & x_{8}^{2} \\ x_{1}^{3} & x_{2}^{3} & \cdots & x_{8}^{3} \\ x_{1}^{4} & x_{2}^{4} & \cdots & x_{8}^{4} \\ \hdashline y_{1} & y_{2} & \cdots & y_{8} \\ x_{1} y_{1} & x_{2} y_{2} & \cdots & x_{8} y_{8} \\ x_{1}^{2} y_{1} & x_{2}^{2} y_{2} & \cdots & x_{8}^{2} y_{8} \\ \cdots-y_{1}^{2} & y_{2}^{2} & \cdots & y_{8}^{2}\end{array}\right]=0$
$\rightsquigarrow 2$-level structured matrices over \mathbb{K}

\rightsquigarrow these relations form a submodule of $\mathbb{K}[\mathbf{X}]^{m}$
which has co-dimension $\leqslant \mathrm{D}$

Multivariate relations and linear algebra Using linear algebra?

iversit
often, handling structured matrices = incorporating polynomial operations...

```
why
interpreting approximation/interpolation as linear algebra?
```


how

 can this be done for relations in general?
Using linear algebra?

Université
often, handling structured matrices = incorporating polynomial operations...

```
why
interpreting approximation/interpolation as linear algebra?
```

- fastest known approach for $m \geqslant D$ (roughly: large matrix dimensions, small polynomial degrees)
- fastest known approach for any parameters for general relations

how can this be done for relations in general?

using multiplication matrices
\leadsto operations on polynomials translated into linear algebra

- elements \mathfrak{f} of $\mathbb{K}[\mathbf{X}]^{n} / \mathcal{M} \longleftrightarrow$ vectors $\left[v_{1} \cdots v_{\mathrm{D}}\right] \in \mathbb{K}^{1 \times \mathrm{D}}$
- multiplication by variable $X_{i} \longleftrightarrow$ multiplication by matrix $\mathrm{M}_{\mathrm{i}} \in \mathbb{K}^{\mathrm{D} \times \mathrm{D}}$

Université

Working in $\mathbb{K}[X] /\left\langle X^{4}\right\rangle$, with monomial basis $\left(1, X, X^{2}, X^{3}\right)$, polynomial $p_{0}+p_{1} X+p_{2} X^{2}+p_{3} X^{3} \longleftrightarrow$ vector $\left[\begin{array}{llll}p_{0} & p_{1} & p_{2} & p_{3}\end{array}\right]$

$$
\text { Multiplication by } X=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Working in $\mathbb{K}[X, Y] /\langle G, Y-L\rangle$, with monomial basis ($1, X, X^{2}, \ldots, X^{7}$)
M M M M tiplication by $X=$
$\left[\begin{array}{ccccccccc} & 1 & & & & & & \\ & & 1 & & & & & \\ & & & 1 & & & & \\ & & & & 1 & & & \\ & & & & & 1 & & \\ & & & & & & 1 & \\ g_{0} & g_{1} & g_{2} & g_{3} & g_{4} & g_{5} & g_{6} & g_{7}\end{array}\right]$

Multiplication by $\mathrm{Y}=$
$\left[\begin{array}{c}\operatorname{coeff}(L) \\ \operatorname{coeff}(X L \bmod G) \\ \operatorname{coeff}\left(X^{2} L \bmod G\right) \\ \operatorname{coeff}\left(X^{3} L \bmod G\right) \\ \operatorname{coeff}\left(X^{4} L \bmod G\right) \\ \operatorname{coeff}\left(X^{5} L \bmod G\right) \\ \operatorname{coeff}\left(X^{6} L \bmod \right) \\ \operatorname{coeff}\left(X^{7} L \bmod G\right)\end{array}\right]=\left[\begin{array}{c}\ell \\ \ell M \\ \ell M^{2} \\ \ell M^{3} \\ \ell M^{4} \\ \ell M^{5} \\ \ell M^{6} \\ \ell M^{7}\end{array}\right]$

- Multivariate relations and linear algebra
- Computing relations (known multiplication matrices)
- Computing the multiplication matrices

Represented as:

- submodule \mathcal{M}^{-1} of $\mathbb{K}[X]^{n}$, of finite ${ }^{-\cdots-. .}$. multiplication matrices codimension D
- equation $\mathfrak{f}=\left[\begin{array}{lll}f_{1} & \cdots & \mathfrak{f}_{m}\end{array}\right]^{\top}$ with $\quad \bullet$ vectors ${ }^{*} e_{1}, \ldots, \mathbf{e}_{m}$ in $\mathbb{K}^{1 \times D}$ entries in $\mathcal{M} / \mathbb{K}[\mathbf{X}]^{n}$
- a monomial order \prec on $\mathbb{K}[\mathbf{X}]^{m}$

Output:
the \prec-Gröbner basis of the module of relations
$\mathcal{R}=\left\{\mathbf{p} \in \mathbb{K}[\mathbf{X}]^{m} \mid \mathbf{p f}=0 \bmod \mathcal{M}\right\}$
\rightsquigarrow nice properties: unique, minimal degrees, computing modulo \mathcal{R}, \ldots

Notation: $\mathcal{V}=\mathbb{K}\left[X_{1}, \ldots, X_{r}\right]^{n} / \mathcal{M}$ is a \mathbb{K}-vector space of dimension D

Relations are vectors in the nullspace of a matrix over \mathbb{K}

- matrix $\mathbf{E}=\left[\begin{array}{c}\mathbf{e}_{1} \\ \vdots \\ \mathbf{e}_{m}\end{array}\right] \in \mathbb{K}^{m \times D} \quad$ (equation $\left[\begin{array}{c}\mathfrak{f}_{1} \\ \vdots \\ \mathfrak{f}_{m}\end{array}\right] \in \mathcal{V}^{m \times 1}$)
- matrix $\mathbf{M}_{i} \in \mathbb{K}^{\mathrm{D} \times \mathrm{D}}, 1 \leqslant \mathfrak{i} \leqslant \mathrm{r}$ (multiplying by X_{i} in \mathcal{V})

basis of relations = subset of nullspace of multi-Krylov matrix
$\prec_{\text {lex }}^{\text {top }}$ order:

niversité
basis of relations = subset of nullspace of multi-Krylov matrix
$\prec_{\text {lex }}^{\text {top }}$ order: $\quad \omega: \mathrm{D} \times \mathrm{D}$ matrix multiplication in $\mathrm{O}\left(\mathrm{D}^{\omega}\right)$ operations

- [Keller-Gehrig, 1985]: charpoly (M) in $\mathrm{O}\left(\mathrm{D}^{\omega} \log (\mathrm{D})\right)$ (one variable, $\mathbf{E}=\mathrm{Id}$, output $=$ Hermite form)
- [FGLM, 1993]: general case in $\mathrm{O}\left(\mathrm{rD}^{3}\right)$
- [Beckermann\&Labahn, 2000]: $\mathrm{O}\left(\mathrm{mD}^{2}\right)$ for structured \mathbf{M} (one variable, output $=$ shifted Popov form)
- [Faugère et al., 2014]: for $\prec_{\text {lex }}$ and Shape position, $\mathrm{O}\left(\mathrm{D}^{\omega} \log (\mathrm{D})+\mathrm{rM}(\mathrm{D}) \log (\mathrm{D})\right)$

General case with fast matrix multiplication?

Incorporating fast linear algebra

Size of dense representations:

input	multi-Krylov matrix	output
$r D^{2}+m D$	mD^{r}	rD^{2}

Algorithm:

1. compute monomial basis = row rank profile
2. find \prec-Gröbner basis by nullspace computation

Size of dense representations:

input	multi-Krylov matrix	output
$r D^{2}+m D$	mD^{r}	rD^{2}

Algorithm:

1. compute monomial basis = row rank profile
2. find \prec-Gröbner basis by nullspace computation

Difficulty: incorporate fast multiplication in Step 1 for any \prec

Cost bound: $\mathrm{O}\left(\mathrm{rD}^{\omega} \log (\mathrm{D})\right)$ operations in \mathbb{K}

- Multivariate relations and linear algebra
- Computing relations (known multiplication matrices)
- Computing the multiplication matrices

Arising in polynomial system solving:

$$
\text { Problem: } \begin{aligned}
\prec_{1}-\mathrm{GB} \text { of } \mathcal{M} \longrightarrow & \prec_{2}-\mathrm{GB} \text { of } \mathcal{M} \\
& =\prec_{2}-\mathrm{GB} \text { of relations: } \mathrm{p} 1=0 \bmod \mathcal{M}
\end{aligned}
$$

Approach: [FGLM, 1993]

1. compute $\mathrm{M}_{1}, \ldots, \mathrm{M}_{\mathrm{r}}$ from \prec_{1}-GB
2. compute the $\prec_{2}-\mathrm{GB}$ of relations
[FGLM, 1993] $\rightarrow \mathrm{O}\left(\mathrm{rD}^{3}\right)$
$\mathrm{O}\left(\mathrm{rD}^{\omega} \log (\mathrm{D})\right)$

Result (case of ideals): step 1. in $\mathrm{O}\left(\mathrm{rD}^{\omega} \log (\mathrm{D})\right)$

assuming the \prec_{1}-initial ideal is Borel-fixed
\rightsquigarrow extends [Faugère et al., 2014]

Property of the ideal \mathcal{J} of leading terms of \mathcal{J} :

Borel-fixed monomial ideal \mathcal{J} (in characteristic 0)

for all $\mu \in \mathcal{J}$, if X_{j} divides μ then $\frac{X_{i}}{X_{j}} \mu \in \mathcal{J}$ for all $i<j$.

Main operation for obtaining the multiplication matrices: computing parts of the multi-Krylov matrix, à la Keller-Gehrig

Sed

Borel-fixedness and multiplication matrices
Property of the ideal \mathcal{J} of leading terms of \mathcal{J} :

Borel-fixed monomial ideal \mathcal{J} (in characteristic 0)

for all $\mu \in \mathcal{J}$, if X_{j} divides μ then $\frac{X_{i}}{X_{j}} \mu \in \mathcal{J}$ for all $i<j$.
[Galligo 1974 \& Bayer-Stillman 1987]:
existence and Borel-fixedness of the "GIN" of a homogeneous ideal J
\rightsquigarrow a random linear change of coordinates ensures Borel-fixedness w.h.p.
generalized to any ideal, for graded monomial orders

Perspectives (ranked by perceived difficulty):

- extension to the case of modules
- generalization to any monomial order (preliminary experiments with $\prec_{\text {lex }}$ revealed no counterexample)
- same cost $\mathrm{O}\left(\mathrm{rD}^{\omega} \log (\mathrm{D})\right)$ without assumption on the ideal/module

Basis of relations

$$
\mathrm{pf}=0 \bmod \mathcal{M}
$$

knowing multiplication matrices

Change of monomial order

\rightsquigarrow polynomial system solving
\prec_{1}-GB of $\mathcal{M} \longrightarrow \prec_{2}$-GB of \mathcal{M}

- Computations with multi-Krylov matrices
- Incorporates fast dense linear algebra
- Cost bound: $\mathrm{O}\left(r \mathrm{D}^{\omega} \log (\mathrm{D})\right)$
- For the second problem: assumptions on \mathcal{M}

Ongoing work (with Simone Naldi): incorporating polynomial multiplication in the computation of multivariate relations
$\left[\begin{array}{lll:lll}a_{1} & a_{2} & a_{3} & b_{1} & b_{2} & b_{3} \\ a_{2} & a_{3} & a_{4} & b_{2} & b_{3} & b_{4} \\ a_{3} & a_{4} & a_{5} & b_{3} & b_{4} & b_{5} \\ \hdashline b_{1} & b_{2} & b_{3} & d_{1} & d_{2} & d_{3} \\ b_{2} & b_{3} & b_{4} & d_{2} & d_{3} & d_{4} \\ b_{3} & b_{4} & b_{5} & d_{3} & d_{4} & d_{5}\end{array}\right]$

