Exploiting fast linear algebra in the computation of multivariate relations

Éric SchostU. Waterloo, Canada

Vincent NeigerU. Limoges, France

Structured Matrix Days 2019, XLIM, Limoges, France May 23, 2019

Outline

- Multivariate relations and linear algebra
- Computing relations (known multiplication matrices)
- Computing the multiplication matrices

Multivariate relations and linear algebra Outline

• Multivariate relations and linear algebra

- Computing relations (known multiplication matrices)
- Computing the multiplication matrices

Multivariate relations and linear algebra Relations

Multivariate relations and linear algebra Relations

Multivariate relations and linear algebra Univariate Hermite-Padé approximation

Over
$$\mathbb{K} = \mathbb{Z}/7\mathbb{Z}$$
, m = 4, $\mathcal{M} = \langle X^4 \rangle$:

$$\begin{bmatrix} p_1 & p_2 & p_3 & p_4 \end{bmatrix} \begin{bmatrix} 5X^3 + 4X^2 + 6X + 4\\ 2X^3 + X^2 + X + 3\\ 2X + 1\\ 4X^3 + X^2 + 4X \end{bmatrix} = 0 \mod X^4$$

trivial relation

$$\rightsquigarrow$$
 $\mathbf{p} = \begin{bmatrix} X^4 & 0 & 0 & 0 \end{bmatrix}$

 relation of small degree
 \rightsquigarrow
 $\mathbf{p} = \begin{bmatrix} X+5 & 1 & 5 & 1 \end{bmatrix}$

 basis of relations
 \rightsquigarrow
 $\mathcal{B} = \begin{cases} \begin{bmatrix} X+2 & 0 & 6 & 0 \end{bmatrix}, \\ \begin{bmatrix} X^2 & X^2 & 0 & 0 \end{bmatrix}, \\ \begin{bmatrix} X+2 & 3X+2 & X & 0 \end{bmatrix}, \\ \begin{bmatrix} X+5 & 1 & 5 & 1 \end{bmatrix} \end{cases}$

Multivariate relations and linear algebra Bivariate interpolation

 $\mathcal{M} = set of polynomials p(X, Y) vanishing at points in \mathbb{K}^2: \\ \{(24, 80), (31, 73), (15, 73), (32, 35), (83, 66), (27, 46), (20, 91), (59, 64)\}$

All interpolants are relations:

 $p(X,Y) \in \mathcal{M} \quad \Leftrightarrow \quad p(X,Y)1 = 0 \text{ mod } \mathcal{M}$

 \rightsquigarrow "matrices" over $\mathbb{K}[X, Y]$

Multivariate relations and linear algebra Bivariate interpolation

 $\mathcal{M} = set of polynomials p(X, Y) vanishing at points in \mathbb{K}^2: \\ \{(24, 80), (31, 73), (15, 73), (32, 35), (83, 66), (27, 46), (20, 91), (59, 64)\}$

All interpolants are relations:

 $p(X,Y)\in \mathfrak{M} \quad \Leftrightarrow \quad p(X,Y)\mathbf{1}=\mathbf{0} \text{ mod } \mathfrak{M}$

 \rightsquigarrow "matrices" over $\mathbb{K}[X, Y]$

$$\left. \begin{array}{l} \mathsf{G} = (\mathsf{X} - 24) \cdots (\mathsf{X} - 59) \\ \mathsf{L} = \mathsf{Lagrange interpolant} \end{array} \right\} \longrightarrow \mathfrak{M} = \langle \mathsf{G}(\mathsf{X}), \mathsf{Y} - \mathsf{L}(\mathsf{X}) \rangle$$

$$\begin{split} \text{Interpolants } p(X,Y) &= p_0(X) + p_1(X)Y + p_2(X)Y^2 \text{:} \\ & \begin{bmatrix} p_0 & p_1 & p_2 \end{bmatrix} \begin{bmatrix} 1 \\ L \\ L^2 \end{bmatrix} = 0 \text{ mod } G \end{split}$$

 \rightsquigarrow structured matrices over $\mathbb{K}[X]$

5/17 Vincent Neiger

Multivariate relations and linear algebra Bivariate interpolation

$$\begin{split} &\mathcal{M} = \text{set of polynomials } p(X,Y) \text{ vanishing at points in } \mathbb{K}^2 \text{:} \\ &\{(24,80),(31,73),(15,73),(32,35),(83,66),(27,46),(20,91),(59,64)\} \\ &=\{(x_1,y_1),(x_2,y_2),(x_3,y_3),(x_4,y_4),(x_5,y_5),(x_6,y_6),(x_7,y_7),(x_8,y_8)\} \end{split}$$

Interpolants $p_{00} + p_{01}X + p_{02}X^2 + p_{03}X^3 + p_{04}X^4 + (p_{10} + p_{11}X + p_{12}X^2)Y + p_{20}Y^2$:

\rightsquigarrow 2-level structured matrices over $\mathbb K$

\rightsquigarrow these relations form a submodule of $\mathbb{K}[X]^m$ which has co-dimension $\leqslant D$

Multivariate relations and linear algebra Using linear algebra?

often, handling structured matrices = incorporating polynomial operations...

why interpreting approximation/interpolation as linear algebra?

how can this be done for relations in general?

Multivariate relations and linear algebra Using linear algebra?

often, handling structured matrices = incorporating polynomial operations...

why interpreting approximation/interpolation as linear algebra?

- fastest known approach for $m \ge D$ (roughly: large matrix dimensions, small polynomial degrees)
- fastest known approach for any parameters for general relations

how

can this be done for relations in general?

using multiplication matrices

 \leadsto operations on polynomials translated into linear algebra

- elements \mathfrak{f} of $\mathbb{K}[X]^n/\mathcal{M}\longleftrightarrow$ vectors $[\nu_1 \ \cdots \ \nu_D]\in \mathbb{K}^{1\times D}$
- multiplication by variable $X_i \longleftrightarrow$ multiplication by matrix $M_i \in \mathbb{K}^{D \times D}$

Multivariate relations and linear algebra Multiplication matrices

Working in $\mathbb{K}[X]/\langle X^4 \rangle$, with monomial basis $(1, X, X^2, X^3)$, polynomial $p_0 + p_1X + p_2X^2 + p_3X^3 \leftrightarrow$ vector $[p_0 \ p_1 \ p_2 \ p_3]$

Multiplication by X =
$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Working in $\mathbb{K}[X, Y]/\langle G, Y - L \rangle$, with monomial basis $(1, X, X^2, \dots, X^7)$

Computing relations (known multiplication matrices) Outline

- Multivariate relations and linear algebra
- Computing relations (known multiplication matrices)
- Computing the multiplication matrices

Computing relations (known multiplication matrices) **Problem**

Input:

- submodule M̃ of K[X]ⁿ, of finite codimension D
- equation $\mathfrak{f} = \begin{bmatrix} \mathfrak{f}_1 & \cdots & \mathfrak{f}_m \end{bmatrix}^\mathsf{T}$ with entries in $\mathfrak{M}/\mathbb{K}[\mathbf{X}]^n$
- a monomial order \prec on $\mathbb{K}[X]^m$

 $\begin{array}{l} \textit{Output:}\\ \textit{the }\prec\text{-Gröbner basis of the module}\\ \textit{of relations}\\ \mathcal{R}=\{\mathbf{p}\in\mathbb{K}[X]^m\mid p\mathfrak{f}=0 \mbox{ mod }\mathcal{M}\} \end{array}$

 \rightsquigarrow nice properties: unique, minimal degrees, computing modulo $\mathcal{R},$...

Computing relations (known multiplication matrices) Relations and multi-Krylov matrices

Notation: $\mathcal{V}=\mathbb{K}[X_1,\ldots,X_r]^n/\mathfrak{M}$ is a $\mathbb{K}\text{-vector space of dimension }D$

Relations are vectors in the nullspace of a matrix over $\ensuremath{\mathbb{K}}$

• matrix
$$\mathbf{E} = \begin{bmatrix} \mathbf{e}_{1} \\ \vdots \\ \mathbf{e}_{m} \end{bmatrix} \in \mathbb{K}^{m \times D}$$
 (equation $\begin{bmatrix} \mathfrak{f}_{1} \\ \vdots \\ \mathfrak{f}_{m} \end{bmatrix} \in \mathcal{V}^{m \times 1}$)
• matrix $\mathbf{M}_{i} \in \mathbb{K}^{D \times D}$, $1 \leq i \leq r$ (multiplying by X_{i} in \mathcal{V})

$$\begin{bmatrix} p_{1} \cdots p_{m} \end{bmatrix} \begin{bmatrix} \mathfrak{f}_{1} \\ \vdots \\ \mathfrak{f}_{m} \end{bmatrix} = \sum_{1 \leq i \leq m} \sum_{\mathbf{j}} \underbrace{\alpha_{i,\mathbf{j}}}_{i \in \mathbb{K}} X_{1}^{\mathfrak{j}_{1}} \cdots X_{r}^{\mathfrak{j}_{r}} \mathfrak{f}_{i}$$
relation = \mathbb{K} -linear relation between vectors $\{\mathbf{e}_{i}\mathbf{M}_{1}^{\mathfrak{j}_{1}} \cdots \mathbf{M}_{r}^{\mathfrak{j}_{r}}\}_{\mathbf{j},i}$
 $\in \mathbb{K}^{1 \times D}$

Computing relations (known multiplication matrices) Relations and multi-Krylov matrices

basis of relations = subset of nullspace of multi-Krylov matrix

Computing relations (known multiplication matrices) Relations and multi-Krylov matrices

basis of relations = subset of nullspace of multi-Krylov matrix

Computing relations (known multiplication matrices) Incorporating fast linear algebra

Size of dense representations:

input	multi-Krylov matrix	output
$rD^2 + mD$	mD^r	rD ²

Algorithm:

- 1. compute monomial basis = row rank profile
- **2.** find \prec -Gröbner basis by nullspace computation

Computing relations (known multiplication matrices) Incorporating fast linear algebra

Size of dense representations:

input	multi-Krylov matrix	output
$rD^2 + mD$	mD^r	rD ²

Algorithm:

- 1. compute monomial basis = row rank profile
- 2. find ≺-Gröbner basis by nullspace computation

Difficulty: incorporate fast multiplication in Step 1 for any \prec

- $\begin{array}{ccc} & X_1,\ldots,X_r & \rightsquigarrow \text{ gather operations involving } \mathbf{M}_i \\ & & X_i,X_i^2,X_i^4,\ldots \rightsquigarrow \text{ gather operations involving } \mathbf{M}_i^{2^j} \end{array}$
- as if \prec_{lex}^{top}

• insert new rows according to the order \prec

Cost bound: $O(rD^{\omega} \log(D))$ operations in K

Computing the multiplication matrices **Outline**

- Multivariate relations and linear algebra
- Computing relations (known multiplication matrices)
- Computing the multiplication matrices

Arising in polynomial system solving:

Problem: \prec_1 -GB of $\mathcal{M} \longrightarrow \prec_2$ -GB of \mathcal{M}

= \prec_2 -GB of relations: $\mathbf{p}1 = 0 \mod \mathcal{M}$

Approach: [FGLM, 1993]

1. compute $\mathbf{M}_1,\ldots,\mathbf{M}_r$ from $\prec_1\text{-}\mathsf{GB}$

2. compute the \prec_2 -GB of relations

 $[\text{FGLM, 1993}] \rightarrow O(rD^3)$

 $O(rD^{\omega}\log(D))$

Result (case of ideals): step **1.** in $O(rD^{\omega} \log(D))$

assuming the \prec_1 -initial ideal is Borel-fixed

→ extends [Faugère et al., 2014]

Computing the multiplication matrices Borel-fixedness and multiplication matrices

Property of the ideal \mathcal{J} of leading terms of \mathcal{I} :

Borel-fixed monomial ideal \mathcal{J} (in characteristic 0)

for all $\mu \in \mathcal{J}$, if X_j divides μ then $\frac{X_i}{X_i} \mu \in \mathcal{J}$ for all i < j.

Main operation for obtaining the multiplication matrices: computing parts of the multi-Krylov matrix, à la Keller-Gehrig

Computing the multiplication matrices Borel-fixedness and multiplication matrices Xim 🗹

Property of the ideal \mathcal{J} of leading terms of \mathcal{I} :

Borel-fixed monomial ideal \mathcal{J} (in characteristic 0)

for all $\mu \in \mathcal{J}$, if X_j divides μ then $\frac{X_i}{X_i}\mu \in \mathcal{J}$ for all i < j.

[Galligo 1974 & Bayer-Stillman 1987]:

existence and Borel-fixedness of the "GIN" of a *homogeneous* ideal $\mathcal{I} \rightarrow a$ random linear change of coordinates ensures Borel-fixedness w.h.p.

generalized to any ideal, for graded monomial orders

Perspectives (ranked by perceived difficulty):

- extension to the case of modules
- generalization to any monomial order (preliminary experiments with ≺_{lex} revealed no counterexample)
- same cost $O(rD^{\omega} \log(D))$ without assumption on the ideal/module

Conclusion

Basis of relations

 $\mathbf{pf} = 0 \mod \mathcal{M}$

knowing multiplication matrices

Change of monomial order

~ polynomial system solving

 $\prec_1\text{-}\mathsf{GB} \text{ of } \mathcal{M} \longrightarrow \prec_2\text{-}\mathsf{GB} \text{ of } \mathcal{M}$

- Computations with multi-Krylov matrices
- Incorporates fast dense linear algebra
- Cost bound: $O(rD^{\omega} \log(D))$
- For the second problem: assumptions on ${\mathfrak M}$

Ongoing work (with Simone Naldi): incorporating polynomial multiplication in the computation of multivariate relations

a ₁	a ₂	a ₃	b_1	b ₂	b3 .
a2	a ₃	a ₄	b ₂	b ₃	b4
a ₃	a ₄	a ₅	b3	b4	b ₅
b1	b ₂	b3	d_1	d ₂	d ₃
b2	b3	b4	d ₂	d3	d4
b3	b4	b_5	d ₃	d4	d ₅