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Multivariate relations and linear algebra
Relations

[
p1 · · · pm

] 
f1
...

fm

 = 0 mod M

polynomials ∈ K[X] = K[X1, . . . ,Xr] ideal, module, . . .

polynomials modulo M

a relation
(or syzygy)
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Multivariate relations and linear algebra
Univariate Hermite-Padé approximation

Over K = Z/7Z, m = 4, M = 〈X4〉:

[
p1 p2 p3 p4

] 
5X3 + 4X2 + 6X+ 4
2X3 + X2 + X+ 3

2X+ 1
4X3 + X2 + 4X

 = 0 mod X4

trivial relation  p =
[
X4 0 0 0

]
relation of small degree  p =

[
X+ 5 1 5 1

]

basis of relations  B =


[X+ 2 0 6 0],
[X2 X2 0 0],
[X+ 2 3X+ 2 X 0],
[X+ 5 1 5 1]
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Multivariate relations and linear algebra
Bivariate interpolation

M = set of polynomials p(X, Y) vanishing at points in K2:
{(24, 80), (31, 73), (15, 73), (32, 35), (83, 66), (27, 46), (20, 91), (59, 64)}

All interpolants are relations:
p(X, Y) ∈M ⇔ p(X, Y)1 = 0 mod M

 “matrices” over K[X, Y]

G = (X− 24) · · · (X− 59)
L = Lagrange interpolant

}
−→M = 〈G(X), Y − L(X)〉

Interpolants p(X, Y) = p0(X) + p1(X)Y + p2(X)Y
2:[

p0 p1 p2
]  1
L
L2

 = 0 mod G

 structured matrices over K[X]
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Multivariate relations and linear algebra
Bivariate interpolation

M = set of polynomials p(X, Y) vanishing at points in K2:
{(24, 80), (31, 73), (15, 73), (32, 35), (83, 66), (27, 46), (20, 91), (59, 64)}

= {(x1,y1), (x2,y2), (x3,y3), (x4,y4), (x5,y5), (x6,y6), (x7,y7), (x8,y8)}

Interpolants p00 + p01X+ p02X
2 + p03X

3 + p04X
4 + (p10 + p11X+ p12X

2)Y + p20Y
2:

[
p00 p01 p02 p03 p04 p10 p11 p12 p20

]



1 1 · · · 1
x1 x2 · · · x8

x2
1 x2

2 · · · x2
8

x3
1 x3

2 · · · x3
8

x4
1 x4

2 · · · x4
8

y1 y2 · · · y8

x1y1 x2y2 · · · x8y8

x2
1y1 x2

2y2 · · · x2
8y8

y2
1 y2

2 · · · y2
8



= 0

 2-level structured matrices over K
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Multivariate relations and linear algebra
Finite-dimensional vector spaces

[
p1 · · · pm

] 
f1
...

fm

 = 0 mod M

polynomials ∈ K[X] = K[X1, . . . ,Xr] submodule of K[X]n

elements of K[X]n/M
finite dimension D as
a K-vector space

a relation

 these relations form a submodule of K[X]m

which has co-dimension 6 D
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Multivariate relations and linear algebra
Using linear algebra?

why
interpreting approximation/interpolation as linear algebra?

often, handling structured matrices = incorporating polynomial operations. . .

• fastest known approach for m > D
(roughly: large matrix dimensions, small polynomial degrees)

• fastest known approach for any parameters for general relations

how
can this be done for relations in general?

using multiplication matrices
 operations on polynomials translated into linear algebra

• elements f of K[X]n/M ←→ vectors [v1 · · · vD] ∈ K1×D

• multiplication by variable Xi ←→ multiplication by matrix Mi ∈ KD×D
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Multivariate relations and linear algebra
Multiplication matrices

Working in K[X]/〈X4〉, with monomial basis (1,X,X2,X3),
polynomial p0 + p1X+ p2X

2 + p3X
3 ←→ vector [p0 p1 p2 p3]

Multiplication by X =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0



Working in K[X, Y]/〈G, Y − L〉, with monomial basis (1,X,X2, . . . ,X7)

M = Multiplication by X =

1
1

1
1

1
1

1
g0 g1 g2 g3 g4 g5 g6 g7



Multiplication by Y =

coeff(L)
coeff(XL mod G)
coeff(X2L mod G)
coeff(X3L mod G)
coeff(X4L mod G)
coeff(X5L mod G)
coeff(X6L mod G)
coeff(X7L mod G)


=



`

`M
`M2

`M3

`M4

`M5

`M6

`M7
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Computing relations (known multiplication matrices)
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Computing relations (known multiplication matrices)
Problem
Input:
• submodule M of K[X]n, of finite

codimension D
• equation f =

[
f1 · · · fm

]T with
entries in M/K[X]n

• a monomial order ≺ on K[X]m

Represented as:
• multiplication matrices

M1, . . . ,Mr in KD×D

• vectors e1, . . . , em in K1×D

Output:
the ≺-Gröbner basis of the module
of relations
R = {p ∈ K[X]m | pf = 0 mod M}

 nice properties: unique, minimal degrees,
computing modulo R, . . .
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Computing relations (known multiplication matrices)
Relations and multi-Krylov matrices

Notation: V = K[X1, . . . ,Xr]
n/M is a K-vector space of dimension D

Relations are vectors in the nullspace of a matrix over K

• matrix E =

[
e1...
em

]
∈ Km×D (equation

[
f1...
fm

]
∈ Vm×1)

• matrix Mi ∈ KD×D, 1 6 i 6 r (multiplying by Xi in V)

[p1 · · · pm]

 f1...
fm

 =
∑

16i6m

∑
j

αi,j︸︷︷︸
∈K

X
j1
1 · · ·X

jr
r fi

relation = K-linear relation between vectors {eiM
j1
1 · · ·M

jr
r }j,i

∈ K1×D
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Computing relations (known multiplication matrices)
Relations and multi-Krylov matrices

basis of relations = subset of nullspace of multi-Krylov matrix

≺top
lex order:

 E
EM1

.

.

.
EMD

1


 E

EM1
.
.
.

EMD
1

M2

... E
EM1

.

.

.
EMD

1

MD
2



ω: D×D matrix multiplication in O(Dω) operations

• [Keller-Gehrig, 1985]: charpoly(M) in O(Dω log(D))
(one variable, E = Id, output = Hermite form)

• [FGLM, 1993]: general case in O(rD3)

• [Beckermann&Labahn, 2000]: O(mD2) for structured M
(one variable, output = shifted Popov form)

• [Faugère et al., 2014]: for ≺lex and Shape position,
O(Dω log(D) + rM(D) log(D))

General case with fast matrix multiplication?
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Computing relations (known multiplication matrices)
Incorporating fast linear algebra

Size of dense representations:

input multi-Krylov matrix output
rD2 +mD mDr rD2

Algorithm:

1. compute monomial basis = row rank profile
2. find ≺-Gröbner basis by nullspace computation

Difficulty: incorporate fast multiplication in Step 1 for any ≺

• X1, . . . ,Xr  gather operations involving Mi

• Xi,X2
i ,X

4
i , . . .  gather operations involving M2j

i

• insert new rows according to the order ≺

}
as if ≺top

lex

Cost bound: O(rDω log(D)) operations in K
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Computing the multiplication matrices
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Computing the multiplication matrices
Change of monomial order

Arising in polynomial system solving:

Problem: ≺1-GB of M −−→ ≺2-GB of M

= ≺2-GB of relations: p1 = 0 mod M

Approach: [FGLM, 1993]

1. compute M1, . . . , Mr from ≺1-GB [FGLM, 1993]→ O(rD3)

2. compute the ≺2-GB of relations O(rDω log(D))

Result (case of ideals):
step 1. in O(rDω log(D))

assuming the ≺1-initial ideal is Borel-fixed

 extends [Faugère et al., 2014]
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Computing the multiplication matrices
Borel-fixedness and multiplication matrices

Property of the ideal J of leading terms of I:

Borel-fixed monomial ideal J (in characteristic 0)

for all µ ∈ J, if Xj divides µ then Xi

Xj
µ ∈ J for all i < j.

Example in K[X, Y]: Example in K[X, Y,Z]:

Main operation for obtaining the multiplication matrices:
computing parts of the multi-Krylov matrix, à la Keller-Gehrig
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Computing the multiplication matrices
Borel-fixedness and multiplication matrices

Property of the ideal J of leading terms of I:

Borel-fixed monomial ideal J (in characteristic 0)

for all µ ∈ J, if Xj divides µ then Xi

Xj
µ ∈ J for all i < j.

[Galligo 1974 & Bayer-Stillman 1987]:
existence and Borel-fixedness of the “GIN” of a homogeneous ideal I
 a random linear change of coordinates ensures Borel-fixedness w.h.p.

generalized to any ideal, for graded monomial orders

Perspectives (ranked by perceived difficulty):
• extension to the case of modules
• generalization to any monomial order

(preliminary experiments with ≺lex revealed no counterexample)
• same cost O(rDω log(D)) without assumption on the ideal/module
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Conclusion

Basis of relations
pf = 0 mod M

knowing multiplication matrices

Change of monomial order
 polynomial system solving
≺1-GB of M −−→ ≺2-GB of M

• Computations with multi-Krylov matrices
• Incorporates fast dense linear algebra
• Cost bound: O(rDω log(D))

• For the second problem: assumptions on M

Ongoing work (with Simone Naldi):
incorporating polynomial multiplication in the
computation of multivariate relations



a1 a2 a3 b1 b2 b3
a2 a3 a4 b2 b3 b4
a3 a4 a5 b3 b4 b5

b1 b2 b3 d1 d2 d3
b2 b3 b4 d2 d3 d4
b3 b4 b5 d3 d4 d5
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