
Working with rational functions in a numeric
environment - some contributions

Ana C. Matos

Laboratoire Paul Painlevé
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Université de Limoges

23 may 2019

Ana C. Matos (Univ. Lille) Working with rational functions 1 / 50



Rational functions

Rational functions I

Let Cn[z ] be the space of polynomials of degree at most n with
complex coefficients,

Cm,n[z ] =

{
p

q
, p ∈ Cm[z ], q ∈ Cn[z ], q 6= 0

}
the set of rational functions.

important role in applied mathematics: approximation (Padé
approximants), analytic continuation , determining singularities,
extracting information from noisy signals, sparse interpolation,
exponential analysis, modelling ...

with rational functions we solve different problems:

rational interpolation [Trefethen, Berrut, Cuyt, ...]
best uniform rational approximation [Stahl, Varga, Petrushev, ...]
Padé approximation [ Baker, Graves-Morris, Brezinski, ...]
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Rational functions

Rational functions II

Some difficulties:

How to choose the degrees for a given type of rational approximation
(Padé, interpolation,...) ?
Overshooting the degree leads to: spurious poles, Froissart doublets,
poles with small residues...⇒ numerical instabilities

we fix the degrees n ∈ N of numerator and m ∈ N of denominator of
the rational r function we want to use for modelling / approximating.
In order to have ”good” numerical properties the chosen rational
function

r = p/q must be nondegenerate i.e., the polynomials p and q are
co-prime, and the defect (min{m − deg p, n − deg q}) is equal to zero;
r sufficiently ”far” from Cm−1,n−1[z ]

How to ensure these properties?
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Rational functions

Outline of the talk

Working with rational functions in a numerical environment give rise to
numerical instabilities. How to prevent them?

1 Padé approximation

definitions, theoretical properties
stability issues: condition number of the Sylvester matrix to control

conditioning of the Padé map
Froissart doublets

2 Rational functions - numerical issues

Froissart doublets and small residues
How to control their existence? Give lower bounds on the distance
pole-zero based on 3 different quantities

condition number of a Sylvester type matrix
numerical coprimeness of numerator and denominator polynomials
spherical derivative

3 Future work ⇒ towards the construction of rational functions with
good numerical properties
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Padé approximation Definitions

Definition: Padé approximants I

Initial data: (ci )
m+n
i=0 coefficients of f (x) ≈

∑∞
i=0 cix

i , (c0 6= 0)
The Padé approximant of type (m, n) of f is rational function defined by

[m/n]f (x) =
p(x)

q(x)
with

p(x) = p0 + p1x + · · ·+ pmx
m, q(x) = q0 + q1x + · · ·+ qnx

n,
q(x) 6= 0

q(x)f (x)− p(x) = O(xm+n+1)(x → 0)

We set the Toeplitz matrix (ci = 0 if i < 0)

C =


cm+1 cm · · · cm+1−n
cm+2 cm+1 · · · cm+2−n

...
...

...
...

cm+n cm+n−1 · · · cm

 ∈ Cn×(n+1)
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Padé approximation Definitions

Definitions: Padé approximants II

The coefficients of p(x) and q(x) are solution of a linear system:

Denominator coefficients ~q: solution of an homogeneous n × (n + 1)
system

C~q = 0, ~q = (q0, q1, · · · , qn)T

Numerator coefficients ~p :

pk =
m∑
i=0

ck−iqi for k = 0, 1, · · · ,m

So there are infinitely many solutions but the rational function p/q is
unique. To define uniquely polynomials p and q we impose:

p and q are coprime;

normalisation: ‖~p‖2 + ‖~q‖2 = 1, q(0) > 0.
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Padé approximation Definitions

Definitions: Padé approximants III

In a matrix form we can write

T

[
~p
~q

]
= 0,

T =



1 0 · · · 0 −c0 0 · · · 0

0 1
. . .

... −c1 −c0

. . .
...

...
. . .

. . . 0
...

. . .
. . . 0

0 · · · 0 1 −cm
. . . −c0

0 · · · · · · 0 −cm+1 · · · · · · −c1

...
...

...
...

0 · · · · · · 0 −cm+n · · · · · · −cm


∈ C(m+n+1)×(m+n+2),
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Padé approximation Definitions

Padé table

• we dispose the approximants in a double entry table
• degeneracies may occur: block structure of the table (in each block the
approximants are identical) depending on the rank of C
•

- good convergence properties:
• diagonal sequences ([n|n])n, ([n − 1|n])n

(Stieltjes functions f (z) =
∫ dµ(x)

x−z )

• columns ([m|n])m (n fixed)
(Montessus de Ballore for meromorphic
functions)
• ray sequences ([γn|n])n
- analytic continuation (ex: log(1 + z))
- approximation of singularities
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Padé approximation Drawbacks

Drawbacks: Spurious poles in Padé approximants

these approximants can have poles that don’t correspond to
singularities of the function called ”spurious poles” (H. Stahl):
zn pole of [n|n] and limn→∞zn = z0 with f analytic in z0

(asymptotic definition)

these poles prevent uniform convergence and can be dense in C
f (z) =

∫ 1
0

1
1−zx

dx√
1−x2

, g(z) =
∫ 1

0
(x−cos(α1))(x−cos(α2))

1−zx
dx√
1−x2

f et g are analytic in Ω = C\[1,+∞[
the approximants [n − 1|n] of f converge locally uniformly to f in Ω;
the poles of [n − 1|n] of g are dense in C

it is important to be able to eliminate spurious poles:
Gonchar’s lemma: convergence in capacity + absence of poles ⇒
uniform convergence

for meromorphic functions we can show that to each ”spurious pole”
zn of [n|n] correspond a zero ξn such that limn→∞ |zn − ξn| = 0
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Padé approximation Numerical environment

From theory to numerical analysis

interested in computing

the Padé approximants (or rational functions) coefficients
the values of a rational function in a point

in numerical computations:
finite precision arithmetic + noise in the coefficients

can amplify these phenomena ⇒ numerical instabilities

AIM:

identify the principal sources of numerical problems
propose some indicators of the good numerical properties of a rational
function

in a numerical setting we need to define a metric in the set of rational
functions

should we ask that values are closed?
should we ask that coefficients are close? in which basis?
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Padé approximation Distances in Cm,n

How to measure distances in Cm,n[z ]?

For r = p/q, r̃ ∈ Cm,n we define the coefficient vector

x(r) =

[
~p
~q

]
always supposed to be of norm 1.

(a) Distance of coefficient vectors of norm 1 with optimal phase:

d(r , r̃) := min{‖x(r)− ax(r̃)‖ : a ∈ C, |a| = 1}.

(if x(r), x(r̃) real then best a ∈ {±1}).

(b) Uniform chordal metric: for closed K ⊂ C

χK (r , r̃) = max
z∈K

χ(r(z), r̃(z)), χ(a, b) =
|a− b|√

1 + |a|2
√

1 + |b|2

Ana C. Matos (Univ. Lille) Working with rational functions 11 / 50
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Padé approximation Distances in Cm,n

Definition of the Sylvester type matrix S

We fix n,m ∈ N

S =



q0 0 · · · 0 p0 0 · · · 0
...

. . .
. . .

...
...

. . .
. . .

...

qn
. . . 0 pm

. . . 0

0
. . . q0 0

. . . p0

...
. . .

. . .
...

...
. . .

. . .
...

0 · · · 0 qn 0 · · · 0 pm


, S = S(q, p) ∈ C(m+n+1)×(m+n+2)

Sylvester type matrix of two polynomials built from the coefficients of the
numerator and denominator of the rational function.
The Sylvester matrix is denoted S∗(q, p) ∈ C(m+n)×(m+n)

Remark

S has full rank iff p and q are coprime and pm 6= 0 or qn 6= 0
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Padé approximation Distances in Cm,n

Equivalence of the two distances

Theorem

Let r = p/q be nondegenerate, then for all r̃ ∈ Cm,n[z ]

1

cond(S)
d(r , r̃) . χD(r , r̃) . cond(S) d(r , r̃)

Notation: for simplicity we set a1 . a2 meaning that there exist modest
constants b, r > 0 not depending on m, n such that a1 ≤ b(m + n + 1)r a2.

⇒ for a modest value of cond(S) the two distances are equivalent
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Padé approximation Numerical instabilities

Sources of numerical instabilities

1 block structure of the Padé table: degeneracy (rank deficient
matrices)

near singular systems, numerical rank of the matrix
small perturbations can fracture the block - ill posed problems

⇒ study the stability of the Padé maps

2 Froissart doublets in rational functions: pair zero-pole (zp, zq)
”sufficiently” close and such that zq doesn’t correspond to a
singularity of the function that r represents or approach (numerical
counterpart of the spurious poles)

3 small residues in the partial fraction decomposition
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Padé approximation Numerical instabilities

Next

In order to prevent numerical instabilities , some numerical analysis to help
in choosing approximants with good numerical properties:

1 Stability issues for Padé approximation
1 non degenerate approximants
2 conditioning of the Padé maps
3 robust Padé approximants

2 Froissart doublets and small residues
1 why we want to eliminate them?
2 how to control their presence?

3 how to use these results?
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3 robust Padé approximants

2 Froissart doublets and small residues
1 why we want to eliminate them?
2 how to control their presence?

3 how to use these results?

Ana C. Matos (Univ. Lille) Working with rational functions 15 / 50



Stability issues in Padé

1 - Stability Issues for Padé approximation
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Stability issues in Padé The Padé map

The Padé map

F : Cm+n+1 3 c = (c0, ..., cm+n)T 7→ y =

[
~p
~q

]
∈ Cm+n+2

mapping the vector of (m + n + 1) Taylor coefficients to the coefficient
vector in the basis of monomials of the numerator and denominator of an
[m|n] Padé approximant p/q
Uniqueness obtained by:

p and q have no common divisor;
normalization:

‖F (c)‖2 = ‖~p‖2 + ‖~q‖2 = 1, q(0) > 0.

Theorem [Werner, Wuytack ’83]

F is continuous in a neighborhood of c if and only if its [m|n] Padé
approximant F (c) is nondegenerate i.e.,

defect = min(m − deg p, n − deg q) = 0.
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Stability issues in Padé The Padé map

Structures in Padé table - degeneracy

Equal entries in Padé table form square, here [m′|n′] = [m|n].

In red and green: nondegenerate approximants (at least one degree exact).
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Stability issues in Padé The Padé map

The Padé map: conditioning

Hypothesis: real Padé map: F (c) ∈ Rm+n+2 , p/q is nondegenerate.
We want to study for y = F (c) the perturbed equation

ỹ = F (c̃) + η, ‖η‖ = dist(ỹ ,F (Rm+n+1)).

1 Forward conditioning κfor (F ) : Does a slightly different c ≈ c give

a slightly different vector of coefficients

[
~p
~q

]
?

a slightly different value p(z)
q(z) for a fixed z/for all z in the closed unit

disk D ?

2 Backward conditioning κback(F ) : Does a closeby vector of
coefficients represent a Padé approximant of a closeby vector of
Taylor coefficients?
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Stability issues in Padé The Padé map

Some related matrices

Definition

Q =



q0 0 · · · · · · · · · 0
...

. . .
. . .

...
qn q0 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 qn · · · q0


, Q ∈ C(m+n+1)×(m+n+1)

lower triangular matrix
qi are the coefficients of the denominator polynomial.
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Stability issues in Padé The Padé map

The Padé map: conditioning

Theorem [Beckermann, AM ’13]

Suppose that F is continuous in a neighborhood of c ∈ Rm+n+1 . Then
we have the following amplification of real errors

κfor (F )(c) := lim sup
c→c

‖F (c)− F (c)‖
‖F (c)‖

/
‖c − c‖
‖c‖

= ‖T †Q‖ = ‖S†Q2‖.

κback(F )(c) := lim sup
F (c)→F (c)

‖c − c‖/‖c‖
‖F (c)− F (c)‖/‖F (c)‖

= ‖Q−1T‖ = ‖Q−2S‖.
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Stability issues in Padé The Padé map

Consequences:

With our normalizations ‖c‖ = 1, ‖F (c)‖ = 1:

‖Q‖ ∼ 1, ‖C‖ ≤ ‖T‖ ∼ 1, ‖S‖ ∼ 1,

‖T †‖ ∼ ‖C †‖, max(‖Q−1‖, ‖T †‖) . ‖S†‖.

Thus

cond(T ) ∼ ‖C †‖ modest =⇒ the real Padé map is forward
well-conditioned
cond(Q) modest ⇐⇒ backward well-conditioned.

Sufficient condition:
cond(S) of modest size ⇒ Padé map forward and backward
well-conditioned
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Stability issues in Padé The Padé map

Consequences in Padé approximation

Theorem

Let r = p/q ∈ Cm,n[z ] be nondegenerate and r̃ = p̃/q̃ ∈ Cm−1,n−1[z ].
Then

2χD(r , r̃)cond(S)2 ≥ (m + n + 1)−2

suppose f can be well approximated by some element r̃ of
Cm−1,n−1[z ] with respect to the uniform chordal metric in the unit
disk : χD(f , r̃) is small;

its [m|n] Padé approximant r either does not have a small
approximation error χD(f , r), or otherwise cond(S) is necessarily
”large”.

this can lead to an early stopping criterion in Padé approximants if
we want only to compute well-conditioned rational functions ⇒
stability issues
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Stability issues in Padé The Padé map

Well conditioned rational functions

cond(S) has an important role

Definition

a rational function r = p/q is well-conditioned if the corresponding
matrix S(p, q) has a modest condition number.

Well conditioned rational functions
⇓

forward and backward stability of Padé map

equivalence of the distances d(r , r̃) and χK (r , r̃)

stop criterium in the computation of sequence of Padé approximants

no presence of Froissart doublets and small residuals ?
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Froissart doublets and small residues

Froissart doublets

2 - Controlling Froissart doublets and small residues
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Froissart doublets and small residues definition

What are Froissart doublets? [Gilewicz & Pindor ’97-99, Bessis ’96 ]

Definition

Let r = p/q ∈ Cm,n[z ] . A Froissart doublet is a pair zero-pole (zp, zq)
”sufficiently” close and such that zq doesn’t correspond to a singularity of
the function that r represents or approach.

associated with the occurence of small residuals ak corresponding to
terms ak

z−zk in partial fraction decomposition of the approximant⇒
problems in computing the values of the function near zk .
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Froissart doublets and small residues

Why do we want to eliminate them?

theoretical issues: uniform convergence

practical issues - modelling noise: if f ∈ Cn−1,n(z), in presence of
noise ⇒ f (z) + ε(z) =

∑∞
j=0(fj + εj)z

j

From theoretical results on the convergence of Padé approximants

[m − 1/m]→m→∞ f (z) + ε(z)

⇒ noise can be modelled by the (m − n) spurious poles which come
along with (m− n) close zeros ⇒ we can filter the noise by identifying
and eliminating the Froissart doublets (unstable poles) (A.Cuyt & al.)

numerical instabilities in the computation of the value of the
function: small change in arguments give rise to large variation of
the function values - large Lipschitz constant
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Froissart doublets and small residues

Some definitions

recall the uniform chordal metric: K ⊂ C compact set, r ,r̃ rational
functions

χK (r , r̃) = max
z∈K

χ(r(z), r̃(z)), χ(a, b) =
|a− b|√

1 + |a|2
√

1 + |b|2

well adapted to study (uniform) convergence questions (since
meromorphic functions are continuous on the Riemann sphere)

Lipschitz constants

LK (r) := sup

{
χ(r(z), r(w))

χ(z ,w)
: z ,w ∈ K

}
.

ρK (r) := sup

{
χ(r(z), r(w))

|z − w |
: z ,w ∈ K

}
.
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Froissart doublets and small residues

Consequences: numerical instabilities

χ(r(zp), r(zq)) = 1 if p(zp) = 0, q(zq) = 0, and so if zp, zq ∈ K ,

LK (r) ≥ 1

χ(zp, zq)

⇒ very large Lipschitz constant if there is a Froissart doublet in K .

if zq ∈ K is a simple pole then

ρ(r)(zq) =
1

res(zq)
≤ ρK (r)

⇒ ρK (r) is large if there is a small residue

small variations in the argument can be amplified in the computation of
function values.
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Froissart doublets and small residues

How to control the existence of Froissart doublets?

AIM: find lower bounds for the distance zero-pole
|zp − zq|

χ(zp, zq)

&
{

1/cond(S(p, q))
εi
K (p, q) numerical coprimeness of p, q

we set a1 . a2 meaning that there exist modest constants b, r > 0
not depending on m, n such that a1 ≤ b(m + n + 1)r a2.
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Froissart doublets and small residues

How to control the existence of Froissart doublets?

1 Conditioning of the Sylvester type matrix S(p, q)

2 Numerical coprimeness εKi (p, q)
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Froissart doublets and small residues

Lower bounds for the distance pole-zero based on
cond(S(p, q))

Theorem [Beckermann, AM]

Let r ∈ Cm,n[z ] be such that r = p/q is nondegenerate. Then the distance
of any couple of zeros and poles (zp, zq) of r in the unit disk is bounded
below by

|zp − zq| &1/cond(S).

here cond(S) =‖ S ‖2‖ S† ‖2

⇒for a modest condition number of S there are no Froissart doublets

Ana C. Matos (Univ. Lille) Working with rational functions 32 / 50



Froissart doublets and small residues

Robustness for cond(S(p, q))

the indicators are not sensitive with respect to a small perturbation of the
numerator and denominator

Theorem [Beckermann, AM]

Let K ⊂ C and p
q ,

p̃
q̃ ∈ Cm,n[z ]. If p

q is nondegenerate and

‖(p − p̃, q − q̃)‖2 ≤
1

3
√
m + n + 1 ‖S(p, q)†‖2

then 1
2 ≤ cond(S(p̃, q̃))/cond(S(p, q)) ≤ 2.

Furthermore, let zp, zq ∈ C with p̃(zp) = q̃(zq) = 0. Then,

|zp − zq| ≥
1

6
√

2(m + n + 1)3/2cond(S(p, q))
,
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Froissart doublets and small residues

Lower bounds on residuals

Theorem [Beckermann, AM]

Let r ∈ Cm,n[z ] be such that r = p/q is nondegenerate. Then the
modulus of any residual of a simple pole zq of r in the unit disk is
bounded below by

res(zq) & 1/ cond(S).

Moreover this result is still true for any rational function r̃ ∈ Cm,n[z ] in a
neighbourhood of r , with χD(r , r̃) . 1/cond(S)2,

⇒ if χD(r , r̃) is sufficiently small then

r has a Froissart doublet iff r̃ has one.
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Froissart doublets and small residues

Summary of results so far: what can cond(S(p, q))
control?

Well conditioned rational functions ⇔
cond(S(p, q) of moderate size

⇓
forward and backward stability of Padé map

equivalence of the distances d(r , r̃) and χK (r , r̃)

stop criterium in the computation of sequence of Padé approximants

no presence of Froissart doublets and small residuals
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Froissart doublets and small residues Numerical coprimeness

How to control the existence of Froissart doublets?

1 Conditioning of the Sylvester type matrix S(p, q)

2 Numerical coprimeness εKi (p, q)
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Froissart doublets and small residues Numerical coprimeness

How to determine coprimeness of two numeric
polynomials?

c(z) = c0 + c1z + · · ·+ cnz
n,  ~c = (c0, c1, · · · , cn)T

Definition

let p ∈ Cm[z ], q ∈ Cn[z ]

εi (p, q) = inf {‖ (p − p∗, q − q∗) ‖i : (p∗, q∗) ∈ Cm[z ]× Cn[z ] have
a common root, } , i = 1, 2

with {
‖ (p, q) ‖1= max(‖ ~p ‖1, ‖ ~q ‖1)

‖ (p, q) ‖2=
√∑m

j=0 |pj |
2 +

∑n
j=0 |qj |

2
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Froissart doublets and small residues Numerical coprimeness

How to determine coprimeness of two numeric polynomials

Lemma (relationship with Sylvester matrix)

ε1(p, q) = inf {‖ S∗(p, q)− S∗(p̃, q̃) ‖1: S∗(p̃, q̃) singular} ≥
≥ min {‖ S∗(p, q)− B ‖1: B singular} =‖ S∗(p, q)−1 ‖−1

1

ε2(p, q) ≥ 1/(
√
m + m + 1) ‖ S(p, q)† ‖−1

2

‖ (p, q) ‖1 /ε1(p, q) is a structured condition number of S∗(p, q) in
the class of Sylvester matrices

if we perturb the coefficients of the polynomials by
δ < 1/ ‖ S∗(p, q)−1 ‖ we still have coprime polynomials

as ‖ S(p, q) ‖2 is not far from ‖ (p, q) ‖2, then ε2(p, q) is a kind of
smallest structured singular value
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Froissart doublets and small residues Numerical coprimeness

Another expression for εi(p, q)

Definition

For K ⊂ C we set

εK1 (p, q) := inf
z∈K

max

{
|p(z)|

max (1, |z |m)
,
|q(z)|

max (1, |z |n)

}
=

εK2 (p, q) := inf
z∈K

(
|p(z)|2∑m
i=0 |z |

2i
+
|q(z)|2∑n
i=0 |z |

2i

)1/2

⇒ minimisation with only one parameter

Theorem [Beckermann & Labahn ’98]

εi (p, q) = εCi (p, q)

.
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Froissart doublets and small residues Numerical coprimeness

Link between Froissart doublets and numerical coprimeness

Theorem [Beckermann, Labanh, AM]

Let K ⊂ C and consider two polynomials (p, q) ∈ Cm[z ]×Cn[z ] defining a
non degenerate rational function r = p/q. Let zp, zq ∈ K such that
p(zp) = q(zq) = 0. Then

χ(zp, zq) ≥ 1

2

εKi (p, q)

max (m ‖ ~p ‖i , n ‖ ~q ‖i )
i = 1, 2

(p, q) numerically relatively prime ⇒ r = p/q doesn’t have Froissart
doublets.

this inequality is sharper than the one involving cond(S(p, q))

εKi (p, q) and cond(S(p, q)) can be of different order.
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Froissart doublets and small residues Numerical coprimeness

Link between residuals and numerical coprimeness

Theorem [Beckermann, Labahn, AM]

Let zq be a simple pole of r = p/q in D,
Then the residual of zq, res(zq), is bounded by

res(zq) ≥ εD1 (p, q)

(m + n) ‖ (p, q) ‖1

(p, q) numerically coprime ⇒ r = p/q doesn’t have small residuals
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Froissart doublets and small residues Robustness

Robustness for εi(p, q)

this indicator is not sensitive with respect to a small perturbation of the
numerator and denominator

Theorem [Beckermann, Labahn, AM]

Let K ⊂ C and p
q ,

p̃
q̃ ∈ Cm,n[z ]. Let i ∈ {1, 2}. If

‖(p − p̃, q − q̃)‖i ≤
1

2
εKi (p, q)

then 1
2 ≤ ε

K
i (p̃, q̃)/εKi (p, q) ≤ 3/2.

Furthermore, let zp, zq ∈ C with p̃(zp) = q̃(zq) = 0. Then

χ(zp, zq) ≥
εKi (p, q)

6(m + n) ‖(p, q)‖i
.
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Froissart doublets and small residues

An alternative way of defining ”good” properties for
rational functions

εDi (p, q) &
1

cond(S(p, q))

quantities cond(S(p, q) and εDi (p, q) can be of different order

we can define a larger class of rational functions with numerator and
denominator being numerically co-prime in the sense of εDi not too
small that do not have neither Froissart doublets nor small residues.
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Froissart doublets and small residues Estimate with spherical derivative

How to control the existence of Froissart doublets?

3 - Estimates with the spherical derivative ρK (r)
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Froissart doublets and small residues Estimate with spherical derivative

Estimate with spherical derivative

Recall

ρ(r)(z) :=
|r ′(z)|

1 + |r(z)|2
(spherical derivative)

and define
ρK (r) := sup

z∈K
ρ(r)(z)

Theorem

Let K ⊂ C and r = p
q ∈ Cm,n[z ] with p and q coprime and zp, zq ∈ C with

p(zp) = q(zq) = 0.
If K is convex then

ρK (r) = sup
z1,z2∈K

χ(r(z1), r(z2))

|z1 − z2|
.

In particular, |zp − zq| ≥ 1
ρK (r) , res(zq) ≥ 1

ρK (r)
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Froissart doublets and small residues Estimate with spherical derivative

Comparing with numerical coprimeness

Theorem

Let K ⊂ C and r = p
q ∈ Cm,n[z ]. If K ⊂ D or m = n then

1

2

εK1 (p, q)

max ( m ‖ ~p ‖1, n ‖ ~q ‖1 )
≤ 1

ρK (r)
.

This estimate can be sharper as

εK (pm, qm) = εK (p, q)m, νK (rm) ≤ m νK (r).

Example

Consider r = (pq )m for p(z) = z , q(z) = z−1
2 with m ≥ 0 an integer.

ε1(pm, qm) = ε1(p, q)m = 3−m and ρK (r) ≤ 2m ρK (
p

q
) =

9m

2
.
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Froissart doublets and small residues Estimate with spherical derivative

Summary of results
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How to use these results?

How can we use these results?

Constructing new rational approximants

propose an easily computable estimate E (p, q) of one of the previous
quantities cond(S(p, q)), 1/εKi (p, q), νK (r)

prevent from computing ”bad” approximants: don’t use the function
p
q if E (p, q) is large.

construct approximants with a penalizing term

Example: Padé approximants satisfy T

(
~p
~q

)
= 0 for a matrix T

constructed from the series coefficients.
Construct a regularized approximant satisfying the optimization
problem

min
(~p,~q)

(
‖ T

(
~p
~q

)
‖ +ρE (p, q)

)
with ρ a penalization factor.
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How to use these results?

How can we use these results? Future work

Future work:

consider other polynomial basis (Tchebyshev, Legendre ...)

representation of a rational function in a barycentric form

generalize to multivarite approximation

....

THANK YOU !
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