Exploiting fast linear algebra in the computation of multivariate relations

Vincent Neiger ${ }^{1}$, Éric Schost ${ }^{2}$

We consider the problem of computing multivariate relations in a finite-dimensional setting: for a submodule \mathcal{M} of $\mathbb{K}[x]^{n}$ such that $Q=\mathbb{K}[x]^{n} / \mathcal{M}$ has finite dimension D as a \mathbb{K}-vector space, and given elements f_{1}, \ldots, f_{m} in Q, the problem is to compute relations between the f_{i} 's, that is, polynomials $\left(p_{1}, \ldots, p_{m}\right)$ in $\mathbb{K}[x]^{m}$ such that $p_{1} f_{1}+\ldots+p_{m} f_{m}=0$ in Q. Assume that the multiplication matrices of the r variables with respect to some basis of Q are known. Then, for any monomial order, we give an algorithm for computing the reduced Gröbner basis of the module of such relations using $O\left(r D^{\omega} \log (D)\right)$ operations in the field \mathbb{K}, where ω is the exponent of matrix multiplication. This is done by interpreting the problem as the computation of a nullspace basis in reduced echelon form for a matrix over \mathbb{K} which has a multi-level Krylov structure. For efficiency, the algorithm both exploits this structure and incorporates fast matrix multiplication and Gaussian elimination.

Keywords: Fast linear algebra, structured matrices, Gröbner basis, algebraic relations.
${ }^{1}$ University of Limoges, France. vincent. neiger@unilim.fr
${ }^{2}$ University of Waterloo, Ontario, Canada. eschost@uwaterloo. ca

