Exploiting fast linear algebra in the computation of multivariate relations

Vincent Neiger¹, Éric Schost²

We consider the problem of computing multivariate relations in a finite-dimensional setting: for a submodule \mathcal{M} of $\mathbb{K}[x]^n$ such that $Q = \mathbb{K}[x]^n/\mathcal{M}$ has finite dimension D as a \mathbb{K} -vector space, and given elements f_1, \ldots, f_m in Q, the problem is to compute relations between the f_i 's, that is, polynomials (p_1, \ldots, p_m) in $\mathbb{K}[x]^m$ such that $p_1f_1 + \ldots + p_mf_m = 0$ in Q. Assume that the multiplication matrices of the r variables with respect to some basis of Q are known. Then, for any monomial order, we give an algorithm for computing the reduced Gröbner basis of the module of such relations using $O(rD^{\omega}\log(D))$ operations in the field \mathbb{K} , where ω is the exponent of matrix multiplication. This is done by interpreting the problem as the computation of a nullspace basis in reduced echelon form for a matrix over \mathbb{K} which has a multi-level Krylov structure. For efficiency, the algorithm both exploits this structure and incorporates fast matrix multiplication and Gaussian elimination.

Keywords: Fast linear algebra, structured matrices, Gröbner basis, algebraic relations.

¹University of Limoges, France. vincent.neiger@unilim.fr

²University of Waterloo, Ontario, Canada. eschost@uwaterloo.ca