Integrability in Planar AdS/CFT and Yangian Symmetry

Niklas Beisert

ITP, ETH zürich

Workshop "Space, Time and Matrices" Institut des Hautes Études Scientifiques Bures-sur-Yvette, 26 February 2019

Introduction and Overview

This talk is about Integrability in the planar AdS/CFT duality:

- Proposed duality between string/gauge (gravity/QFT) models.
- Integrable structures observed in the planar limit in some models.
- Integrability provides toolkit for efficient computations.
- Integrability applied to confirm central aspects of AdS/CFT.
- Yangian invariance as a hidden symmetry related to integrability.

Goals: Improve understanding of QFT and gravity in terms of:

- algebraic and analytical methods
- non-perturbative results
- unconventional symmetries

Overview:

- AdS/CFT correspondence (introduction)
- integrability and achievements (review)
- Yangian symmetry (current work)

I. Cast of Characters

AdS/CFT Correspondence

Need to understand strings on curved target spaces:

- non-linear equations
- spectrum difficult
- scattering?! how to get started?

Major achievement: conjectured exact AdS/CFT duality

- string (gravitational) theory on AdS target space,
- conformal field theory (CFT) on boundary of AdS.

Prototype duality:

- IIB strings on $AdS_5 \times S^5$ target space
- $\mathcal{N} = 4$ supersymmetric Yang–Mills (4D CFT)

Features:

- highly symmetric, highly accessible;
- but: non-linear models, strong/weak duality.

Strings on $AdS_5 imes S^5$

IIB superstrings on curved $AdS_5 \times S^5$ space:

- 2D non-linear sigma model (QFT),
- worldsheet coupling λ ,
- string coupling: g_s,
- weakly coupled for large λ ,
- symmetry: background isometries PSU(2,2|4).

$\mathcal{N}=4$ Super Yang–Mills Theory

4D Quantum Field Theory Model: [Schwarz]

- gauge field A_{μ} , 4 fermions Ψ , 6 scalars Φ . ~
- gauge group typically ${
 m SU}(N_{
 m c})$
- all fields massless and adjoint ($N_{
 m c} imes N_{
 m c}$ matrix)
- standard couplings: non-abelian gauge, Yukawa, $arPhi^4$
- coupling constant $g_{
 m YM}$, topological angle heta
- exact superconformal symmetry PSU(2,2|4)

Supersymmetry helps:

- protects some quantities, e.g. $\beta = 0$,
- but still model far from trivial!

Weakly coupled for small $g_{\rm YM}$ compute by Feynman graphs (hard!)

Planar Limit

- Planar limit in gauge theory:
 - large-N_c limit: N_c = ∞, g_{YM} = 0,
 't Hooft coupling g²_{YM}N_c =: λ remains,
 - only planar Feynman graphs, no crossing propagators,
 - drastic combinatorial simplification.

Surface of Feynman graphs becomes 2D string worldsheet:

Planar limit in string theory:

Nucl. Phys. B72 461

- no string coupling $g_{\rm s} = 0$, no string splitting or joining.
- worldsheet coupling λ remains.

Integrability

Standard QFT approach: Feynman graphs

- enormously difficult at higher loops ...
- ... but also at lower loops and many legs.

Planar $\mathcal{N} = 4$ SYM is **integrable** ... see review collection $\begin{bmatrix} NB & et al. \\ 1012.392 \end{bmatrix}$

- ... so is the AdS/CFT dual string theory.
- integrability vastly simplifies calculations.
- spectrum of local operators now largely understood.
- can compute observables at finite coupling λ . [NB, Eden Staudacher
- simple integral equation for cusp dimension $D_{\text{cusp}}(\lambda)$.

Local, gauge-invariant operators, e.g. / dual to string states:

Observable: scaling dimension $D_{\mathcal{O}}$ / dual to energy of string state

 $\langle \mathcal{O}(x) \mathcal{O}(y) \rangle \sim |x - y|^{-2D_{\mathcal{O}}}.$

II. Planar AdS/CFT Spectrum using Integrability

Cusp Dimension from Bethe Equations

Coupling constant λ enters analytically.

NB, Dippel NB Staudacher Staudacher

Useful object: Twist-two operators with spin S / dual spinning string:

 $\bigcirc \frown \bigcirc : \qquad \mathcal{O}_S \simeq \operatorname{Tr} \Phi \overleftarrow{\mathcal{D}}^S \Phi \qquad \longleftrightarrow \qquad \bigotimes \char{}$

A lot is known about their anomalous dimensions δD_S :

- QCD: δD_S responsible for scale violations in DIS.
- DGLAP, BFKL evolution equations.
- Large-S behaviour: cusp dimension D_{cusp}

 $D_S = D_{\text{cusp}} \log S + \dots$

Cusp Dimension

Cusp dimension determined by AdS/CFT planar integrable system! Compute cusp dimension using Bethe equations. Integral eq.: [Lean Standacher]

$$\psi(x) = K(x,0) - \int_0^\infty K(x,y) \frac{dy y}{e^{2\pi y/\sqrt{\lambda}} - 1} \psi(y).$$

Kernel $K = K_0 + K_1 + K_d$ made from Bessel $J_{0,1}$ with

NB, Eden Staudacher

$$K_{0}(x,y) = \frac{x \operatorname{J}_{1}(x) \operatorname{J}_{0}(y) - y \operatorname{J}_{0}(x) \operatorname{J}_{1}(y)}{x^{2} - y^{2}},$$

$$K_{1}(x,y) = \frac{y \operatorname{J}_{1}(x) \operatorname{J}_{0}(y) - x \operatorname{J}_{0}(x) \operatorname{J}_{1}(y)}{x^{2} - y^{2}},$$

$$K_{d}(x,y) = 2 \int_{0}^{\infty} K_{1}(x,z) \frac{dz z}{e^{2\pi z/\sqrt{\lambda}} - 1} K_{0}(z,y)$$

Cusp anomalous dimension: $D_{\text{cusp}} = (\lambda/\pi^2)\psi(0)$.

IHES 2019, Niklas Beisert

Weak/Strong Expansion

Finite-Coupling Interpolation

Cusp dimension can be computed numerically at finite coupling λ . Smooth interpolation between perturbative gauge and string theory

- in the Bethe equations (left),
- in the cusp dimension (right).

perturbative gauge theory An exact result in a (planar) 4D gauge theory at finite coupling.

NB, Eden Staudacher

Benna, Benvenuti Klebanov, Scardicchio

Thermodynamic Bethe Ansatz

Bethe equations not exact for finite size?

- scattering assumes infinite worldsheet,
- actual string states defined on finite cylinder,
- Lüscher terms: virtual particles around cylinder.

Thermodynamic Bethe Ansatz:

- idea: space has finite extent, but time is infinite.
- consider evolution in space, scattering problem on infinite line.
- in 2D: double Wick rotation. Same S-matrix.

Obtain infinite set of coupled integral equations.

Techniques and Applications

Arsenal of improved integrable techniques:

- T/Y-System
- Hirota equations
- Baxter equations
- quantum curves
- finite non-linear integral equations

Konishi state

Consider now particular state ("Konishi"), e.g. $\mathcal{O} = \operatorname{Tr} \Phi_m \Phi_m.$

Can now compute the dimension or energy:

- interpolation from weak to strong coupling,
- 8 loops: sum of (multiple) zeta values

$$D = 2 + \frac{3\lambda}{4\pi^2} - \frac{3\lambda^2}{16\pi^4} + \frac{21\lambda^3}{256\pi^6} - \frac{\left(78 - 18\zeta(3) + 45\zeta(5)\right)\lambda^4}{2048\pi^8} + \dots$$

Bajnok Leurent Janik Volin

III. Selected Achievements using Integrability

Worldsheet Scattering

Integrability methods rely on scattering picture for 2D worldsheet.

- 8 bosonic + 8 fermionic excitations,
- $\mathfrak{su}(2|2) \oplus \mathfrak{su}(2|2)$ residual symmetry,
- 2-particle scattering matrix S,
- $S(p,q;\lambda)$ at finite λ determined by symmetry,
- integrability: factorised multi-particle scattering, YBE.

Unusual non-local symmetry:

- infinite-dimensional quantum algebra: Yangian
- novel deformation of Yangian Y[u(2|2)] (maths)
- investigations of algebra ongoing

Correlation Functions

Integrable methods to compute correlation functions efficiently?

But: Integrability applies to annulus and disc topology only!

Genus Expansion

Outlook: Genus expansion can now be done by gluing (in principle)

Alternative expansion scheme for $\mathcal{N} = 4$ SYM theory:

Planar Scattering in Gauge Theory

Another observable: colour-ordered **planar scattering** Much progress in past 15 years (on-shell, geometric & integrable) [...]

Generic infrared factorisation for $S_n(\lambda, p)$: $S_n^{(0)}(p) \exp\left(D_{cusp}(\lambda)M_n^{(1)}(p) + R_n(\lambda, p)\right)$ • tree level scattering $S_n^{(0)}(p)$ • one loop factor $M_n^{(1)}(p)$ (IR-divergent)

- one loop factor $M_n^{-1}(p)$ (IR-divergent) • cusp anomalous dimension $D_{\text{cusp}}(\lambda)$
- remainder function $R_n(p,\lambda)$ (finite)

Intriguing observation for n = 4, 5 legs: $R_n = 0!$

- Computed/confirmed at 4 loops using unitarity.
- Exact result for scattering at finite λ ! Why simple?
- Generalise to $n \ge 6$ legs! Compute exact R_n ?!

Anastasiou, Bern Dixon, Kosower

Bern, Czakon, Dixon Kosower, Sm

Planar Scattering and Wilson Loops

AdS/CFT provides a **string analog** for planar scattering. $\begin{bmatrix} Alday \\ Maldacena \end{bmatrix}$ Area of a minimal surface in AdS_5 ending on a null polygon on ∂AdS_5 .

AdS/CFT backwards:

Corchemsky Brandhuber Heslop Sokatchev Travaglini

- Minimal surfaces correspond to Wilson loops in gauge theory.
- Amplitudes "T-dual" to null polygonal Wilson loops

Dual Conformal and Yangian Symmetries

- $\mathcal{N} = 4$ SYM is superconformal: PSU(2, 2|4) symmetry.
 - Amplitudes are conformally invariant.
 - Wilson loops are conformally invariant.

Two conformal symmetries:

different action on amplitudes and Wilson loops

- ordinary conformal symmetry dual conformal symmetry T-duality
- together: generate infinite-dimensional . . . [NB, Ricci] ... Yangian algebra Y(PSU(2, 2|4)).

Drummond-

Dual conformal symmetry explains simplicity:

- No dual conformal cross ratios for n = 4, 5.
- Remainder function must be trivial: $R_n = 0$.

Wilson Loops

Invariance of null polygonal Wilson loops spoiled by divergences.

Better: can define finite Wilson loops in $\mathcal{N} = 4$ SYM: [Maldacena [hep-th/9803002]

$$W = \Pr \operatorname{Tr} \left[\exp \oint_{\gamma} \left(A_{\mu} dx^{\mu} + \Phi_m q^m d\tau \right) \right], \quad |dx| = |q| d\tau. \begin{pmatrix} \gamma & \psi \\ \psi & \psi \end{pmatrix}$$

Conformal action (level-zero Yangian) equivalent to single insertion

$$\mathbf{J}^{C}W = \mathbf{P}\operatorname{Tr}\left[\oint \mathbf{J}^{C}A(\tau)\exp\oint A\right].$$

Level-one Yangian action: bi-local insertion

$$\widehat{\mathbf{J}}^{C}W = \operatorname{P}\operatorname{Tr}\left[f_{AB}^{C}\iint_{\tau_{2}>\tau_{1}}\mathbf{J}^{A}A(\tau_{1})\,\mathbf{J}^{B}A(\tau_{2})\exp\oint A\right].$$

Wilson Loop Expectation Value

Yangian invariance of Wilson loops requires

Müller, Münkler Plefka, Pollok, Zarembo Plefka, Vergu

 $\left\langle \mathbf{J}^C W \right\rangle = 0, \qquad \left\langle \widehat{\mathbf{J}}^C W \right\rangle = 0.$

Wilson loop expectation value at $\mathcal{O}(\lambda)$:

$$\langle W \rangle \sim \iint \langle A_1 A_2 \rangle.$$

Conformal action vanishes upon integration

$$\langle \mathbf{J}^C W \rangle = \iint \langle \mathbf{J}^C A_1 A_2 + A_1 \mathbf{J}^C A_2 \rangle \simeq 0.$$

Vanishing of level-one action uses additional features

$$\left\langle \widehat{\mathbf{J}}^{C}W\right\rangle = f_{AB}^{C} \iint \left\langle \mathbf{J}^{A}A_{1}\,\mathbf{J}^{B}A_{2}\right\rangle \simeq 0.$$

Yangian invariance at $\mathcal{O}(\lambda)$! **Outlook:** Higher perturbative orders?

Status of AdS/CFT Integrability

implications understood for several observables applied to compute at finite coupling well-defined math concepts at leading weak coupling some perturbative corrections under control understood well in classical string theory on $AdS_5 \times S^5$

Open Questions:

What is integrability? How to define it? How to prove it? ... at higher loops and finite coupling?

IV. Yangian Symmetry of $\mathcal{N}=4$ Super Yang–Mills Theory

Symmetry of the Model?

Aim: Show planar Yangian invariance of the action

 $\widehat{J}\mathcal{S}=0.$

How to apply \widehat{J} to the action S?

- distinction of planar and non-planar parts not evident
- which representation: free, non-linear, quantum?

Hints:

- Wilson loop displays Yangian symmetry
- OPE of Wilson loops contains Lagrangian $\mathcal L$

Essential features of the action:

- action is single-trace (disc topology)
- action is conformal (required for cyclicity)
- action is not renormalised (no anomalies?)

NB. Garus. Rosso

Equations of Motion

Application of \widehat{J} on the action needs extra care. Consider e.o.m.: $\widehat{J}(e.o.m.) \stackrel{?}{\sim} e.o.m.$

Need for consistent of quantum formalism of symmetry! **Dirac equation** is easiest:

 $D{\cdot}\Psi+[\varPhi,\bar{\Psi}]=\partial{\cdot}\Psi+i[A,\Psi]+[\varPhi,\bar{\Psi}]=0.$

Bi-local level-one action on Dirac equation:

$$\begin{split} D \cdot \widehat{\mathbf{J}}^C \Psi &+ i [\widehat{\mathbf{J}}^C A, \Psi] + [\varPhi, \widehat{\mathbf{J}}^C \bar{\Psi}] \\ &+ f^C_{AB} \big[i \{ \mathbf{J}^A A, \mathbf{J}^B \Psi \} + \{ \mathbf{J}^A \varPhi, \mathbf{J}^B \bar{\Psi} \} \big] = 0. \end{split}$$

All terms cancel for proper choice of single-field action $\widehat{\mathrm{J}}^C \varPsi, \widehat{\mathrm{J}}^C A$

Equations of Motion Yangian-invariant!

Classical Invariance of the Action

Exact symmetries ensure all-order Ward-Takahashi identities

- ... if action is invariant (invariance of e.o.m. not sufficient)
- ... and if there are no quantum anomalies.

Would like to show invariance of action $\widehat{JS} = 0$. Difficulties:

- cyclicity: where to cut open trace? (modulo level zero)
- non-linearity: how to deal with terms of different length (2,3,4)?

Using invariance of e.o.m. construct " \widehat{JS} " such that

$$\widehat{\mathbf{J}}\mathcal{S} = \ldots = 0.$$

very unusual features: • coefficients depend on number of fields,

• overlapping bi-local terms, • gauge invariance not manifest.

NB, Garus, Rosso

Correlators of Fields

Derive concrete implication of Yangian symmetry. Consider correlators of fields:

Yangian symmetry implies Ward-Takahashi identities, e.g.

 $J\langle A_1 A_2 A_3 \rangle = \langle JA_1 A_2 A_3 \rangle + \langle A_1 JA_2 A_3 \rangle + \langle A_1 A_2 JA_3 \rangle = 0,$ $\widehat{J}\langle A_1 A_2 A_3 \rangle = \langle JA_1 JA_2 A_3 \rangle + \ldots + \langle \widehat{J}A_1 A_2 A_3 \rangle + \ldots = 0.$

Verified for several correlators (formal transformations). However: need to fix a gauge in quantised gauge theory!

IHES 2019, Niklas Beisert

Gauge Fixing

Fix gauge by Faddeev–Popov method; new BRST symmetry $\mathrm{Q}.$

Impact of gauge fixing on Yangian symmetry?

- introduction of ghost fields, extra terms $S_{g,f}$ in action;
- must consider BRST cohomology $(Q^2 = 0)$;
- how to represent symmetry on unphysical fields and ghosts?

Conformal symmetry: Residual terms must be BRST exact

 $J \mathcal{S} = J \mathcal{S}_{g.f.} = Q \mathcal{K}[J].$

Level-one symmetry: extra bi-local compensating terms required

 $\widehat{J}\,\mathcal{S} = Q\,\mathcal{K}[\widehat{J}] + J\,\mathcal{K}[Q \wedge J] + (Q \wedge J)\,\mathcal{K}[J].$

Action satisfies gauge-fixed invariance condition! Slavnov–Taylor identities for correlation functions tested.

IHES 2019, Niklas Beisert

Anomalies?

Classical symmetries may suffer from quantum anomalies:

- Not clear how to deal with anomalies for non-local action (in colour-space not necessarily in spacetime).
- Violation of (non-local) current? Cohomological origin?

Clues:

- Integrability appears to work well at finite λ : expect no anomalies?
- Not an issue for Wilson loop expectation value at O(λ).

Outlook: Consider Wilson loop at $\mathcal{O}(\lambda^2)$ [NB, Hansen, Münkler]

Regularise carefully!

V. Conclusions

Conclusions

Review of AdS/CFT Integrability:

- Motivation and constituent models.
- Planar spectrum at finite coupling.
- Progress: correlators, scattering amplitudes, Wilson loops.

Yangian Symmetry of Planar $\mathcal{N} = 4$ SYM:

- Equations of motion & action variation invariant.
- Classical planar $\mathcal{N} = 4$ SYM integrable.
- Ward–Takahashi identities due to Yangian symmetry.
- Symmetry compatible with gauge fixing.
- No quantum anomalies to be expected?!