Non-perturbative Studies of Membrane Matrix Models

Denjoe O'Connor

School of Theoretical Physics Dublin Institute for Advanced Studies Dublin, Ireland

Space Time Matrices

IHES, Paris February 25th to 27th, 2019

Nambu Goto for p-brane

$$S_{NG} = \int_{\mathcal{M}} d^{p+1}x \sqrt{-detG}$$
 $G_{\mu\nu} = \partial_{\mu}x^{M}\partial_{\nu}x^{N}g_{MN}(x)$

Higher form gauge field on the world volume

$$S_{p-form} = -\int_{\mathcal{M}} rac{1}{(p+1)!} \epsilon^{\mu_1 \dots \mu_{p+1}} C_{\mu_1 \dots \mu_{p+1}}$$

$$C_{\mu_1\ldots\mu_{p+1}} = \partial_{\mu_1} x^{M_1} \ldots \partial_{\mu_{p+1}} x^{M_{p+1}} C_{M_1\ldots M_{p+1}}$$

We could add

- an anti-symmetric part to $G_{\mu\nu}$ to get a Dirac-Born-Infeld action.
- extrinsic curvature terms.

Supersymmetric S_{NG} exist only in 4, 5, 7 and 11 dim-spacetime.

(ロ) (四) (三) (三) (三) (三)

The Membrane action á la Polyakov

$$S_{NG} = -rac{T}{2} \int_{\mathcal{M}} d^3 \sigma \sqrt{-h} \left(h^{lpha eta} \partial_{lpha} x^M \partial_{eta} x^N g_{MN} - (p-1)
ight)$$

Eliminating $h_{\mu
u}$

$$h_{\alpha\beta} = \partial_{\alpha} x^{M} \partial_{\beta} x^{N} g_{MN} = G_{\alpha\beta}$$

returns us to Nambu-Goto.

Non-perturbative Studies of Membrane Matrix Models

(ロ) (四) (三) (三) (三) (三)

Membranes in flat spacetime, $g_{MN} = \eta_{MN}$ and $C_3 = 0$

$$dS_{\mathcal{M}}^{2} = \dot{x}^{M} \dot{x_{M}} d\tau^{2} + 2\dot{x}^{M} \partial_{j} x_{M} d\tau d\sigma^{j} + \partial_{i} x^{M} \partial_{j} x_{M} d\sigma^{i} d\sigma^{j}$$

In lightcone cooridnates, $x^{\pm} = (x^0 \pm x^D)/\sqrt{2}$ $ds^2 = \eta_{MN} dx^M dx^N = -2dx^+ dx^- + dx^a dx^a$ Noting $\partial_i x^+ = 0$ and with $\tau = x^+$

$$dS_{\mathcal{M}}^{2} = (-2\dot{x^{-}} + \dot{x^{a}}\dot{x_{a}})d\tau^{2} + 2N_{j}d\tau d\sigma^{j} + \partial_{i}x^{a}\partial_{j}x_{a}d\sigma^{i}d\sigma^{j} .$$

Gauge fixing by setting the shift $N_j = (-\partial_j x^- + \dot{x}^a \partial_j x^a) = 0$ yields $S_{NG} = -T \sqrt{-2\dot{x}^- - \dot{x}^a \dot{x}^a} \sqrt{\det G_{ij}}.$

N.B. \dot{x}^- linear in square root! And $\partial_j x^-$ only via the constraint.

On shell P^- is constant

$$P^- = {\partial L_{NG} \over \partial \dot{x}^-}$$
 is a constant of the motion

In 2-dim $det(G_{ij})$ can be rewritten using $\{x, y\} = \epsilon^{ij} \partial_i x \partial_j y$

Flat space Hamiltonian

$$S = -T \int \sqrt{-G} \longrightarrow H = \int_{\Sigma} (\frac{1}{\rho T} P^a P^a + \frac{T}{2\rho} \{X^a, X^b\}^2)$$

With the remaining constraint $\{P^a, X^a\} = 0$.

Non-perturbative Studies of Membrane Matrix Models

(ロ) (四) (三) (三) (三) (三)

For higher p-branes the procedure works the same and using

$$\begin{aligned} &\det(\partial_{i}X^{a}\partial_{j}X^{b}h_{ab}) = \\ &\frac{1}{p!}\{X^{a_{1}}, X^{a_{2}} \dots, X^{a_{p}}\}\{X^{b_{1}}, X^{b_{2}} \dots, X^{b_{p}}\}h_{a_{1}b_{1}}h_{a_{2}b_{2}} \dots h_{a_{p}b_{p}} \\ &\{X^{a_{1}}, X^{a_{2}} \dots, X^{a_{p}}\} := e^{j_{1},j_{2},\dots,j_{p}}\partial_{j_{1}}X^{a_{1}}\partial_{j_{2}}X^{a_{2}} \dots \partial_{j_{p}}X^{a_{p}} \end{aligned}$$

and the Hamiltonian becomes

$$H = \int_{\Sigma} d^{p}\sigma \left(\frac{1}{\rho T} P^{a} P^{a} + \frac{4}{p! \rho^{2}} \{ X^{a_{1}}, X^{a_{2}} \dots, X^{a_{p}} \}^{2} \right)$$

The residual symmetry is that of area preserving diffeomorphisms.

Quantisation

A direct approach, either Hamiltonian or path integral, has not yet been successful.

Matrix membranes

Functions are approximated by $N \times N$ matrices, $f \to F$, and $\int_{\Sigma} f \to \text{Tr}F$.

The Hamiltonian becomes

$$\mathbf{H} = -\frac{1}{2}\nabla^2 - \frac{1}{4}\sum_{a,b=1}^{D} \text{Tr}[X^a, X^b]^2$$

restricted to U(N) singlet "physical" states.

- *H* describes a matrix membrane (or "fuzzy" membrane) in *D* + 1 spacetime.
- At low energy—the bottom of the potential the coordinates commute [X^a, X^b] = 0.
- Saddle points of the potential satisfy $[X^a[X^a, X^b]] = 0$.

Once we have the Hamiltonian H we can consider thermal ensembles of membranes whose partition function is given by

$$Z = \operatorname{Tr}_{_{Phys}}(\mathrm{e}^{-\beta H})$$

where the physical constraint means the states are U(N) invariant.

Path Integral version

$$Z = \int [dX] e^{-\int_0^\beta d\tau \operatorname{Tr}(\frac{1}{2}(D_\tau X^a)^2 - \frac{1}{4}[X^a, X^b]^2)}$$

Gauss law constraint

The projection onto physical states — the Gauss law constraint is implemented by the gauge field, A, with

$$D_{\tau}X^{a} = \partial_{\tau}X^{a} - i[A, X^{a}].$$

Matrix membrane models are the zero volume limit of Yang-Mills compactified on a torus.

(同) (日) (日)

Instead of membranes propagating on flat space we could have considered membranes propagating on different spacetimes. A very nice example is the pp-wave background

$$ds^{2} = -2dx^{+}dx_{-} + 2V(x)(dx^{+})^{2} + dx^{a}dx_{a}$$

V(x) adds as a potential to the Hamiltonian.

$$H = -\frac{1}{2}\nabla^{2} + V(X) - \frac{1}{4}\sum_{a,b=1}^{D} \text{Tr}[X^{a}, X^{b}]^{2}$$

The BMN model

The BMN action

$$\begin{split} S_{BMN} = & N \int_{0}^{\beta} d\tau \operatorname{Tr} \left\{ \frac{1}{2} (\mathcal{D}_{\tau} X^{i})^{2} + \frac{1}{2} (\frac{\mu}{3})^{2} (X^{i})^{2} \\ & + \frac{\mu}{3} i \epsilon_{ijk} X^{i} X^{j} X^{k} - \frac{1}{4} [X^{i}, X^{j}]^{2} \\ & + \frac{1}{2} \Psi^{T} D_{\tau} \Psi + \frac{1}{2} (\frac{\mu}{4}) \Psi^{T} i \gamma^{123} \Psi + \frac{1}{2} \Psi^{T} \Gamma^{i} [X^{i}, \Psi] \\ & + \frac{1}{2} (\mathcal{D}_{\tau} X^{a})^{2} + \frac{1}{2} (\frac{\mu}{6})^{2} (X^{a})^{2} \\ & + \frac{1}{2} \Psi^{T} \Gamma^{a} [X^{a}, \Psi] - \frac{1}{2} [X^{a}, X^{j}]^{2} - \frac{1}{4} [X^{a}, X^{b}]^{2} \right\} \; . \end{split}$$

The $SO(3) X^i$ shown as red give the previous model while together with the blue term combine as

$$\frac{1}{4} \mathrm{Tr} \left(i[X^i, X^j] + \frac{\mu}{3} \epsilon^{ijk} X^k \right)^2.$$

The model has non-trivial fuzzy sphere vacua

$$X^i = -rac{\mu}{3}L^i$$
, with L^i su(2) generators.

Fermions on the fuzzy sphere

$$N\int_{0}^{\beta}d\tau \operatorname{Tr}\left\{\frac{1}{2}\Psi^{T}D_{\tau}\Psi-\frac{\mu}{6}\Psi^{T}\left(\Gamma^{i}\mathcal{L}_{i}-\frac{3}{4}i\gamma^{123}\right)\Psi\right\}$$

To be compared with

Standard Dirac operator on the fuzzy sphere

$$N\int_{0}^{\beta} d\tau \operatorname{Tr}\left\{\frac{1}{2}\Psi^{T}D_{\tau}\Psi + A\Psi^{T}\left(\Gamma^{i}\mathcal{L}_{i} + i\gamma^{123}\right)\right)\Psi\right\}$$

where A is some coefficient and $\mathcal{L}_i \Psi = [L_i, \Psi]$.

The fermions on these fuzzy spheres are massless but Spin-C.

Non-perturbative Studies of Membrane Matrix Models

- 4 同下 4 日下 4 日下

The simplest example of a quantum mechanical model with Gauss Law constraint is a set of p gauged Gaussians. Their Euclidean actions are

$$N \int_{0}^{\beta} \operatorname{Tr}(\frac{1}{2} (\mathcal{D}_{\tau} X^{i})^{2} + \frac{1}{2} m^{2} (X^{i})^{2})$$

 $\mathcal{D}_{\tau}X^{i} = \partial_{\tau}X^{i} - i[A, X^{i}].$

Properties of gauge Gaussian models

- The eigenvalues of X^i have a Wigner semi-circle distribution.
- At *T* = 0, we can gauged *A* away, while for large *T* we get a pure matrix model with *A* one of the matrices.
- The entry of A as an additional matrix in the dynamics signals a phase transition. In the Gaussian case with p scalars it occurs at

$$T_c = \frac{m}{\ln p}$$

The transition can be observed as centre symmetry breaking in the Polyakov loop.

Bosonic matrix membranes are approximately gauge gaussian models V. Filev and D.O'C. [1506.01366 and 1512.02536]. They have however two phase transitions, very close in temperature.

Consider the Matrix Energy Functional

$$E = \frac{Tr}{N} \left(-\frac{1}{4} [D_a, D_b]^2 + \frac{2i}{3} \epsilon_{abc} D_a D_b D_c \right)$$

Partition Function

$$Z(\beta, g, b, c) = \int [dD_a] e^{-S(D)}$$
 where $S(D) = -\beta E(D)$

The minimum energy configuration is

$$D_a = L_a$$
 with $[L_a, L_b] = i\epsilon_{abc}L_c$ and $L_aL_a = \frac{N^2-1}{4}\mathbf{1}$.
This configuration has $E_0 = -\frac{N^2-1}{48}$.

The ground state is a fuzzy sphere. But this is the picture in the absence of fluctuations

- 4 同下 - 4 日下 - 4 日下

Monte Carlo Simulations

The singular part of the entropy is given by \mathcal{S}/N^2 where $\mathcal{S}=<\mathcal{S}>$ and $\beta=\tilde{\alpha}^4$

Non-perturbative Studies of Membrane Matrix Models

Specific Heat

The specific heat $C_{ m v}/N^2$ where $C_{ m v} = < S^2 > - < S >^2$ and

$$\beta = \tilde{\alpha}^4$$

Eigenvalues in the low temperature phase

Eigenvalue distribution of D_3 for N = 24.

Eigenvalues in the low temperature phase

Eigenvalue distribution of $[D1, D_2]$ for N = 24.

Eigenvalues in the high temperature phase

Eigenvalue distribution of D_3 for N = 24.

Non-perturbative Studies of Membrane Matrix Models

Effective potential

The effective potential, $V_{eff}(\phi)$, for ϕ where $D_a = \phi L_a$. $V_{eff} = \beta(\frac{1}{4}\phi^4 - \frac{1}{3}\phi^3) + \ln \phi^2$

The location of the minimum gives predictions in excellent agreement with numerical data for the entropy and specific heat. It predicts the critical point as $\beta_c = (\frac{8}{3})^3$ and a critical exponent $\alpha = \frac{1}{2}$ for the divergence of the specific heat.

 $\mathcal{S}=\frac{5}{12}$ as the transition is approached from the fuzzy sphere side,

and jumps to $S = \frac{3}{4}$ in the high temperature phase.

Entropy Jump

The transition is unusual in that it has a jump in the entropy. $\Delta \mathcal{S}=\frac{1}{3}$ indicating a 1st order transition.

Divergent Specific Heat

But it has a divergent specific heat $C = A_{-}(T_{c} - T)^{-\alpha}$ typical of a continuous (or second order) transition. We find the specific heat exponent $\alpha = \frac{1}{2}$.

When we add fermionic coordinates and demand supersymmetry S_{NG} with susy exist only in 4, 5, 7 and 11 dim-spacetime. These models are the susy models on flat backgrounds are toroidal dimensional reductions of Super-Yang-Mills.

κ -symmetry.

When we consider the models in non-trivial backgrounds consistency requires the backgrounds are solutions to supergravity.

This is reminiscent of the string σ -model β -functions being zero giving supergravity in strings.

向下 イヨト イヨト

$$S_{_{SMembrane}} = \int \sqrt{-G} - \int C + Fermionic terms$$

The susy version only exists in 4, 5, 7 and 11 spacetime dimensions.

BFSS Model — The supersymmetric membrane à la Hoppe

$$\mathbf{H} = \mathrm{Tr}\big(\frac{1}{2}\sum_{a=1}^{9}P^{a}P^{a} - \frac{1}{4}\sum_{a,b=1}^{9}[X^{a},X^{b}][X^{a},X^{b}] + \frac{1}{2}\Theta^{T}\gamma^{a}[X^{a},\Theta]\big)$$

The model is claimed to be a non-perturbative 2nd quantised formulation of M-theory.

A system of N interacting D0 branes.

Note the flat directions.

・ 同下 ・ ヨト ・ ヨト

The partition function and Energy of the model at finite temperature is

$$Z = Tr_{Phys}(e^{-\beta H})$$
 and $E = \frac{Tr_{Phys}(\mathcal{H}e^{-\beta H})}{Z} = \langle \mathcal{H} \rangle$

Non-perturbative Studies of Membrane Matrix Models

向下 イヨト イヨト

The 16 fermionic matrices $\Theta_{lpha}=\Theta_{lpha A}t^A$ are quantised as

$$\{\Theta_{\alpha A}, \Theta_{\beta B}\} = 2\delta_{\alpha\beta}\delta_{AB}$$

The $\Theta_{\alpha A}$ are $2^{8(N^2-1)}$ and the Fermionic Hilbert space is

$$\mathcal{H}^{\mathsf{F}}=\mathcal{H}_{256}\otimes\cdots\otimes\mathcal{H}_{256}$$

with $\mathcal{H}_{256} = 44 \oplus 84 \oplus 128$ suggestive of the graviton (44), anti-symmetric tensor (84) and gravitino (128) of 11 - d SUGRA.

For an attempt to find the ground state see: J. Hoppe et al arXiv:0809.5270

周 トレイモト イモト

The BFSS matrix model is also the dimensional reduction of ten dimensional supersymmetric Yang-Mills theory down to one dimension:

$$\begin{split} \mathcal{S}_{BFSS} &= \int d\tau \, \mathrm{Tr} \left\{ \frac{1}{2} (\mathcal{D}_{\tau} X^i)^2 - \frac{1}{4} [X^i, X^j]^2 \right. \\ &\left. + \frac{1}{2} \Psi^T \mathcal{D}_{\tau} \Psi + \frac{1}{2} \Psi^T \Gamma^i [X^i, \Psi] \right\} \;, \end{split}$$

where Ψ is a sixteen component Majorana–Weyl spinor, Γ^i are gamma matrices of Spin(9) in a basis for which the charge conjugation matrix $C = \mathbf{1}$.

Gauge/gravity duality predicts that the strong coupling regime of the theory is described by II_A supergravity, which lifts to 11-dimensional supergravity.

The bosonic action for eleven-dimensional supergravity is given by

$$S_{11D} = rac{1}{2\kappa_{11}^2} \int [\sqrt{-g}R - rac{1}{2}F_4 \wedge *F_4 - rac{1}{6}A_3 \wedge F_4 \wedge F_4]$$

where $2\kappa_{11}^2 = 16\pi G_N^{11} = \frac{(2\pi I_p)^9}{2\pi}$.

The relevant solution to eleven dimensional supergravity for the dual geometry to the BFSS model corresponds to N coincident D0 branes in the IIA theory. It is given by

$$ds^{2} = -H^{-1}dt^{2} + dr^{2} + r^{2}d\Omega_{8}^{2} + H(dx_{10} - Cdt)^{2}$$

with $A_3 = 0$ The one-form is given by $C = H^{-1} - 1$ and $H = 1 + \frac{\alpha_0 N}{r^7}$ where $\alpha_0 = (2\pi)^2 14\pi g_s l_s^7$.

The idea is to include a **black hole** in the gravitational system.

The Hawking temperature is matched with the temperature of the system.

Hawking radiation

We expect difficulties at low temperatures, as the system should Hawking radiate. It is argued (Hanada et al arXiv:1311.5607) that this is related to the flat directions and the propensity of the system to leak into these regions.

$$ds_{11}^2 = -H^{-1}Fdt^2 + F^{-1}dr^2 + r^2d\Omega_8^2 + H(dx_{10} - Cdt)^2$$

Set $U = r/\alpha'$ and we are interested in $\alpha' \to \infty$ $H(U) = \frac{240\pi^5\lambda}{U^7}$ and the black hole time dilation factor $F(U) = 1 - \frac{U_0^7}{U^7}$ with $U_0 = 240\pi^5\alpha'^5\lambda$. The temperature

$$\frac{T}{\lambda^{1/3}} = \frac{1}{4\pi\lambda^{1/3}} H^{-1/2} F'(U_0) = \frac{7}{2^4 15^{1/2} \pi^{7/2}} (\frac{U_0}{\lambda^{1/3}})^{5/2}.$$

From black hole entropy we obtain the prediction for the Energy

$$S = rac{A}{4G_N} \sim \left(rac{T}{\lambda^{1/3}}
ight)^{9/2} \implies rac{E}{\lambda N^2} \sim \left(rac{T}{\lambda^{1/3}}
ight)^{14/5}$$

Non-perturbative Studies of Membrane Matrix Models

・ 同下 ・ ヨト ・ ヨト

We found excellent agreement with this prediction V. Filev and D.O'C. [1506.01366 and 1512.02536].

The best current results (Berkowitz et al 2016) consistent with gauge gravity give

$$\frac{1}{N^2} \frac{E}{\lambda^{1/3}} = 7.41 \left(\frac{\tau}{\lambda^{1/3}}\right)^{\frac{14}{5}} - (10.0 \pm 0.4) \left(\frac{\tau}{\lambda^{1/3}}\right)^{\frac{23}{5}} + (5.8 \pm 0.5) T^{\frac{29}{5}} + \dots - \frac{5.77 T^{\frac{2}{5}} + (3.5 \pm 2.0) T^{\frac{11}{5}}}{N^2} + \dots$$

Berkooz and Douglas added new degrees of freedom to the BFSS model to describe the membrane in the presence of N_f longitudional M5-branes. When reduced to the 10-dim IIA string setting this means D4-branes.

Berkooz-Douglas model

The Berkooz-Douglas model ("Five-branes in M(atrix) theory," [hep-th/9610236]) is $\mathcal{N}=1$ Susy in 6-dim, or $\mathcal{N}=2$ in 4-dim reduced to 1-dim i.e. time.

The system describes a D0/D4 intersection.

The more general framework involves Dp/D(p+4) systems.

(4 回下) 4 三下 4 三下

Add new bosonic degrees of freedom Φ_{α} as two complex $N \times N_f$ matrices and their super partners λ_{α} so that the matrix model

BD-matrix model

The full model is

$$S_{BD} = S_{BFSS} + S_{\Phi} + S_{\chi}$$
.

$$\begin{split} S_{\text{bos}} &= N \int_0^\beta d\tau \left[\text{Tr} \left(\frac{1}{2} D_\tau X^a D_\tau X^a + \frac{1}{2} D_\tau \bar{X}^{\rho \dot{\rho}} D_\tau X_{\rho \dot{\rho}} \right. \\ &\left. - \frac{1}{4} [X^a, X^b]^2 + \frac{1}{2} [X^a, \bar{X}^{\rho \dot{\rho}}] [X^a, X_{\rho \dot{\rho}}] \right) \\ &\left. + \text{tr} \left(D_\tau \bar{\Phi}^\rho D_\tau \Phi_\rho + \bar{\Phi}^\rho (X^a - m^a)^2 \Phi_\rho \right) \right. \\ &\left. + \frac{1}{2} \text{Tr} \sum_{A=1}^3 \mathcal{D}^A \mathcal{D}^A \right]. \end{split}$$

Non-perturbative Studies of Membrane Matrix Models

(日) (日) (日)

 \equiv

na (r

The location of the D4-branes can be varied, relative to the central axis of the black hole by tuning the mass parameter of the fundamental multiplet.

Topologically distinct options

Topologically inequivalent embeddings correspond to a phase transition in the matrix model. The transition occurs when the mass of the fundamental fields is increased so that the D4-brane no longer intersects the blackhole.

The geometry can therefore be probed in some detail.

マロト イヨト イヨト

The Condensate

$$\langle \mathcal{O}_m^a \rangle \equiv \frac{\delta F}{\delta m^a} = \frac{1}{\beta} \left\langle \frac{\delta S_E}{\delta m^a} \right\rangle \;,$$

 $ilde{U}=U/U_0$, (recall U_0 was the blackhole radius $r_0/lpha')$

$$\tilde{u}\sin\theta = \tilde{m} + \frac{\tilde{c}}{u^2} + \dots \tag{1}$$

Using a Born-Infeld action (Nambu-Goto in this case) and solving for the embedding into the dual geometry, the holographic prediction relates to the BD-model parameters via:

$$m^{a} = \left(\frac{120 \pi^{2}}{49}\right)^{1/5} \tilde{T}^{2/5} \tilde{m} n^{a} ,$$

$$\langle \mathcal{O}_{m}^{a} \rangle = \left(\frac{2^{4} 15^{3} \pi^{6}}{7^{6}}\right)^{1/5} N_{f} N_{c} \tilde{T}^{6/5} (-2 \tilde{c}) n^{a} , \qquad (2)$$

Non-perturbative Studies of Membrane Matrix Models

・ 同 ト ・ ヨ ト ・ ヨ ト

The condensate senses the transition

The location of the D4-branes can be varied, relative to the central axis of the black hole by tuning the mass parameter of the fundamental multiplet. $T = 0.8 \lambda^{1/3}$

Note the non-trivial scaling! The transition occurs when the mass of the fundamental fields is increased so that the D4-brane no longer intersects the blackhole.

The D4-brane can probe near the black hole surface.

There are many options for background geometries:

PP-Wave backgrounds

Two options that lead to massive deformations of the BFSS model

N = 1*

Breaks susy down to 4 remaining.

BMN model

Preserves all 16 susys and has SU(4|2) symmetry.

The BMN or PWMM

The supermembrane on the maximally supersymmetric plane wave spacetime

$$ds^{2} = -2dx^{+}dx^{-} + dx^{a}dx^{a} + dx^{i}dx^{i} - dx^{+}dx^{+}((\frac{\mu}{6})^{2}(x^{i})^{2} + (\frac{\mu}{3})^{2}(x^{a})^{2})$$

with

$$dC = \mu dx^1 \wedge dx^2 \wedge dX^3 \wedge dx^+$$

so that $F_{123+} = \mu$. This leads to the additional contribution to the Hamiltonian

$$\Delta H_{\mu} = \frac{N}{2} \operatorname{Tr} \left(\left(\frac{\mu}{6}\right)^{2} (X^{a})^{2} + \left(\frac{\mu}{3}\right)^{2} (X^{i})^{2} + \frac{2\mu}{3} i \epsilon_{ijk} X^{i} X^{j} X^{k} + \frac{\mu}{4} \Theta^{T} i \gamma^{123} \Theta \right)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

The BMN model

The BMN action $S_{BMN} = N \int_{0}^{p} d\tau \operatorname{Tr} \left\{ \frac{1}{2} (\mathcal{D}_{\tau} X^{i})^{2} + \frac{1}{2} (\frac{\mu}{3})^{2} (X^{i})^{2} \right\}$ $+\frac{\mu}{2}i\epsilon_{ijk}X^{i}X^{j}X^{k}-\frac{1}{4}[X^{i},X^{j}]^{2}$ $+\frac{1}{2}\Psi^{T}D_{\tau}\Psi+\frac{1}{2}(\frac{\mu}{4})\Psi^{T}i\gamma^{123}\Psi+\frac{1}{2}\Psi^{T}\Gamma^{i}[X^{i},\Psi]$ $+\frac{1}{2}(\mathcal{D}_{\tau}X^{a})^{2}+\frac{1}{2}(\frac{\mu}{6})^{2}(X^{a})^{2}$ $\left. + \frac{1}{2} \Psi^{T} \Gamma^{a}[X^{a}, \Psi] - \frac{1}{2} [X^{a}, X^{j}]^{2} - \frac{1}{4} [X^{a}, X^{b}]^{2} \right\} \; .$

Non-perturbative Studies of Membrane Matrix Models

 \equiv

For large μ the model becomes the supersymmetric Gaussian model

Finite temperature Euclidean Action

$$S_{BMN} = \frac{1}{2g^2} \int_0^\beta d\tau \operatorname{Tr} \left\{ (\mathcal{D}_\tau X^i)^2 + (\frac{\mu}{6})^2 (X^a)^2 + (\frac{\mu}{3})^2 (X^i)^2 \right. \\ \left. \Psi^T D_\tau \Psi + \frac{\mu}{4} \Psi^T \gamma^{123} \Psi \right\}$$

This model has a phase transition at $T_c = \frac{\mu}{12 \ln 3}$

Non-perturbative Studies of Membrane Matrix Models

<回> < 注)、< 注)、< 注)、

If one goes back to the membrane action is of the form

$$S[\mathcal{X}] = \int dt \int d^2 \sigma \mathcal{W}(\sigma) \left(\frac{1}{2} (D_0 \mathcal{X}^a) D_0 \mathcal{X}^a + \frac{1}{2} m^2 \mathcal{X}^a(\sigma) \mathcal{X}^a(\sigma) \right)$$

where a = 1, ..., p, $D_0 \mathcal{X}^a = \partial_0 \mathcal{X}^a - \{\omega, \mathcal{X}^a\}$ and $\{A, B\} - \frac{\varepsilon''}{W} \partial_r A \partial_s B$ and normalised so that $\int d^2 \sigma w(\sigma) = 1$. This is just a Gaussian version of the membrane action that arises in the large mass deformation limit on a particular *pp*-wave background.

Three loop result of *Hadizadeh, Ramadanovic, Semenoff and Young* [hep-th/0409318]

$$T_{c} = \frac{\mu}{12 \ln 3} \left\{ 1 + \frac{2^{6} \times 5}{3^{4}} \frac{\lambda}{\mu^{3}} - \left(\frac{23 \times 19927}{2^{2} \times 3^{7}} + \frac{1765769 \ln 3}{2^{4} \times 3^{8}}\right) \frac{\lambda^{2}}{\mu^{6}} + \cdots \right\}$$

→ Ξ →

- E - F

Three loop result of *Hadizadeh*, *Ramadanovic*, *Semenoff and Young* [hep-th/0409318]

$$T_{c} = \frac{\mu}{12 \ln 3} \left\{ 1 + \frac{2^{6} \times 5}{3^{4}} \frac{\lambda}{\mu^{3}} - \left(\frac{23 \times 19927}{2^{2} \times 3^{7}} + \frac{1765769 \ln 3}{2^{4} \times 3^{8}}\right) \frac{\lambda^{2}}{\mu^{6}} + \cdots \right\}$$

Gravity prediction at small μ

Costa, Greenspan, Penedones and Santos, [arXiv:1411.5541]

$$\lim_{\frac{\lambda}{\mu^2} \to \infty} \frac{T_c^{\text{SUGRA}}}{\mu} = 0.105905(57) \,.$$

The prediction is for low temperatures and small μ the transition temperature approaches zero linearly in μ .

Non-perturbative Studies of Membrane Matrix Models

Padé approximant prediction of T_c

$$T_{c} = \frac{\mu}{12 \ln 3} \left\{ 1 + r_{1} \frac{\lambda}{\mu^{3}} + r_{2} \frac{\lambda^{2}}{\mu^{6}} + \cdots \right\}$$

with $r_{1} = \frac{2^{6} \times 5}{3}$ and $r_{2} = -(\frac{23 \times 19927}{2^{2} \times 3} + \frac{1765769 \ln 3}{2^{4} \times 3^{2}})$
Using a Padé Approximant: $1 + r_{1}g + r_{2}g^{2} + \cdots \rightarrow 1 + \frac{1 + r_{1}g}{1 - \frac{r_{2}}{r_{1}}g}$
 $\implies T_{c}^{\mathsf{Padé}} = \frac{\mu}{12 \ln 3} \left\{ 1 + \frac{r_{1} \frac{\lambda}{\mu^{3}}}{1 - \frac{r_{2}}{r_{1}} \frac{\lambda}{\mu^{3}}} \right\}$

Non-perturbative Studies of Membrane Matrix Models

- E - F

Now we can take the small μ limit

$$\lim_{\substack{\lambda \\ \mu^2 \to \infty}} \frac{T_c^{\text{Padé}}}{\mu} \simeq \frac{1}{12 \ln 3} (1 - \frac{r_1^2}{r_2}) = 0.0925579$$

$$\lim_{\substack{\lambda \\ \mu^2 \to \infty}} \frac{T_c^{\text{SUGRA}}}{\mu} = 0.105905(57).$$
Padé resummed-phase diagram

A non-perturbative phase diagram from the Polyalov loop.

Myers observable-phase diagram

Non-perturbative Studies of Membrane Matrix Models

・ロト ・回ト ・ヨト ・ヨト

E

Nonperturbative-phase diagram

イロト イヨト イヨト イヨト Non-perturbative Studies of Membrane Matrix Models

 \equiv

Non-perturbative Studies of Membrane Matrix Models

・ロト ・回ト ・モト ・モト

E

Observables

Non-perturbative Studies of Membrane Matrix Models

590

Small μ

Non-monotonic Polyakov loop

 <</td>
 □
 <</td>
 ≥
 <</td>
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥

The Bosonic BMN model

We have recently studied the bosonic BMN model.

Bosonic BMN

The Bosonic BMN model has two phase transitions very close together. Both are visible in the eigenvalues of A. It does not have a fuzzy sphere phase.

With Y. Asano and S. Kováčik (to appear)

Non-perturbative Studies of Membrane Matrix Models

Conclusions

- We have seen membrane matrix models in action. We can probe the conjecture dual geometry using probe D4 branes.
- The BMN plane wave matrix model is very rich with both emergent geometry in the form of fuzzy spheres and confining-deconfining phase transitions.
- The models have gravity dual geometries that predict their strong coupling behaviour.
- Much overlap with large N reduction (Kawai).
- Also saddle points of the bosonic parts of the actions are equations for non-commutative minimal surfaces (Arnlind). It would be nice to make contact here with "resurgence".
- Questions such as "Can one find a background independence formulation?' arise just as in string theory.
- These models have a countable number of degrees of freedom.
- They cut the multiverse from string theory and yet are very closely related!

Thank you for your attention!

Non-perturbative Studies of Membrane Matrix Models

프 문 문 프