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Membrane Actions

Nambu Goto for p-brane

SNG =
∫
M dp+1x

√
−detG Gµν = ∂µxM∂νxNgMN(x)

Higher form gauge field on the world volume

Sp−form = −
∫
M

1

(p + 1)!
εµ1...µp+1Cµ1...µp+1

Cµ1...µp+1 = ∂µ1xM1 . . . ∂µp+1xMp+1CM1...Mp+1

We could add
• an anti-symmetric part to Gµν to get a Dirac-Born-Infeld action.
• extrinsic curvature terms.
Supersymmetric SNG exist only in 4, 5, 7 and 11 dim-spacetime.
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Polyakov action

The Membrane action á la Polyakov

SNG = −T

2

∫
M

d3σ
√
−h
(

hαβ∂αxM∂βxNgMN − (p − 1)
)

Eliminating hµν

hαβ = ∂αxM∂βxNgMN = Gαβ

returns us to Nambu-Goto.
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Membranes in flat spacetime, gMN = ηMN and C3 = 0

dS2
M = ẋM ˙xMdτ2 + 2ẋM∂j xMdτdσj + ∂i x

M∂j xMdσi dσj

In lightcone cooridnates, x± = (x0 ± xD)/
√

2
ds2 = ηMNdxMdxN = −2dx+dx− + dxadxa

Noting ∂i x
+ = 0 and with τ = x+

dS2
M = (−2 ˙x− + ẋaẋa)dτ2 + 2Nj dτdσj + ∂i x

a∂j xadσi dσj .

Gauge fixing by setting the shift Nj = (−∂j x
− + ẋa∂j x

a) = 0 yields

SNG = −T
√
−2ẋ− − ẋaẋa

√
detGij .

N.B. ẋ− linear in square root! And ∂j x
− only via the constraint.

On shell P− is constant

P− =
∂LNG

∂ẋ−
is a constant of the motion
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In 2-dim det(Gij ) can be rewritten using {x , y} = εij∂i x∂j y

Flat space Hamiltonian

S = −T

∫ √
−G −→ H =

∫
Σ

(
1

ρT
PaPa +

T

2ρ
{X a,X b}2)

With the remaining constraint {Pa,X a} = 0.
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For higher p-branes the procedure works the same and using

det(∂i X
a∂j X

bhab) =
1
p!{X

a1 ,X a2 . . . ,X ap}{X b1 ,X b2 . . . ,X bp}ha1b1ha2b2 . . . hapbp

{X a1 ,X a2 . . . ,X ap} := εj1,j2,...,jp∂j1X a1∂j2X a2 . . . ∂jp X ap

and the Hamiltonian becomes

H =

∫
Σ

dpσ

(
1

ρT
PaPa +

4

p!ρ2
{X a1 ,X a2 . . . ,X ap}2

)
The residual symmetry is that of area preserving diffeomorphisms.
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Quantisation

A direct approach, either Hamiltonian or path integral, has not yet
been successful.
Matrix membranes

Functions are approximated by N × N matrices, f → F, and∫
Σ f → TrF.

The Hamiltonian becomes

H = −1

2
∇2 − 1

4

D∑
a,b=1

Tr[X a,X b]2

restricted to U(N) singlet ”physical” states.

H describes a matrix membrane (or “fuzzy” membrane) in
D + 1 spacetime.

At low energy—the bottom of the potential the coordinates
commmute [X a,X b] = 0.

Saddle points of the potential satisfy [X a[X a,X b]] = 0.
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Once we have the Hamiltonian H we can consider thermal
ensembles of membranes whose partition function is given by

Z = Tr
Phys

(e−βH)

where the physical constraint means the states are U(N) invariant.

Path Integral version

Z =

∫
[dX ]e−

∫ β
0 dτ Tr( 1

2
(DτX a)2− 1

4
[X a,X b]2)

Gauss law constraint

The projection onto physical states — the Gauss law constraint is
implemented by the gauge field, A, with

DτX a = ∂τX a − i [A,X a].

Matrix membrane models are the zero volume limit of Yang-Mills
compactified on a torus.
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pp-wave backgrounds

Instead of membranes propagating on flat space we could have
considered membranes propagating on different spacetimes. A very
nice example is the pp-wave background

ds2 = −2dx+dx− + 2V (x)(dx+)2 + dxadxa

V (x) adds as a potential to the Hamiltonian.

H = −1

2
∇2 + V (X )− 1

4

D∑
a,b=1

Tr[X a,X b]2
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The BMN model
The BMN action

SBMN = N

∫ β

0
dτ Tr

{
1

2
(DτX i )2 +

1

2
(
µ

3
)2(X i )2

+
µ

3
iεijk X i X j X k − 1

4
[X i ,X j ]2

+
1

2
ΨT DτΨ +

1

2
(
µ

4
)ΨT iγ123Ψ +

1

2
ΨT Γi [X i ,Ψ]

+
1

2
(DτX a)2 +

1

2
(
µ

6
)2(X a)2

+
1

2
ΨT Γa[X a,Ψ]− 1

2
[X a,X j ]2 − 1

4
[X a,X b]2

}
.

The SO(3) X i shown as red give the previous model while together
with the blue term combine as

1

4
Tr
(

i [X i ,X j ] +
µ

3
εijk X k

)2
.

The model has non-trivial fuzzy sphere vacua

X i = −µ
3 Li , with Li su(2) generators.
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Fermions and the Dirac operator

Fermions on the fuzzy sphere

N

∫ β

0
dτ Tr

{
1

2
ΨT DτΨ− µ

6
ΨT

(
ΓiLi −

3

4
iγ123

)
Ψ

}
To be compared with

Standard Dirac operator on the fuzzy sphere

N

∫ β

0
dτ Tr

{
1

2
ΨT DτΨ + AΨT

(
ΓiLi + iγ123)

)
Ψ

}
where A is some coefficient and Li Ψ = [Li ,Ψ].

The fermions on these fuzzy spheres are massless but Spin-C.
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Understanding gauged quantum matrix models

The simplest example of a quantum mechanical model with Gauss
Law constraint is a set of p gauged Gaussians. Their Euclidean
actions are

N

∫ β

0
Tr(

1

2
(DτX i )2 +

1

2
m2(X i )2)

DτX i = ∂τX i − i [A,X i ].
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Properties of gauge Gaussian models

The eigenvalues of X i have a Wigner semi-circle distribution.

At T = 0, we can gauged A away, while for large T we get a
pure matrix model with A one of the matrices.

The entry of A as an additional matrix in the dynamics signals
a phase transition. In the Gaussian case with p scalars it
occurs at

Tc =
m

ln p

The transition can be observed as centre symmetry breaking
in the Polyakov loop.

Bosonic matrix membranes are approximately gauge gaussian
models V. Filev and D.O’C. [1506.01366 and 1512.02536]. They
have however two phase transitions, very close in temperature.
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The simplest model of an emergent geometry.

Consider the Matrix Energy Functional

E = Tr
N (−1

4 [Da,Db]2 + 2i
3 εabcDaDbDc )

Partition Function

Z (β, g , b, c) =
∫

[dDa]e−S(D) where S(D) = −βE (D)

The minimum energy configuration is

Da = La with [La, Lb] = iεabcLc and LaLa = N2−1
4 1.

This configuration has E0 = −N2−1
48 .

The ground state is a fuzzy sphere.
But this is the picture in the absence of fluctuations

Non-perturbative Studies of Membrane Matrix Models



Monte Carlo Simulations

The singular part of the entropy is given by S/N2 where
S =< S > and β = α̃4
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Specific Heat

The specific heat Cv/N2 where Cv =< S2 > − < S >2 and

β = α̃4
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Eigenvalues in the low temperature phase

Eigenvalue distribution of D3 for N = 24.
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Eigenvalues in the low temperature phase

Eigenvalue distribution of [D1,D2] for N = 24.
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Eigenvalues in the high temperature phase

Eigenvalue distribution of D3 for N = 24.
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Effective potential

The effective potential, Veff (φ), for φ where Da = φLa.

Veff = β( 1
4φ

4 − 1
3φ

3) + lnφ2

The location of the minimum gives predictions in excellent
agreement with numerical data for the entropy and specific heat.
It predicts the critical point as βc = ( 8

3 )3 and a critical exponent
α = 1

2 for the divergence of the specific heat.
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Predictions from Veff (φ)

S = 5
12 as the transition is approached from the fuzzy sphere side,

and jumps to S = 3
4 in the high temperature phase.

Entropy Jump

The transition is unusual in that it has a jump in the entropy.
∆S = 1

3 indicating a 1st order transition.

Divergent Specific Heat

But it has a divergent specific heat C = A−(Tc − T )−α typical of
a continuous (or second order) transition. We find the specific
heat exponent α = 1

2 .
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Supersymmetric Membranes

When we add fermionic coordinates and demand supersymmetry
SNG with susy exist only in 4, 5, 7 and 11 dim-spacetime. These
models are the susy models on flat backgrounds are toroidal
dimensional reductions of Super-Yang-Mills.

κ-symmetry.

When we consider the models in non-trivial backgrounds
consistency requires the backgrounds are solutions to supergravity.

This is reminiscent of the string σ-model β-functions being zero
giving supergravity in strings.
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The BFSS model

S
SMembrane

=
∫ √
−G −

∫
C + Fermionic terms

The susy version only exists in 4, 5, 7 and 11 spacetime dimensions.

BFSS Model — The supersymmetric membrane à la Hoppe

H = Tr(
1

2

9∑
a=1

PaPa − 1

4

9∑
a,b=1

[X a,X b][X a,X b] +
1

2
ΘTγa[X a,Θ])

The model is claimed to be a non-perturbative 2nd quantised
formulation of M-theory.

A system of N interacting D0 branes.

Note the flat directions.
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Finite Temperature Model

The partition function and Energy of the model at finite
temperature is

Z = Tr
Phys

(e−βH) and E =
Tr

Phys
(He−βH)

Z
= 〈H〉

Non-perturbative Studies of Membrane Matrix Models



The 16 fermionic matrices Θα = ΘαAtA are quantised as

{ΘαA,ΘβB} = 2δαβδAB

The ΘαA are 28(N2−1) and the Fermionic Hilbert space is

HF = H256 ⊗ · · · ⊗ H256

with H256 = 44⊕ 84⊕ 128 suggestive of
the graviton (44), anti-symmetric tensor (84) and gravitino (128)
of 11− d SUGRA.

For an attempt to find the ground state see: J. Hoppe et al
arXiv:0809.5270
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Lagrangian formulation

The BFSS matrix model is also the dimensional reduction of ten
dimensional supersymmetric Yang-Mills theory down to one
dimension:

SBFSS =

∫
dτ Tr

{
1

2
(DτX i )2 − 1

4
[X i ,X j ]2

+
1

2
ΨT DτΨ +

1

2
ΨT Γi [X i ,Ψ]

}
,

where Ψ is a sixteen component Majorana–Weyl spinor, Γi are
gamma matrices of Spin(9) in a basis for which the charge
conjugation matrix C = 1.
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The gravity dual and its geometry

Gauge/gravity duality predicts that the strong coupling regime of
the theory is described by IIA supergravity, which lifts to
11-dimensional supergravity.

The bosonic action for eleven-dimensional supergravity is given by

S11D =
1

2κ2
11

∫
[
√
−gR − 1

2
F4 ∧ ∗F4 −

1

6
A3 ∧ F4 ∧ F4]

where 2κ2
11 = 16πG 11

N =
(2πlp)9

2π .
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The relevant solution to eleven dimensional supergravity for the
dual geometry to the BFSS model corresponds to N coincident D0
branes in the IIA theory. It is given by

ds2 = −H−1dt2 + dr 2 + r 2dΩ2
8 + H(dx10 − Cdt)2

with A3 = 0
The one-form is given by C = H−1 − 1 and H = 1 + α0N

r7 where
α0 = (2π)214πgs l7

s .

Non-perturbative Studies of Membrane Matrix Models



Including temperature

The idea is to include a black hole in the gravitational system.

The Hawking temperature is matched with the temperature of the
system.

Hawking radiation

We expect difficulties at low temperatures, as the system should
Hawking radiate. It is argued (Hanada et al arXiv:1311.5607) that
this is related to the flat directions and the propensity of the
system to leak into these regions.
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The black hole geometry

ds2
11 = −H−1Fdt2 + F−1dr 2 + r 2dΩ2

8 + H(dx10 − Cdt)2

Set U = r/α′ and we are interested in α′ →∞
H(U) = 240π5λ

U7 and the black hole time dilation factor

F (U) = 1− U7
0

U7 with U0 = 240π5α′5λ. The temperature

T

λ1/3
=

1

4πλ1/3
H−1/2F ′(U0) =

7

24151/2π7/2
(

U0

λ1/3
)

5/2

.

From black hole entropy we obtain the prediction for the Energy

S =
A

4GN
∼
(

T

λ1/3

)9/2

=⇒ E

λN2
∼
(

T

λ1/3

)14/5

Non-perturbative Studies of Membrane Matrix Models



Checks of the predictions

We found excellent agreement with this prediction V. Filev and
D.O’C. [1506.01366 and 1512.02536].
The best current results (Berkowitz et al 2016) consistent with
gauge gravity give

1

N2

E

λ1/3
= 7.41

(
T
λ1/3

) 14
5 − (10.0± 0.4)

(
T
λ1/3

) 23
5

+ (5.8± 0.5)T
29
5 + . . .

−5.77T
2
5 +(3.5±2.0)T

11
5

N2 + . . .
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Checking the geometry with D4-brane probes

Berkooz and Douglas added new degrees of freedom to the BFSS
model to describe the membrane in the presence of Nf

longitudional M5-branes. When reduced to the 10-dim IIA string
setting this means D4-branes.

Berkooz-Douglas model

The Berkooz-Douglas model
(“Five-branes in M(atrix) theory,” [hep-th/9610236])
is N = 1 Susy in 6-dim, or N = 2 in 4-dim reduced to 1-dim i.e.
time.
The system describes a D0/D4 intersection.

The more general framework involves Dp/D(p + 4) systems.
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Add new bosonic degrees of freedom Φα as two complex N × Nf

matrices and their super partners λα so that the matrix model

BD-matrix model

The full model is

SBD = SBFSS + SΦ + Sχ .

Sbos = N

∫ β

0
dτ

[
Tr

(
1

2
DτX aDτX a +

1

2
Dτ X̄ ρρ̇DτXρρ̇

−1

4
[X a,X b]2 +

1

2
[X a, X̄ ρρ̇][X a,Xρρ̇]

)
+ tr

(
Dτ Φ̄ρDτΦρ + Φ̄ρ(X a −ma)2Φρ

)
+

1

2
Tr

3∑
A=1

DADA

]
.
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Blackhole embeddings

The location of the D4-branes can be varied, relative to the central
axis of the black hole by tuning the mass parameter of the
fundamental multiplet.

Topologically distinct options

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

Black hole embdding

Critical embedding

Minkowski embedding

Topologically inequivalent
embeddings correspond
to a phase transition in the
matrix model. The transition
occurs when the mass of the
fundamental fields is increased
so that the D4-brane no
longer intersects the blackhole.

The geometry can therefore be probed in some detail.
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The Condensate

〈Oa
m〉 ≡

δF

δma
=

1

β

〈
δSE

δma

〉
,

Ũ = U/U0, (recall U0 was the blackhole radius r0/α
′)

ũ sin θ = m̃ +
c̃

u2
+ . . . . (1)

Using a Born-Infeld action (Nambu-Goto in this case) and solving
for the embedding into the dual geometry, the holographic
prediction relates to the BD-model parameters via:

ma =

(
120π2

49

)1/5

T̃ 2/5m̃ na ,

〈Oa
m〉 =

(
24 153 π6

76

)1/5

Nf Nc T̃ 6/5 (−2 c̃) na , (2)
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The condensate senses the transition

The location of the D4-branes can be varied, relative to the central
axis of the black hole by tuning the mass parameter of the
fundamental multiplet.

0.5 1.0 1.5 2.0 m
é

0.05
0.10
0.15
0.20
0.25
0.30

-2 cé
T = 0.8 l1ê3

Note the non-trivial
scaling! The transition
occurs when the mass of the
fundamental fields is increased
so that the D4-brane no
longer intersects the blackhole.

The D4-brane can probe near the black hole surface.
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Membranes on other backgrounds

There are many options for background geometries:

PP-Wave backgrounds

Two options that lead to massive deformations of the BFSS model

N=1*

Breaks susy down to 4 remaining.

BMN model

Preserves all 16 susys and has
SU(4|2) symmetry.
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The BMN or PWMM

The supermembrane on the maximally supersymmetric plane wave
spacetime

ds2 = −2dx+dx−+dxadxa+dx i dx i−dx+dx+((
µ

6
)2(x i )2+(

µ

3
)2(xa)2)

with
dC = µdx1 ∧ dx2 ∧ dX 3 ∧ dx+

so that F123+ = µ. This leads to the additional contribution to the
Hamiltonian

∆Hµ =
N

2
Tr
(

(
µ

6
)2(X a)2 + (

µ

3
)2(X i )2

+
2µ

3
iεijk X i X j X k +

µ

4
ΘT iγ123Θ

)
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The BMN model

The BMN action

SBMN = N

∫ β

0
dτ Tr

{
1

2
(DτX i )2 +

1

2
(
µ

3
)2(X i )2

+
µ

3
iεijk X i X j X k − 1

4
[X i ,X j ]2

+
1

2
ΨT DτΨ +

1

2
(
µ

4
)ΨT iγ123Ψ +

1

2
ΨT Γi [X i ,Ψ]

+
1

2
(DτX a)2 +

1

2
(
µ

6
)2(X a)2

+
1

2
ΨT Γa[X a,Ψ]− 1

2
[X a,X j ]2 − 1

4
[X a,X b]2

}
.
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Large mass expansion

For large µ the model becomes the supersymmetric Gaussian model

Finite temperature Euclidean Action

SBMN =
1

2g 2

∫ β

0
dτ Tr

{
(DτX i )2 + (

µ

6
)2(X a)2 + (

µ

3
)2(X i )2

ΨT DτΨ +
µ

4
ΨTγ123Ψ

}
This model has a phase transition at Tc = µ

12 ln 3
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Diffeomorphism invariant Gaussian model.

If one goes back to the membrane action is of the form

S [X ] =

∫
dt

∫
d2σW(σ)

(
1

2
(D0X a)D0X a +

1

2
m2X a(σ)X a(σ)

)
where a = 1, . . . , p, D0X a = ∂0X a − {ω,X a} and
{A,B} − εrs

W ∂r A∂sB and normalised so that
∫

d2σW(σ) = 1.
This is just a Gaussian version of the membrane action that arises
in the large mass deformation limit on a particular pp-wave
background.
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Perturbative expansion in large µ.

Three loop result of Hadizadeh, Ramadanovic, Semenoff and
Young [hep-th/0409318]

Tc =
µ

12 ln 3

{
1 +

26 × 5

34

λ

µ3
− (

23× 19927

22 × 37
+

1765769 ln 3

24 × 38
)
λ2

µ6
+ · · ·

}
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Perturbative expansion in large µ.

Three loop result of Hadizadeh, Ramadanovic, Semenoff and
Young [hep-th/0409318]

Tc =
µ

12 ln 3

{
1 +

26 × 5

34

λ

µ3
− (

23× 19927

22 × 37
+

1765769 ln 3

24 × 38
)
λ2

µ6
+ · · ·

}
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Large μ-predicted-phase diagram

Passes through zero at µ = 5.65.
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Gravity prediction at small µ

Costa, Greenspan, Penedones and Santos, [arXiv:1411.5541]

lim
λ
µ2→∞

T SUGRA
c

µ
= 0.105905(57) .

The prediction is for low temperatures and small µ the transition
temperature approaches zero linearly in µ.
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0.4

0.5

T

Small μ-gravity-prediction-phase diagram
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Small and large μ-prediction-phase diagram
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Padé approximant prediction of Tc

Tc =
µ

12 ln 3

{
1 + r1

λ

µ3
+ r2

λ2

µ6
+ · · ·

}
with r1 = 26×5

3 and r2 = −( 23×19927
22×3

+ 1765769 ln 3
24×32 )

Using a Padé Approximant: 1 + r1g + r2g 2 + · · · → 1 + 1+r1g
1− r2

r1
g

=⇒ T Padé
c =

µ

12 ln 3

{
1 +

r1
λ
µ3

1− r2
r1

λ
µ3

}
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Now we can take the small µ limit

lim
λ
µ2→∞

T Padé
c

µ
' 1

12 ln 3
(1− r 2

1

r2
) = 0.0925579

lim
λ
µ2→∞

T SUGRA
c

µ
= 0.105905(57) .
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Padé resummed-phase diagram
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A non-perturbative phase diagram from the Polyalov loop.
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Polyakov Loop-phase diagram
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Observables
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Eigenvalue density of A for μ=6.0, T=0.69, N=8, Λ=24
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Small µ

0.2 0.4 0.6 0.8 1.0
T

0.2

0.4

0.6

0.8

1.0

Myers

Myers term, μ=2.0, N=8, Λ=24
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Non-perturbative Studies of Membrane Matrix Models



Non-monotonic Polyakov loop
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The Bosonic BMN model

We have recently studied the bosonic BMN model.

Bosonic BMN

The Bosonic BMN model has two phase transitions very close
together. Both are visible in the eigenvalues of A. It does not have
a fuzzy sphere phase.

With Y. Asano and S. Kováčik (to appear)
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Conclusions

We have seen membrane matrix models in action. We can
probe the conjecture dual geometry using probe D4 branes.

The BMN – plane wave matrix model is very rich with both
emergent geometry in the form of fuzzy spheres and
confining-deconfining phase transitions.

The models have gravity dual geometries that predict their
strong coupling behaviour.

Much overlap with large N reduction (Kawai).

Also saddle points of the bosonic parts of the actions are
equations for non-commutative minimal surfaces (Arnlind). It
would be nice to make contact here with “resurgence”.

Questions such as “Can one find a background independence
formulation?’ arise just as in string theory.

These models have a countable number of degrees of freedom.

They cut the multiverse from string theory and yet are very
closely related!

Non-perturbative Studies of Membrane Matrix Models



Thank you for your attention!
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