Index Theorems for Gauge Theories, and Holonomy Saddles

PILJIN YI Korea Institute for Advanced Study

"Spacetime Matrices," IHES, Feb. 2019

K. Hori, H. Kim, P.Y. 2014 S-J. Lee, P.Y. 2016 S-J. Lee, P.Y. 2017 C. Hwang, P.Y. 2017 C. Hwang, S. Lee, P.Y. 2018 an old problem and an old puzzle

index theorems via localization, or not

rational invariants and the old problem revisited

how "H-saddles" resolve the old puzzle and glue gauge theories across dimensions

back in 1997

$$\frac{5}{4} = 1 + \frac{1}{4}$$

back in 1997

$$\mathcal{I}_{\mathcal{N}=16:\text{bulk}}^{SU(2)} = \mathcal{I}_{\mathcal{N}=16}^{SU(2)} - \delta \mathcal{I}_{\mathcal{N}=16}^{SU(2)}$$

$$\frac{5}{4} = 1 + \frac{1}{4}$$

back in 1997

$$\mathcal{I} = \lim_{\beta \to \infty} \operatorname{Tr}(-1)^{\mathcal{F}} e^{-\beta H} = \operatorname{Tr}_{H=0}(-1)^{\mathcal{F}}$$

$$\uparrow$$

$$\mathcal{I}_{\mathcal{N}=16:\text{bulk}}^{SU(2)} = \mathcal{I}_{\mathcal{N}=16}^{SU(2)} - \delta \mathcal{I}_{\mathcal{N}=16}^{SU(2)}$$

$$\frac{5}{4} = 1 + \frac{1}{4}$$

in an effort to confirm the M-theory hypothesis, of course

Witten 1995

$$\mathsf{M} \ \mathsf{on} \ \mathbf{S}^1 \times \mathcal{R}^{9+1} = \mathsf{IIA} \ \mathsf{on} \ \mathcal{R}^{9+1}$$

IIA theory must remember this M-theory origin

$$\mathcal{I}_{\mathcal{N}=16}^{SU(N)}=1$$

by forming an infinite tower of multi D-particle bound states moving freely on \mathcal{M}_{9+1}

9+1 Hoppe 1982 Claudson, Halpern 1985

De Witt, Hoppe, Nicolai 1988

Hoppe 1988

Froehlich, Hoppe 1988

.

which is, perhaps, one of the most convoluted ways to obtain '1'

$$\mathcal{I} = \lim_{\beta \to \infty} \operatorname{Tr}(-1)^{\mathcal{F}} e^{-\beta H} = \operatorname{Tr}_{H=0}(-1)^{\mathcal{F}}$$

$$\mathcal{I}_{\mathcal{N}=16:\text{bulk}}^{SU(2)} = \mathcal{I}_{\mathcal{N}=16}^{SU(2)} - \delta \mathcal{I}_{\mathcal{N}=16}^{SU(2)}$$

$$\frac{5}{4} = 1 + \frac{1}{4}$$

$$\lim_{\beta \to 0} \text{Tr}(-1)^{\mathcal{F}} e^{-\beta H} \to \mathcal{Z}_{\mathcal{N}=16}^{SU(2)} = \int_{SU(2)/Z_2} dX \, d\Psi \, e^{-[X,X]^2/4 + X_{\mu} \Psi \Gamma_{\mu} \Psi/2}$$

P.Y. / Sethi, Stern 1997

which is, perhaps, one of the most convoluted ways to obtain '1'

$$\mathcal{I} = \lim_{\beta \to \infty} \operatorname{Tr}(-1)^{\mathcal{F}} e^{-\beta H} = \operatorname{Tr}_{H=0}(-1)^{\mathcal{F}}$$

$$\uparrow$$

$$\mathcal{I}_{\mathcal{N}=16:\text{bulk}}^{SU(2)} = \mathcal{I}_{\mathcal{N}=16}^{SU(2)} - \delta \mathcal{I}_{\mathcal{N}=16}^{SU(2)}$$

$$\frac{5}{4} = 1 + \frac{1}{4} \longleftarrow \mathcal{I}_{\mathcal{N}=16;\text{bulk}}^{U(1)/Z_2}$$
P.Y.1997

$$\lim_{\beta \to 0} \text{Tr}(-1)^{\mathcal{F}} e^{-\beta H} \to \mathcal{Z}_{\mathcal{N}=16}^{SU(2)} = \int_{SU(2)/Z_2} dX \, d\Psi \, e^{-[X,X]^2/4 + X_{\mu} \Psi \Gamma_{\mu} \Psi/2}$$

P.Y. / Sethi, Stern 1997

the defect term arises entirely from the boundary → asymptotic dynamics suffices

→ computable by the asymptotic Coulomb branch

$$-\delta \mathcal{I}_{\mathcal{N}}^{SU(2)}$$

$$= -\delta \mathcal{I}_{\mathcal{N}}^{U(1)/Z_2}$$

$$= \mathcal{I}^{U(1)/Z_2}_{\mathcal{N}; \mathrm{bulk}}$$

P.Y. 1997

arbitrary high rank cases followed, soon

$$\mathcal{I}_{\mathcal{N}=16:\text{bulk}}^{SU(N)} = \mathcal{I}_{\mathcal{N}=16}^{SU(N)} - \delta \mathcal{I}_{\mathcal{N}=16}^{SU(N)}$$

$$\mathcal{Z}_{\mathcal{N}=16}^{SU(N)} = \sum_{p|N;p\geq 1} \frac{1}{p^2} = 1 + \sum_{p|N;p>1} \frac{1}{p^2}$$

Nekrasov, Moore, Shatashvili 1998

Green, Gutperle 1997 Kac, Smilga 1999

$$\mathcal{I}_{\mathcal{N}=16}^{SU(N)} = 1$$

similar problems with smaller supersymmetry address Seiberg-Witten vs. IIA theory on local Calabi-Yau conifold

$$\mathcal{I}_{\mathcal{N}=4,8:\text{bulk}}^{SU(N)} = \mathcal{I}_{\mathcal{N}=4,8}^{SU(N)} - \delta \mathcal{I}_{\mathcal{N}=4,8}^{SU(N)}$$

$$\mathcal{Z}_{\mathcal{N}=4,8}^{SU(N)} = \frac{1}{N^2} = 0 + \frac{1}{N^2} = \mathcal{I}_{\mathcal{N}=4,8:\text{bulk}}^{U(1)^{N-1}/S_N}$$

$$\mathcal{I}_{\mathcal{N}=4,8}^{SU(N)} = 0$$

P.Y. 1997

Sethi, Stern 1997

Gutperle, Green 1997

Moore, Nekrasov, Shatashvili 1998

one would have naturally expected, for other simple gauge groups...

$$\mathcal{I}_{\mathcal{N}=4,8:\text{bulk}}^G = \mathcal{I}_{\mathcal{N}=4,8}^G - \delta \mathcal{I}_{\mathcal{N}=4,8}^G$$

$$\mathcal{Z}_{\mathcal{N}=4,8}^G = 0 + \mathcal{I}_{\mathcal{N}=4,8:\text{bulk}}^{U(1)^r/W_G}$$

yet, ...

$$\mathcal{I}_{\mathcal{N}=4,8}^G = 0$$

P.Y. 1997 Green, Gutperle 1997	$\mathcal{N}=4$	$\mathcal{I}_{ ext{bulk}}^G = -\delta \mathcal{I}^G$	$\mathcal{I}^G_{ ext{bulk}} = \mathcal{Z}^G$	P.Y. / Sethi, Stern 1997 Moore, Nakrasov, Shatashvili 1998
Kac, Smilga 1999	SU(N)	$\frac{1}{N^2}$	$\frac{1}{N^2}$	Staudacher 2000 / Pestun 2002
	Sp(2)	$\frac{5}{32}$	$\frac{9}{64}$	
	Sp(3)	$\frac{15}{128}$	$\tfrac{51}{512}$	
	Sp(4)	$\frac{195}{2048}$	$\frac{1275}{16384}$	
	Sp(5)	$\frac{663}{8192}$	$\frac{8415}{131072}$	
	Sp(6)	$\frac{4641}{65536}$	$\tfrac{115005}{2097152}$	
	Sp(7)	$\frac{16575}{262144}$	$\frac{805035}{16777216}$	
$\mathcal{I}^G_{\mathcal{N}=4,8: ext{bulk}}$	SO(7)	$\frac{15}{128}$	$\frac{25}{256}$	$\mathcal{I}^G_{\mathcal{N}=4,8: ext{bulk}}$
	SO(8)	$\frac{59}{1024}$	$\tfrac{117}{2048}$	
$= -\delta \mathcal{I}_{\mathcal{N}=4,8}^G$	SO(9)	$\frac{195}{2048}$	$\frac{613}{8192}$	$=\mathcal{Z}^G_{\mathcal{N}=4,8}$
	SO(10)	$\frac{27}{512}$	$\frac{53}{1024}$	$=\mathcal{Z}_{\mathcal{N}=4,8}$
$= \mathcal{I}_{\mathcal{N}=4,8;\text{bulk}}^{U(1)^r/W_G}$	SO(11)	$\frac{663}{8192}$	$\frac{1989}{32768}$	
	SO(12)	$\frac{1589}{32768}$	$\frac{6175}{131072}$	
	SO(13)	$\frac{4641}{65536}$	$\frac{26791}{524288}$	
	SO(14)	$\frac{1471}{32768}$	$\frac{5661}{131072}$	
	SO(15)	$\frac{16575}{262144}$	$\frac{92599}{2097152}$	
	G_2	$\frac{35}{144}$	151 864	
	F_4	$\frac{30145}{165888}$	$\frac{493013}{3981312}$	

IIA with an orienti-point

M on
$$S^1 \times \mathcal{R}^{0+1} \times \mathcal{R}^9/Z_2$$
 = IIA on $\mathcal{R}^{0+1} \times \mathcal{R}^9/Z_2$

anomaly cancelation requires a single chiral fermion supported on $\mathbf{S}^1 \times \mathcal{R}^{0+1}$

Kaluza-Klein reduction generates two towers of fermionic harmonic oscillators, resulting in four Hilbert spaces whose partition functions constitute the two generating functions above

Dasgupt, Mukhi 1995

Kol, Hanany, Rajaraman 1999

which requires

$$\sum_{N} \mathcal{I}_{\mathcal{N}=16}^{SU(N)} t^{N} = \frac{1}{1-t}$$

$$\sum_{N} \mathcal{I}_{\mathcal{N}=16}^{O(N)} t^{N} = \prod_{n=1}^{\infty} (1 + t^{2n-1})$$

$$\sum_{N} \mathcal{I}_{\mathcal{N}=16}^{Sp(N)} t^{2N} = \prod_{n=1}^{\infty} (1+t^{2n})$$

but the program for proving the latter two was stuck, well before we come to this maximal supersymmetry

then ... jumping forward some 15 years

wall-crossing, rational invariants, quiver invariants, partition functions, localization, black hole microstates, ...

$$R^1 \times R^3 \times$$

1d/2d Gauged Linear Sigma Models with 4 Supercharges

$$SU(2)_R imes U(1)_R$$
 gauge fields $(A_0,\lambda_{lpha},X_i,D)^a$ FI constants ξ^i for U(I)'s $J_{1,2,3}$ R chirals $(X,\psi_{lpha},F)^I$

1d/2d Gauged Linear Sigma Models with 2 Supercharges

 $\mathcal I$ as Ω

$$\mathcal{I}(\mathbf{y}; x) \equiv \operatorname{Tr}_{\operatorname{kernel}(Q)} \left[(-1)^{2J_3} \mathbf{y}^{2(R+J_3)} x^{G_F} \right]$$

$$\Omega(\mathbf{y}; x) \equiv \lim_{e^2 \to 0} \operatorname{Tr} \left[(-1)^{2J_3} \mathbf{y}^{2J_3 + 2R} x^{G_F} e^{-\beta Q^2} \right]$$

a sweeping generalization of geometric index theorem via path-integral by Alvarez-Gaume, ~1983, to gauged systems

with the naïve invariance of index under continuous deformation, or under the banner of "localization"

$$\mathcal{L}_{\text{vector}} = \frac{1}{e^2} \operatorname{Re} \left(\int d\theta^2 \operatorname{tr} W_{\alpha} W^{\alpha} \right)$$

$$\mathcal{L}_{\text{chiral}} = \frac{1}{g^2} \int d\theta^2 d\bar{\theta}^2 \operatorname{tr} \bar{\Phi} e^V \Phi$$

$$\mathcal{L}_{\text{usperpotential}} = \int d\theta^2 W(\Phi) + c.c.$$

$$\mathcal{L}_{\mathrm{FI}} = \xi \int d\theta^2 d\bar{\theta}^2 \mathrm{tr} \, V$$

scale up FI to send $e\xi$ to infinite for a reason to be explained, then, after a long, long song and dance,

a Jeffrey-Kirwan contour integral (for χ_y genus if compact and geometric)

$$\Omega \equiv \lim_{e^2 \to 0} \operatorname{Tr} \left[(-1)^{2J_3} \mathbf{y}^{2J_3 + 2R} x^{G_F} e^{-\beta Q^2} \right]$$

$$= \sum \text{JK-Res}_{\eta:\{Q_i\}} g(u, \bar{u}; 0)$$

$$g(u, \bar{u}; D = 0) = \left(\frac{1}{\mathbf{y} - \mathbf{y}^{-1}}\right)^{\text{rank}} \prod_{\alpha} \frac{t^{-\alpha/2} - t^{\alpha/2}}{t^{\alpha/2}\mathbf{y}^{-1} - t^{-\alpha/2}\mathbf{y}}$$

$$\times \prod \frac{t^{-Q_i/2}x^{-F_i/2}\mathbf{y}^{-(R_i/2-1)} - t^{Q_i/2}x^{F_i/2}\mathbf{y}^{R_i/2-1}}{t^{Q_i/2}x^{F_i/2}\mathbf{v}^{R_i/2} - t^{-Q_i/2}x^{-F_i/2}\mathbf{v}^{-R_i/2}}$$

Hori, Kim, P.Y. 2014

Szenes, Vergne 2004 Brion, M. Vergne 1999 Jeffrey, Kirwan 1993

2d GLSM Elliptic Genera

Benini + Eager + Hori + Tachikawa 2013

1d GLSM Equivariant Index

Hori + Kim + P.Y. 2014

N=4 CP(N -1)

chirals	U(1)	$U(N)_F$
X	1	N

quintic CY3 hypersurface in CP4

$$\begin{array}{c|cccc} & P & X_{1,2,3,4,5} \\ \hline U(1) & -5 & 1 \end{array}$$

N=4 rank 2 GLSM Q.M. for CY3 in WCP(11222)

for the entire class of N=4 quiver quantum mechanics, the entire Hodge diamonds can be recursively read off from such χ_y genus in each and every wall-crossing chambers!!!

J.Manschot, B.Pioline, A.Sen 2010~2013 S.J. Lee, Z.L.Wang, P.Y. 2012~2014

elliptic genus & witten index

wall-crossing Solomonoo

quiver invariants

4d N=2 black hole microstates

wall-crossing happens at $\,\xi=0\,$ because a continuum direction touches the ground state

what if such asymptotic flat directions cannot be lifted by a parameter tuning? can we still count the relevant Witten index reliably via path integral?

the only generic answer has to be "NO" and higher supersymmetry does not help either

\mathcal{I} from Ω

rational invariants to the rescue when the asymptotic flatness arises from the Coulomb side &

how this fixed a road to the M-theory hypothesis

back to supersymmetric pure Yang-Mills quantum mechanics $\mathcal{N}=4,8,16$

after rigorous applications of HKY procedure,

O

$$\Omega_{\mathcal{N}=4}^{SU(2)}(\mathbf{y}) = \frac{1}{2} \frac{1}{(\mathbf{y}^{-1} + \mathbf{y})} \rightarrow \frac{1}{2^2}$$

$$\Omega_{\mathcal{N}=4}^{SU(3)}(\mathbf{y}) = \frac{1}{3} \frac{1}{(\mathbf{v}^{-2} + 1 + \mathbf{v}^2)}$$
 $\rightarrow \frac{1}{3^2}$

$$\Omega_{\mathcal{N}=4}^{SU(4)}(\mathbf{y}) = \frac{1}{4} \frac{1}{(\mathbf{y}^{-3} + \mathbf{y}^{-1} + \mathbf{y} + \mathbf{y}^{3})} \longrightarrow \frac{1}{4^{2}}$$

$$\Omega_{\mathcal{N}=4}^{SU(N)}(\mathbf{y}) = \frac{1}{N} \frac{\mathbf{y}^{-1} - \mathbf{y}}{\mathbf{y}^{-N} - \mathbf{y}^{N}}$$
 $\rightarrow \frac{1}{N^{2}}$

other rank 2 examples

O

$$\Omega_{\mathcal{N}=4}^{SO(4)}(\mathbf{y}) = \frac{1}{4} \frac{1}{(\mathbf{y}^{-1} + \mathbf{y})^2}$$

$$\Omega_{\mathcal{N}=4}^{SO(5)/Sp(2)}(\mathbf{y}) = \frac{1}{8} \left[\frac{2}{\mathbf{y}^{-2} + \mathbf{y}^2} + \frac{1}{(\mathbf{y}^{-1} + \mathbf{y})^2} \right]$$

$$\Omega_{\mathcal{N}=4}^{G_2}(\mathbf{y}) = \frac{1}{12} \left[\frac{2}{\mathbf{y}^{-2} - 1 + \mathbf{y}^2} + \frac{2}{\mathbf{y}^{-2} + 1 + \mathbf{y}^2} + \frac{1}{(\mathbf{y}^{-1} + \mathbf{y})^2} \right]$$

higher rank examples

0

$$\Omega_{\mathcal{N}=4}^{SU(4)/SO(6)}(\mathbf{y}) = \frac{1}{4} \frac{1}{(\mathbf{y}^{-3} + \mathbf{y}^{-1} + \mathbf{y} + \mathbf{y}^{3})}$$

$$\Omega_{\mathcal{N}=4}^{SO(7)/Sp(3)}(\mathbf{y}) = \frac{1}{48} \left[\frac{8}{\mathbf{y}^{-3} + \mathbf{y}^{3}} + \frac{6}{(\mathbf{y}^{-2} + \mathbf{y}^{2})(\mathbf{y}^{-1} + \mathbf{y})} + \frac{1}{(\mathbf{y}^{-1} + \mathbf{y})^{3}} \right]$$

$$\Omega_{\mathcal{N}=4}^{SO(8)}(\mathbf{y}) = \frac{1}{192} \left[\frac{32}{(\mathbf{y}^{-3} + \mathbf{y}^3)(\mathbf{y}^{-1} + \mathbf{y})} + \frac{12}{(\mathbf{y}^{-2} + \mathbf{y}^2)^2} + \frac{1}{(\mathbf{y}^{-1} + \mathbf{y})^4} \right]$$

which can be organized into

analog of Kontsevich-Soibelman's rational invariants, or analog of Gopakumar-Vafa's multicover formulae, meaning that these captures multi-particle plane-wave sectors

elliptic Weyl elements for some classical groups

G	$\mid W \mid$	Elliptic Weyl Elements				
SU(N)	S_N	$(123\cdots N)$				
SO(4)	$Z_2 imes S_2$	$(\dot{1})(\dot{2})$				
SO(5)/Sp(2)	$(Z_2)^2 imes S_2$	$(1\dot{2}), (\dot{1})(\dot{2})$				
SO(6)	$(Z_2)^2 imes S_3$	$(1\dot{2})(\dot{3})$				
SO(7)/Sp(3)	$(Z_2)^3 \times S_3$	$(\dot{1}\dot{2}\dot{3}), (12\dot{3}), (\dot{1}\dot{2})(\dot{3}), (\dot{1})(\dot{2})(\dot{3})$				
SO(8)	$(Z_2)^3 \times S_4$	$(\dot{1}\dot{2}\dot{3})(\dot{4}), (12\dot{3})(\dot{4}), (1\dot{2})(3\dot{4}), (\dot{1})(\dot{2})(\dot{3})(\dot{4})$				

why? because the localization implicitly computes the bulk part, and the index \mathcal{I} is zero for these theories

$$\mathcal{I} = \mathcal{I}_{\text{bulk}} + \delta \mathcal{I}$$

$$\lim_{\beta \to 0} \text{Tr} \left[(-1)^{2J_3} \mathbf{y}^{2J_3 + 2R} x^{G_F} e^{-\beta Q^2} \right]$$

$$e^{2/3} \beta \to 0$$

$$\Omega \equiv \lim_{e^2 \to 0} \text{Tr} \left[(-1)^{2J_3} \mathbf{y}^{2J_3 + 2R} x^{G_F} e^{-\beta Q^2} \right]$$

these equal those of the Cartan orbifolds, for $\mathcal{N}=4,8$ cases

$$0 = \mathcal{I}_{\mathcal{N}=4,8}^G = \mathcal{I}_{\mathcal{N}=4,8;\text{bulk}}^G + \delta \mathcal{I}_{\mathcal{N}=4,8}^G$$

$$\Omega_{\mathcal{N}=4,8}^G = \mathcal{I}_{\mathcal{N}=4,8;\text{bulk}}^G = -\delta \mathcal{I}_{\mathcal{N}=4,8}^G$$

$$= -\delta \mathcal{I}_{\mathcal{N}=4,8}^{U(1)^r/W}$$

$$= \mathcal{I}_{\mathcal{N}=4,8;\text{bulk}}^{U(1)^r/W}$$

P.Y. 1997

the left hand side now agrees with the right hand side

with the smallest example being

$$\Omega_{\mathcal{N}=4}^{SO(5)/Sp(2)}(\mathbf{y}) = \frac{1}{8} \left[\frac{2}{\mathbf{y}^{-2} + \mathbf{y}^2} + \frac{1}{(\mathbf{y}^{-1} + \mathbf{y})^2} \right] \rightarrow \frac{5}{32}$$

and now demonstrate the vanishing index for all simple groups, for lower supersymmetries

$$\mathcal{I}_{\mathcal{N}=4,8:\text{bulk}}^G = \mathcal{I}_{\mathcal{N}=4,8}^G - \delta \mathcal{I}_{\mathcal{N}=4,8}^G$$

$$\Omega_{\mathcal{N}=4,8}^G = 0 + \mathcal{I}_{\mathcal{N}=4,8:\text{bulk}}^{U(1)^r/W_G}$$

$$\mathcal{I}_{\mathcal{N}=4,8}^G = 0$$

S.J. Lee, P.Y. 2016

$\mathcal{N}=16$ with general simple Lie groups

$$\Omega_{\mathcal{N}=16}^{G}(\mathbf{y}, x) = \mathcal{I}_{\mathcal{N}=16}^{G} + \sum_{G' \subset G} \# \cdot \Delta_{\mathcal{N}=16}^{G'}$$

$$\Delta_{\mathcal{N}=16}^{G}(\mathbf{y},x) = \frac{1}{|W|} \sum_{w}' \frac{1}{\text{Det}(\mathbf{y}^{-1} - \mathbf{y} \cdot w)} \cdot \prod_{a=1,2,3} \frac{\text{Det}(\mathbf{y}^{R_a-1} x^{F_a/2} - \mathbf{y}^{1-R_a} x^{-F_a/2} \cdot w)}{\text{Det}(\mathbf{y}^{R_a} x^{F_a/2} - \mathbf{y}^{-R_a} x^{-F_a/2} \cdot w)}$$

elliptic Weyl elements only

$$0 \neq \mathrm{Det}\,(1-w)$$

$$\begin{split} &\Omega_{\mathcal{N}=16}^{SU(N)} &= 1 + \sum_{p|N;p>1} 1 \cdot \Delta_{\mathcal{N}=16}^{SU(p)} \\ &\Omega_{\mathcal{N}=16}^{SO(5)/Sp(2)} &= 1 + 2\Delta_{\mathcal{N}=16}^{SO(3)/Sp(1)} + \Delta_{\mathcal{N}=16}^{SO(5)/Sp(2)} \\ &\Omega_{\mathcal{N}=16}^{G_2} &= 2 + 2\Delta_{\mathcal{N}=16}^{SU(2)} + \Delta_{\mathcal{N}=16}^{G_2} \\ &\Omega_{\mathcal{N}=16}^{SO(7)} &= 1 + 3\Delta_{\mathcal{N}=16}^{SO(3)} + \left(\Delta_{\mathcal{N}=16}^{SO(3)}\right)^2 + \Delta_{\mathcal{N}=16}^{SO(5)} + \Delta_{\mathcal{N}=16}^{SO(7)} \\ &\Omega_{\mathcal{N}=16}^{Sp(3)} &= 2 + 3\Delta_{\mathcal{N}=16}^{Sp(1)} + \left(\Delta_{\mathcal{N}=16}^{Sp(1)}\right)^2 + \Delta_{\mathcal{N}=16}^{Sp(2)} + \Delta_{\mathcal{N}=16}^{Sp(3)} \\ &\Omega_{\mathcal{N}=16}^{SO(8)} &= 2 + 4\Delta_{\mathcal{N}=16}^{SO(3)} + 2\left(\Delta_{\mathcal{N}=16}^{SO(3)}\right)^2 + \left(\Delta_{\mathcal{N}=16}^{SO(3)}\right)^3 + 3\Delta_{\mathcal{N}=16}^{SO(5)} + \Delta_{\mathcal{N}=16}^{SO(8)} \\ &\Omega_{\mathcal{N}=16}^{SO(9)} &= 2 + 4\Delta_{\mathcal{N}=16}^{SO(3)} + 2\left(\Delta_{\mathcal{N}=16}^{SO(3)}\right)^2 + 2\Delta_{\mathcal{N}=16}^{SO(5)} + \Delta_{\mathcal{N}=16}^{SO(3)} \cdot \Delta_{\mathcal{N}=16}^{SO(7)} + \Delta_{\mathcal{N}=16}^{SO(9)} \\ &\Omega_{\mathcal{N}=16}^{Sp(4)} &= 2 + 5\Delta_{\mathcal{N}=16}^{Sp(1)} + 2\left(\Delta_{\mathcal{N}=16}^{Sp(1)}\right)^2 + 2\Delta_{\mathcal{N}=16}^{Sp(2)} + \Delta_{\mathcal{N}=16}^{Sp(1)} \cdot \Delta_{\mathcal{N}=16}^{Sp(3)} + \Delta_{\mathcal{N}=16}^{Sp(3)} + \Delta_{\mathcal{N}=16}^{Sp(4)} \\ &\Omega_{\mathcal{N}=16}^{Sp(4)} &= 2 + 5\Delta_{\mathcal{N}=16}^{Sp(1)} + 2\left(\Delta_{\mathcal{N}=16}^{Sp(1)}\right)^2 + 2\Delta_{\mathcal{N}=16}^{Sp(2)} + \Delta_{\mathcal{N}=16}^{Sp(1)} \cdot \Delta_{\mathcal{N}=16}^{Sp(3)} + \Delta_{\mathcal{N}=16}^{Sp(4)} + \Delta_{\mathcal{N}=16}^{Sp(4)} \\ &\Omega_{\mathcal{N}=16}^{Sp(4)} &= 2 + 5\Delta_{\mathcal{N}=16}^{Sp(1)} + 2\left(\Delta_{\mathcal{N}=16}^{Sp(1)}\right)^2 + 2\Delta_{\mathcal{N}=16}^{Sp(2)} + \Delta_{\mathcal{N}=16}^{Sp(1)} \cdot \Delta_{\mathcal{N}=16}^{Sp(3)} + \Delta_{\mathcal{N}=16}^{Sp(4)} + \Delta_{\mathcal{N}=16}^{Sp(4)} \\ &\Omega_{\mathcal{N}=16}^{Sp(4)} &= 2 + 5\Delta_{\mathcal{N}=16}^{Sp(1)} + 2\left(\Delta_{\mathcal{N}=16}^{Sp(1)}\right)^2 + 2\Delta_{\mathcal{N}=16}^{Sp(2)} + \Delta_{\mathcal{N}=16}^{Sp(1)} \cdot \Delta_{\mathcal{N}=16}^{Sp(3)} + \Delta_{\mathcal{N}=16}^{Sp(4)} + \Delta_{\mathcal{N}=16}^{Sp(4)} \\ &\Omega_{\mathcal{N}=16}^{Sp(4)} &= 2 + 5\Delta_{\mathcal{N}=16}^{Sp(1)} + 2\left(\Delta_{\mathcal{N}=16}^{Sp(1)}\right)^2 + 2\Delta_{\mathcal{N}=16}^{Sp(2)} + \Delta_{\mathcal{N}=16}^{Sp(1)} \cdot \Delta_{\mathcal{N}=16}^{Sp(3)} + \Delta_{\mathcal{N}=16}^{Sp(4)} \\ &\Omega_{\mathcal{N}=16}^{Sp(4)} &= 2 + 5\Delta_{\mathcal{N}=16}^{Sp(1)} + 2\Delta_{\mathcal{N}=16}^{Sp(2)} + \Delta_{\mathcal{N}=16}^{Sp(2)} + \Delta_{\mathcal{N}=16}^{Sp(3)} + \Delta_{\mathcal{N}=16}^{Sp(4)} \\ &\Omega_{\mathcal{N}=16}^{Sp(4)} &= 2 + 3\Delta_{\mathcal{N}=16}^{Sp(4)} + 2\Delta_{\mathcal{N}=16}^{Sp(4)} + 2\Delta_{\mathcal{N}=16}^{Sp(4)} \\ &\Omega_{\mathcal{N}=16}^{Sp(4)} &= 2\Delta_{\mathcal{N}=16}^{Sp(4)} + 2\Delta_{\mathcal{N}=16}^{Sp(4)} + 2\Delta_{\mathcal{N}$$

$$\Delta_{\mathcal{N}=16}^{G}(\mathbf{y},x) = \frac{1}{|W|} \sum_{w}^{\prime} \frac{1}{\text{Det}(\mathbf{y}^{-1} - \mathbf{y} \cdot w)} \cdot \prod_{a=1,2,3} \frac{\text{Det}(\mathbf{y}^{R_{a}-1} x^{F_{a}/2} - \mathbf{y}^{1-R_{a}} x^{-F_{a}/2} \cdot w)}{\text{Det}(\mathbf{y}^{R_{a}} x^{F_{a}/2} - \mathbf{y}^{-R_{a}} x^{-F_{a}/2} \cdot w)}$$

the results suffice for reading off the Witten index $\mathcal{I}_{\mathcal{N}=16}^G$ from the unique integral part

$$\mathcal{I}_{\mathcal{N}=16}^{SU(N)} = 1$$

$$\mathcal{I}_{\mathcal{N}=16}^{SO(5)/Sp(2)} = 1$$

$$\mathcal{I}_{\mathcal{N}=16}^{G_2} = 2$$

$$\mathcal{I}_{\mathcal{N}=16}^{SO(7)} = 1$$

$$\mathcal{I}_{\mathcal{N}=16}^{Sp(3)} = 2$$

$$\mathcal{I}_{\mathcal{N}=16}^{SO(8)} = 2$$

$$\mathcal{I}_{\mathcal{N}=16}^{SO(9)} = 2$$

$$\mathcal{I}_{\mathcal{N}=16}^{Sp(4)} = 2$$

:

and similarly

$$\mathcal{I}_{\mathcal{N}=16}^{SU(N)} = 1$$
 $\mathcal{I}_{\mathcal{N}=16}^{O(5)} = \mathcal{I}_{\mathcal{N}=16}^{Sp(2)} = 1$
 $\mathcal{I}_{\mathcal{N}=16}^{G_2} = 2$
 $\mathcal{I}_{\mathcal{N}=16}^{O(7)} = 1$
 $\mathcal{I}_{\mathcal{N}=16}^{Sp(3)} = 2$
 $\mathcal{I}_{\mathcal{N}=16}^{O(8)} = 2$
 $\mathcal{I}_{\mathcal{N}=16}^{O(9)} = 2$
 $\mathcal{I}_{\mathcal{N}=16}^{O(9)} = 2$
 $\mathcal{I}_{\mathcal{N}=16}^{Sp(4)} = 2$

:

which can be organized into the generating functions

$$\sum_{N} \mathcal{I}_{\mathcal{N}=16}^{SU(N)} t^{N} = \frac{1}{1-t}$$

$$\sum_{N} \mathcal{I}_{\mathcal{N}=16}^{O(N)} t^{N} = \prod_{n=1}^{\infty} (1 + t^{2n-1})$$

$$\sum_{N} \mathcal{I}_{\mathcal{N}=16}^{Sp(N)} t^{2N} = \prod_{n=1}^{\infty} (1+t^{2n})$$

reproducing the predicted numbers from IIA with an orienti-point

M on
$$S^1 \times \mathcal{R}^{0+1} \times \mathcal{R}^9/Z_2 = IIA$$
 on $\mathcal{R}^{0+1} \times \mathcal{R}^9/Z_2$

IIA theory must remember this M-theory origin

Dasgupta, Mukhi 1995 Kol, Hanany, Rajaraman 1999 Kac, Smilga 1999 by forming an infinite tower of multi D-particle bound states along fixed points of the orienti-point

•

S.J.Lee, P.Y. 2016 & 2017

such rational Ω with integral \mathcal{I} cleverly embedded is not limited to pure Yang-Mills quantum mechanics, as can be also seen in the refined version of KS wall-crossing formulae, or in solutions thereof, for quivers

$$G = S\left[\prod_{i} U(N_{i})\right] \qquad \qquad \omega(\Gamma; \mathbf{y}) \equiv \sum_{p \mid \Gamma} \mathcal{I}(\Gamma/p; \mathbf{y}^{p}) \cdot \frac{\mathbf{y} - \mathbf{y}^{-1}}{p(\mathbf{y}^{p} - \mathbf{y}^{-p})}$$

proposal: the twisted partition functions compute, directly, these rational invariants for quiver theories

S.J. Lee + P.Y., 2016

$$G = S\left[\prod_{i} U(N_i)\right]$$

$$\Omega(\Gamma; \mathbf{y}) = \mathcal{I}_{\text{bulk}} = \omega(\Gamma; \mathbf{y})$$

with generic superpotential

proposal: the twisted partition functions of quivers compute these rational invariants for quiver theories

S.J. Lee + P.Y., 2016

$$G = S\left[\prod_{i} U(N_i)\right]$$

$$\Omega(\Gamma; \mathbf{y}) = \mathcal{I}_{\text{bulk}} = \omega(\Gamma; \mathbf{y})$$

with generic superpotential

$$\mathcal{I}(\Gamma; \mathbf{y}) = \sum_{p \mid \Gamma} \mu(p) \cdot \Omega(\Gamma/p; \mathbf{y}^p) \cdot \frac{\mathbf{y} - \mathbf{y}^{-1}}{p(\mathbf{y}^p - \mathbf{y}^{-p})}$$

example: Kronecker quiver

$$\mathcal{I}(\mathcal{Q}_{n,n}^k; \mathbf{y}) = \sum_{p|n} \mu(p) \cdot \Omega(\mathcal{Q}_{n/p,n/p}^k; \mathbf{y}^p) \cdot \frac{\mathbf{y} - \mathbf{y}^{-1}}{p(\mathbf{y}^p - \mathbf{y}^{-p})}$$

$$\mathcal{I}(\mathcal{Q}_{2,2}^{1}; \mathbf{y}) = 0$$

$$\mathcal{I}(\mathcal{Q}_{2,2}^{2}; \mathbf{y}) = 0$$

$$k$$

$$\mathcal{I}(\mathcal{Q}_{2,2}^{3}; \mathbf{y}) = -\chi_{5/2}(\mathbf{y}^{2})$$

$$\mathcal{I}(\mathcal{Q}_{2,2}^{4}; \mathbf{y}) = -\chi_{9/2}(\mathbf{y}^{2}) - \chi_{5/2}(\mathbf{y}^{2})$$

$$\mathcal{I}(\mathcal{Q}_{2,2}^{5}; \mathbf{y}) = -\chi_{13/2}(\mathbf{y}^{2}) - 2\chi_{9/2}(\mathbf{y}^{2}) - \chi_{5/2}(\mathbf{y}^{2})$$

$$\mathcal{I}(\mathcal{Q}_{2,2}^{5}; \mathbf{y}) = -\chi_{13/2}(\mathbf{y}^{2}) - 2\chi_{9/2}(\mathbf{y}^{2}) - \chi_{5/2}(\mathbf{y}^{2})$$

example: 3-node quiver

$$\mathcal{I}(\mathcal{Q}_{n,n,n}^{k,l};\mathbf{y}) = \sum_{p|n} \mu(p) \cdot \Omega(\mathcal{Q}_{n/p,n/p,n/p}^{k,l};\mathbf{y}^p) \cdot \frac{\mathbf{y} - \mathbf{y}^{-1}}{p(\mathbf{y}^p - \mathbf{y}^{-p})}$$

example: triangle quiver

$$\mathcal{I}(\mathcal{Q}_{n,n,n}^{k,l,m};\mathbf{y}) = \sum_{p|n} \mu(p) \cdot \Omega(\mathcal{Q}_{n/p,n/p,n/p}^{k,l,m};\mathbf{y}^p) \cdot \frac{\mathbf{y} - \mathbf{y}^{-1}}{p(\mathbf{y}^p - \mathbf{y}^{-p})}$$

$$\mathcal{I}(\mathcal{Q}_{2,2,2}^{1,1,-1};\mathbf{y}) = 0$$

$$\mathcal{I}(\mathcal{Q}_{2,2,2}^{2,1,-1},;\mathbf{y}) = -\chi_{5/2}(\mathbf{y}^2) - \chi_{3/2}(\mathbf{y}^2) - \chi_{1/2}(\mathbf{y}^2)$$

$$\mathcal{I}(\mathcal{Q}_{2,2,2}^{1,1,-2};\mathbf{y}) = -\chi_{5/2}(\mathbf{y}^2)$$

$$\mathcal{I}(\mathcal{Q}_{2,2,2}^{2,2,-1};\mathbf{y}) = -\chi_{9/2}(\mathbf{y}^2) - \chi_{7/2}(\mathbf{y}^2) - 3\chi_{5/2}(\mathbf{y}^2) - \chi_{3/2}(\mathbf{y}^2) - \chi_{1/2}(\mathbf{y}^2)$$

$$\mathcal{I}(\mathcal{Q}_{2,2,2}^{2,1,-2};\mathbf{y}) = -\chi_{9/2}(\mathbf{y}^2) - \chi_{7/2}(\mathbf{y}^2) - 3\chi_{5/2}(\mathbf{y}^2) - 2\chi_{3/2}(\mathbf{y}^2) - \chi_{1/2}(\mathbf{y}^2)$$

$$\mathcal{I}(\mathcal{Q}_{2,2,2}^{3,1,-1};\mathbf{y}) = -\chi_{9/2}(\mathbf{y}^2) - \chi_{7/2}(\mathbf{y}^2) - 3\chi_{5/2}(\mathbf{y}^2) - 2\chi_{3/2}(\mathbf{y}^2) - 2\chi_{1/2}(\mathbf{y}^2)$$

$$\mathcal{I}(\mathcal{Q}_{2,2,2}^{1,1,-3};\mathbf{y}) = -\chi_{9/2}(\mathbf{y}^2) - \chi_{7/2}(\mathbf{y}^2) - 3\chi_{5/2}(\mathbf{y}^2) - 2\chi_{3/2}(\mathbf{y}^2) - 2\chi_{1/2}(\mathbf{y}^2)$$

$$\mathcal{I}(\mathcal{Q}_{2,2,2}^{2,2,-2};\mathbf{y}) = -\chi_{9/2}(\mathbf{y}^2) - \chi_{1/2}(\mathbf{y}^2) - 4\chi_{9/2}(\mathbf{y}^2) - \chi_{1/2}(\mathbf{y}^2)$$

$$\mathcal{I}(\mathcal{Q}_{2,2,2}^{2,2,-2};\mathbf{y}) = -\chi_{13/2}(\mathbf{y}^2) - \chi_{11/2}(\mathbf{y}^2) - 4\chi_{9/2}(\mathbf{y}^2) - \chi_{1/2}(\mathbf{y}^2)$$

1d challenges, conceptual and practical

partition functions and indices for quivers at vanishing F1? (quiver invariants \rightarrow 4d N=2 black hole microstate counting!)

high rank asymptotics: a better contour prescription?

rational invariants for general orientifolded quivers?

then, what went wrong 15 years ago?

P.Y. 1997	$\mathcal{N}=4$	$\mathcal{I}^G_{ ext{bulk}} = -\delta \mathcal{I}^G$	$\mathcal{I}^G_{ ext{bulk}} = \mathcal{Z}^G$	P.Y. / Sethi, Stern 1997 Moore, Nakrasov, Shatashvili 1998
Green, Gutperle 1997 Kac, Smilga 1999	SU(N)	$\frac{1}{N^2}$	$\frac{1}{N^2}$	Staudacher 2000 / Pestun 2002
	Sp(2)	$\frac{5}{32}$	$\frac{9}{64}$	
	Sp(3)	$\frac{15}{128}$	$\tfrac{51}{512}$	
	Sp(4)	$\frac{195}{2048}$	$\frac{1275}{16384}$	
	Sp(5)	$\frac{663}{8192}$	$\frac{8415}{131072}$	
	Sp(6)	$\frac{4641}{65536}$	$\frac{115005}{2097152}$	
	Sp(7)	$\frac{16575}{262144}$	$\frac{805035}{16777216}$	
au G	SO(7)	$\frac{15}{128}$	$\frac{25}{256}$	au G
$\mathcal{I}^G_{\mathcal{N}=4,8:\mathrm{bulk}}$	SO(8)	$\frac{59}{1024}$	$\frac{117}{2048}$	$\mathcal{I}^G_{\mathcal{N}=4,8: ext{bulk}}$
2-C	SO(9)	$\frac{195}{2048}$	$\frac{613}{8192}$	~C
$= -\delta \mathcal{I}_{\mathcal{N}=4,8}^G$	SO(10)	$\tfrac{27}{512}$	$\frac{53}{1024}$	$=\mathcal{Z}^G_{\mathcal{N}=4,8: ext{matrix}}$
TT (1) T (TT T	SO(11)	$\frac{663}{8192}$	$\frac{1989}{32768}$	
$=\mathcal{I}_{\mathcal{N}=4.8:\mathrm{bulk}}^{U(1)^{r}/W_{G}}$	SO(12)	$\frac{1589}{32768}$	$\frac{6175}{131072}$	
2,0,00	SO(13)	$\frac{4641}{65536}$	$\frac{26791}{524288}$	
	SO(14)	$\frac{1471}{32768}$	$\frac{5661}{131072}$	
	SO(15)	$\frac{16575}{262144}$	$\frac{92599}{2097152}$	
	G_2	$\frac{35}{144}$	151 864	
	F_4	$\frac{30145}{165888}$	$\frac{493013}{3981312}$	

recall that the localization implicitly computes the bulk part

$$\mathcal{I} = \mathcal{I}_{\text{bulk}} + \delta \mathcal{I}$$

$$\lim_{\beta \to 0} \text{Tr} \left[(-1)^{2J_3} \mathbf{y}^{2J_3 + 2R} x^{G_F} e^{-\beta Q^2} \right]$$

$$e^{2/3} \beta \to 0$$

$$\Omega \equiv \lim_{e^2 \to 0} \text{Tr} \left[(-1)^{2J_3} \mathbf{y}^{2J_3 + 2R} x^{G_F} e^{-\beta Q^2} \right]$$

Green, Gutperle 1997 Kac, Smilga 1999 $SU(N)$ $S_{p(2)}$ $S_{p(3)}$ $S_{p(3)}$ $S_{p(3)}$ $S_{p(3)}$ $S_{p(4)}$ $S_{p(3)}$ $S_{p(4)}$ $S_{p(5)}$ $S_{p(5)}$ $S_{p(6)}$ $S_{p(6)}$ $S_{p(6)}$ $S_{p(6)}$ $S_{p(7)}$ $S_{p(7)$	
$Sp(3)$ $\frac{15}{128}$ $\frac{15}{128}$ $\frac{15}{128}$ $\frac{51}{512}$ Staudacher 20 Pestun 2002 $Sp(4)$ $\frac{195}{2048}$ $\frac{195}{2048}$ $\frac{195}{16384}$ $\frac{1275}{16384}$ $Sp(5)$ $\frac{663}{8192}$ $\frac{8415}{131072}$ $Sp(6)$ $\frac{4641}{65536}$ $\frac{4641}{65536}$ $\frac{4641}{65536}$ $\frac{115005}{2097152}$ $Sp(7)$ $\frac{16575}{262144}$ $\frac{16575}{262144}$ $\frac{805035}{16777216}$	sov,
$Sp(3)$ $\frac{15}{128}$ $\frac{15}{128}$ $\frac{15}{512}$ Pestun 2002 $Sp(4)$ $\frac{195}{2048}$ $\frac{195}{2048}$ $\frac{195}{16384}$ $Sp(5)$ $\frac{663}{8192}$ $\frac{663}{8192}$ $\frac{8415}{131072}$ $Sp(6)$ $\frac{4641}{65536}$ $\frac{4641}{65536}$ $\frac{4641}{65536}$ $\frac{115005}{2097152}$ $Sp(7)$ $\frac{16575}{262144}$ $\frac{16575}{262144}$ $\frac{805035}{16777216}$	
$Sp(4)$ $\frac{195}{2048}$ $\frac{195}{2048}$ $\frac{1275}{16384}$ $Sp(5)$ $\frac{663}{8192}$ $\frac{663}{8192}$ $\frac{8415}{131072}$ $Sp(6)$ $\frac{4641}{65536}$ $\frac{4641}{65536}$ $\frac{4641}{65536}$ $\frac{115005}{2097152}$ $Sp(7)$ $\frac{16575}{262144}$ $\frac{16575}{262144}$ $\frac{805035}{16777216}$	00
$Sp(6)$ $\frac{4641}{65536}$ $\frac{4641}{65536}$ $\frac{115005}{2097152}$ $Sp(7)$ $\frac{16575}{262144}$ $\frac{16575}{262144}$ $\frac{805035}{16777216}$	
$Sp(7)$ $\frac{16575}{262144}$ $\frac{16575}{262144}$ $\frac{805035}{16777216}$	
GO(E) 15 15 25	
$\mathcal{T}G$ OG $SO(7)$ $\frac{15}{128}$ $\frac{15}{128}$ $\frac{25}{256}$ $\mathcal{T}G$	
$\mathcal{L}_{\text{bulk}} = 22$ $_{SO(8)}$ $_{\frac{59}{1024}}$ $_{\frac{59}{1024}}$ $_{\frac{117}{2048}}$ $\mathcal{L}_{\mathcal{N}=4,8:b}$	ılk
$\mathcal{I}^G_{ m bulk} = \Omega^G$ $SO(7)$ $SO(8)$ $SO(8)$ $SO(9)$ $SO(9)$ $SO(9)$ $SO(9)$ $SO(9)$ $SO(9)$ $SO(10)$ $SO($	0
$SO(10)$ $\frac{27}{512}$ $\frac{27}{512}$ $\frac{53}{1024}$ $\longrightarrow \mathcal{N} = 4$,8
$SO(11)$ $\frac{663}{8192}$ $\frac{663}{8192}$ $\frac{1989}{32768}$	
$SO(12)$ $\frac{1589}{32768}$ $\frac{1589}{32768}$ $\frac{6175}{131072}$	
$SO(13)$ $\frac{4641}{65536}$ $\frac{4641}{65536}$ $\frac{26791}{524288}$	
$SO(14)$ $\frac{1471}{32768}$ $\frac{1471}{32768}$ $\frac{5661}{131072}$	
$SO(15)$ $\frac{16575}{262144}$ $\frac{16575}{262144}$ $\frac{92599}{2097152}$	
G_2 $\frac{35}{144}$ $\frac{35}{144}$ $\frac{151}{864}$	
F_4 $\frac{30145}{165888}$ $\frac{30145}{165888}$ $\frac{493013}{3981312}$	

P.Y. 1997	$\mathcal{N}=4$	$\mathcal{I}^G_{\mathrm{bulk}} = \Omega^G$	$\mathcal{I}^G_{\mathrm{bulk}} = -\delta \mathcal{I}^G$	$\mathcal{I}^G_{ ext{bulk}} = \mathcal{Z}^G$
Green, Gutperle 1997 Kac, Smilga 1999	SU(N)	$\frac{1}{N^2}$	$\frac{1}{N^2}$	$\frac{1}{N^2}$
	Sp(2)	$\frac{5}{32}$	$\frac{5}{32}$	$\frac{9}{64}$
	Sp(3)	$\tfrac{15}{128}$	$\frac{15}{128}$	$\tfrac{51}{512}$
$\mathcal{I}^G_{ m bulk} = \Omega^G$ Lee, P.Y. 2016	Sp(4)	$\frac{195}{2048}$	$\frac{195}{2048}$	$\frac{1275}{16384}$
	Sp(5)	$\frac{663}{8192}$	$\frac{663}{8192}$	$\frac{8415}{131072}$
	Sp(6)	$\frac{4641}{65536}$	$\frac{4641}{65536}$	$\frac{115005}{2097152}$
	Sp(7)	$\frac{16575}{262144}$	$\frac{16575}{262144}$	$\frac{805035}{16777216}$
	SO(7)	$\tfrac{15}{128}$	$\tfrac{15}{128}$	$\frac{25}{256}$
	SO(8)	$\frac{59}{1024}$	$\frac{59}{1024}$	$\frac{117}{2048}$
	SO(9)	$\frac{195}{2048}$	$\frac{195}{2048}$	$\frac{613}{8192}$
	SO(10)	$\tfrac{27}{512}$	$\frac{27}{512}$	$\frac{53}{1024}$
	SO(11)	$\frac{663}{8192}$	$\frac{663}{8192}$	$\frac{1989}{32768}$
	SO(12)	$\frac{1589}{32768}$	$\frac{1589}{32768}$	$\frac{6175}{131072}$
	SO(13)	$\frac{4641}{65536}$	$\frac{4641}{65536}$	$\frac{26791}{524288}$
	SO(14)	$\frac{1471}{32768}$	$\frac{1471}{32768}$	$\frac{5661}{131072}$
	SO(15)	$\frac{16575}{262144}$	$\frac{16575}{262144}$	$\frac{92599}{2097152}$
	G_2	$\frac{35}{144}$	35 144	$\frac{151}{864}$
	F_4	$\frac{30145}{165888}$	$\frac{30145}{165888}$	$\frac{493013}{3981312}$

P.Y. /
Sethi, Stern 1997
Moore, Nakrasov,
Shatashvili 1998
Staudacher 2000
Pestun 2002

$$\mathcal{I}_{\text{bulk}}^{G}\Big|_{\beta \to 0} = \mathcal{Z}_{\text{matrix integral}}^{G}$$

this particular matrix integral is from the Id path integral reduced to 0d in the region near trivial Wilson line

this particular matrix integral is from the Id path integral reduced to 0d in the region near trivial Wilson line

$$\mathcal{I}_{\text{bulk}}^{G}\Big|_{\beta \to 0} = \sum_{H \subset G} \int dZ \, d\Phi \, \frac{O(\beta^0)}{Z^{2(g-h)}} \, e^{-[Z,Z]^2/4 + Z_{\mu}K_{\mu}(\Phi)/2}$$

other special Wilson line values, separated away at distance of order β^{-1} , do contribute generally; at such H saddles the effective 0d theory must have no decoupled free fermions

a trivial example SU(N)

$$\left. \mathcal{I}_{\mathrm{bulk}}^{G} \right|_{eta o 0} \ = \ \mathcal{Z}^{SU(N)/Z_N}$$

a trivial example SU(N)

$$\mathcal{I}_{\text{bulk}}^{G}\Big|_{\beta \to 0} = \sum_{u_{SU(N)}} \int dZ \, d\Phi \, e^{-[Z,Z]^2/4 + Z_{\mu}K_{\mu}(\Phi)/2}$$

$$= N \times \int dZ \, d\Phi \, e^{-[Z,Z]^2/4 + Z_{\mu}K_{\mu}(\Phi)/2}$$

$$= \mathcal{Z}^{SU(N)/Z_N}$$

$$\mathcal{I}_{\text{bulk}}^{G}(\mathbf{y})\Big|_{\mathbf{y}=e^{\beta z'};\beta\to 0} = \mathcal{Z}^{G}(z') + \sum_{H< G} d_{G:H} \frac{|\det(Q^{G})|/|W_{G}|}{|\det(Q^{H})|/|W_{H}|} \mathcal{Z}^{H}(z')$$

H saddles: maximal non-Abelian subgroups left unbroken by a Wilson line

$$\mathcal{I}^{SU(N)}_{\mathrm{bulk}}(\mathbf{y})\bigg|_{\mathbf{y}=e^{\beta z'};\beta\to 0} = \mathcal{Z}^{SU(N)}(z')$$

$$\left. \mathcal{I}_{\text{bulk}}^{Sp(K)}(\mathbf{y}) \right|_{\mathbf{y} = e^{\beta z'}; \beta \to 0} = \left. \mathcal{Z}^{Sp(K)}(z') + \sum_{m=1}^{K-1} \frac{1}{4} \, \mathcal{Z}^{Sp(m) \times Sp(K-m)}(z') \right.$$

$$\left. \mathcal{I}_{\text{bulk}}^{SO(2N)}(\mathbf{y}) \right|_{\mathbf{y} = e^{\beta z'}; \beta \to 0} = \left. \mathcal{Z}^{SO(2N)}(z') + \sum_{m=2}^{N-2} \frac{1}{8} \, \mathcal{Z}^{SO(2m) \times SO(2N-2m)}(z') \right.$$

$$\left. \mathcal{I}_{\text{bulk}}^{SO(2N+1)}(\mathbf{y}) \right|_{\mathbf{y} = e^{\beta z'}; \beta \to 0} = \left. \mathcal{Z}^{SO(2N+1)}(z') + \sum_{m=2}^{N} \frac{1}{4} \, \mathcal{Z}^{SO(2m) \times SO(2N+1-2m)}(z') \right.$$

P.Y. 1997	$\mathcal{N}=4$	$\mathcal{I}^G_{ m bulk} = \Omega^G$	$\mathcal{I}^G_{\mathrm{bulk}} = -\delta \mathcal{I}^G$	$\mathcal{I}_{\mathrm{bluk}}^{G}=\mathcal{Z}^{G}$	P.Y./
Green, Gutperle 1997 Kac, Smilga 1999	SU(N)	$\frac{1}{N^2}$	$\frac{1}{N^2}$	$\frac{1}{N^2}$	Sethi, Stern 1997 Moore, Nakrasov,
	Sp(2)	$\frac{5}{32}$	$\frac{5}{32}$	$\frac{9}{64}$	Shatashvili 1998
	Sp(3)	$\frac{15}{128}$	$\tfrac{15}{128}$	$\frac{51}{512}$	Staudacher 2000 Pestun 2002
	Sp(4)	$\frac{195}{2048}$	$\frac{195}{2048}$	$\frac{1275}{16384}$	
	Sp(5)	$\frac{663}{8192}$	$\frac{663}{8192}$	$\frac{8415}{131072}$	
	Sp(6)	$\frac{4641}{65536}$	$\frac{4641}{65536}$	$\frac{115005}{2097152}$	
	Sp(7)	$\frac{16575}{262144}$	$\frac{16575}{262144}$	$\frac{805035}{16777216}$	
$\mathcal{I}_{ ext{bulk}}^G = \Omega^G$	SO(7)	$\frac{15}{128}$	$\tfrac{15}{128}$	$\frac{25}{256}$	τ^G
Lee, P.Y. 2016	SO(8)	$\frac{59}{1024}$	$\frac{59}{1024}$	$\frac{117}{2048}$	$\mathcal{I}_{ ext{bulk}}^G = \mathcal{Z}_{ ext{matrix model}}^G$
Lee, 1. 1. 2010	SO(9)	$\frac{195}{2048}$	$\frac{195}{2048}$	$\frac{613}{8192}$	$\mathcal{Z}^{G}_{ ext{matrix mode}}$
	SO(10)	$\frac{27}{512}$	$\tfrac{27}{512}$	$\frac{53}{1024}$	
	SO(11)	$\frac{663}{8192}$	$\frac{663}{8192}$	$\frac{1989}{32768}$	
	SO(12)	$\frac{1589}{32768}$	$\frac{1589}{32768}$	$\frac{6175}{131072}$	
	SO(13)	$\frac{4641}{65536}$	$\frac{4641}{65536}$	$\frac{26791}{524288}$	
	SO(14)	$\frac{1471}{32768}$	$\frac{1471}{32768}$	$\frac{5661}{131072}$	
	SO(15)	$\frac{16575}{262144}$	$\frac{16575}{262144}$	$\frac{92599}{2097152}$	
,	G_2	$\frac{35}{144}$	$\frac{35}{144}$	$\frac{151}{864}$	
	F_4	$\frac{30145}{165888}$	$\frac{30145}{165888}$	$\frac{493013}{3981312}$	

such *H*-saddles appears due to the integration over the gauge holonomy, and thus are potentially relevant for all susy partition functions on a vanishing circle, regardless of space-time dimensions;

they explain many of subtleties out there, in relating partition functions of susy gauge theories in two adjacent dimensions

dimensional reduction is multi-branched for susy gauge theories

$$S^1 \times \mathcal{M}_{d-1}$$
 \mathcal{M}_{d-1}

$$\left. \Omega_d^G(\beta \tilde{z}) \right|_{\beta \to 0} \rightarrow \sum_{u_H} c_{G:H}(\beta) \mathcal{Z}_{d-1}^H(\tilde{z})$$

→ (1) equivariant Witten indices of different gauge theories can now be related across dimensions systematically

$$S^1 imes T^{d-1}$$
 T^{d-1} T^{d-1} $\mathcal{I}_d^G(eta ilde{z}) igg|_{eta o 0} o \sum_{u_H} d_{G:H} \, \mathcal{I}_{d-1}^H(ilde{z})$ purely algebraic factors u_H βA_0

→ (1') or, more precisely, twisted partition functions can now be related across dimensions systematically

$$S^1 imes T^{d-1}$$
 T^{d-1} T^{d-1} $\mathcal{I}_d^G(eta ilde{z}) igg|_{ ext{bulk}; eta o 0} o \sum_{u_H} \left. d_{G:H} \, \mathcal{I}_{d-1}^H(ilde{z}) \right|_{ ext{bulk}}$ purely algebraic factors u_H βA_0

which really characterizes H-saddles and identifies their discrete locations in the space of holonomies

$$S^1 imes T^{d-1}$$
 T^{d-1} T^{d-1} $\mathcal{I}_d^G(eta ilde{z}) igg|_{ ext{bulk}; eta o 0} o \sum_{u_H} \left. d_{G:H} \, \mathcal{I}_{d-1}^H(ilde{z}) \right|_{ ext{bulk}}$ purely algebraic factors u_H

this phenomenon also underlies why the 2d elliptic genera fail to capture the 1d wall-crossing phenomena

2d GLSM Elliptic Genera

Benini + Eager + Hori + Tachikawa 2013

$$\leftarrow \quad \xi < 0 \qquad \qquad \xi = 0 \qquad \qquad 0 < \xi$$

1d GLSM Equivariant Index

Hori + Kim + P.Y. 2014

→ (2) dimensional reduction of a dual pair, on a circle, produces many such dual pairs in 1d less, at best

$$S^{1} \times \mathcal{M}_{d-1} \qquad \mathcal{M}_{d-1}$$

$$\Omega_{d}^{G}(\beta \tilde{z}) \Big|_{\beta \to 0} \rightarrow \sum_{u_{H}} c_{G:H}(\beta) \mathcal{Z}_{d-1}^{H}(\tilde{z})$$

$$\updownarrow$$

$$= \Omega_{d}^{G'}(\beta \tilde{z}) \Big|_{\beta \to 0} \rightarrow \sum_{u_{H'}} c_{G':H'}(\beta) \mathcal{Z}_{d-1}^{H'}(\tilde{z})$$

 \rightarrow (2') such saddle-by-saddle dualities could fail for d<3 where the holonomy cannot have a vev even in the non-compact limit

→ (3) there may be multiple Cardy exponents and the Dominant one does not generically equal the naïve one

$$S^1 \times \mathcal{M}_{d-1}$$
 \mathcal{M}_{d-1}

$$\left. \Omega_d^G(\beta \tilde{z}) \right|_{\beta \to 0} \rightarrow \sum_{u_H} c_{G:H}(\beta) \mathcal{Z}_{d-1}^H(\tilde{z}) \\
\sim e^{S_{\text{Cardy}}^{G:H}/\beta}$$

how H-saddles manifest in the Bethe-Ansatz-driven partition functions of massive 4d N=1 theories

more generally, an entire class of susy partition functions was proposed for Riemannian surfaces with circle bundles

partition functions as a sum over BAE vacua on A-twisted geometry

$$\Omega_4^G = \sum_{u_* \in \mathcal{S}_{\mathrm{BE}}} \mathcal{F}_1(u_*,
u; au)^{p_1} \, \mathcal{F}_2(u_*,
u; au)^{p_2} \, \mathcal{H}(u_*,
u; au)^{g-1}$$

$$\mathcal{S}_{\mathrm{BE}} = \left\{ u_* \mid \Phi_a(u_*,
u; au) = 1, orall a, \quad w \cdot u_*
eq u_*, orall w \in W_G
ight\} / W_G$$

complexified gauge holonomies

partition functions as a sum over BAE vacua on A-twisted geometry

$$\Omega_4^G = \sum_{u_* \in \mathcal{S}_{\mathrm{BE}}} \mathcal{F}_1(u_*,
u; au)^{p_1} \, \mathcal{F}_2(u_*,
u; au)^{p_2} \, \mathcal{H}(u_*,
u; au)^{g-1}$$

$$\mathcal{S}_{\mathrm{BE}} = \left\{ u_* \mid \Phi_a(u_*, \nu; au) = 1, orall a, \quad w \cdot u_*
eq u_*, orall w \in W_G
ight\} / W_G$$

$$\Phi_a(u,
u; au) \equiv \exp(2\pi i \partial_a \mathcal{W})$$

twisted superpotential in the Coulomb phase on Σ_g due to the infinite towers of 2d chiral fields from T^2 compactification

in the Cardy limit or in the Casimir limit, related by SL(2,Z)

$$\Omega_4^G = \sum_{u_H} \sum_{\sigma_* \in \mathcal{S}_{\mathrm{BE}}^H} \mathcal{F}_1^H(\sigma_*,
u; au)^{p_1} \, \mathcal{F}_2^H(\sigma_*,
u; au)^{p_2} \, \mathcal{H}^H(\sigma_*,
u; au)^{g-1}$$

$$u = u_1 \tau + u_2$$

$$\tilde{u} = u_1 + u_2 / \tau$$

→ (4) there may be multiple Cardy exponents/Casimir energies and, generically, the dominant ones need not equal the naïve ones

$$\frac{1}{2\pi i \tau} \log \left(c_{u_H}(\tau) \right) \qquad \qquad \frac{1}{2\pi i \tilde{\tau}} \log \left(c_{\tilde{u}_H}(\tilde{\tau}) \right)$$

$$= (g-1) \times \left[-\frac{1}{12} (\operatorname{tr}_f R) + \frac{1}{2} \sum_{\alpha} \epsilon_{\alpha} (1 - \epsilon_{\alpha}) + \frac{1}{2} \sum_{i} (r_i - 1) \sum_{\rho_i} \epsilon_{\rho_i} (1 - \epsilon_{\rho_i}) \right] + \cdots$$

$$\epsilon_Q = \{Q \cdot u_H/\tau\} = \{Q \cdot \tilde{u}_H/\tilde{\tau}\}$$

$$\frac{1}{2\pi i\tau} \log \left(c_{u_H=0}(\tau) \right) \qquad \qquad \frac{1}{2\pi i\tilde{\tau}} \log \left(c_{\tilde{u}_H=0}(\tilde{\tau}) \right)$$

$$= (g-1) imes \left[-rac{1}{12} (ext{tr}_f R)
ight] + \cdots \ \propto [(a-c)]$$

Di Pietro + Komargodski 2014

something similar can be done for superconformal indices: the naïve Cardy exponents are generically modified due to the presence of H-saddles

$$S^1 \times S^3 \times$$

something similar can be done for superconformal indices: the naïve Casimir exponents hold, however, despite the presence of H-saddles

$$S^1 \times S^3 \times$$

a chapter closed, in the M-theory hypothesis, via localization

ubiquitous "H-saddles"

gluing supersymmetric gauge theories across dimensions

"H-saddles" for (2,0) theories on T^2 ?