Spectrum and Ground States of Membrane Matrix Models

> Douglas Lundholm KTH Stockholm

February 2019 Space Time Matrices IHES, Bures-sur-Yvette 1 Introduction to the quantum membrane

Spectrum and ground state conjecture

Approaches to the study of ground states

4 Outlook

World-volume topology: $\mathbb{R} \times \Sigma$, Σ fixed 2D compact manifold (Riemann surface)

Embedding coordinate functions: $\mathbf{x} = (x_{j=1,...,d}) : \mathbb{R} \times \Sigma \to \mathbb{R}^d$ (*light-front coordinates*) World-volume topology: $\mathbb{R} \times \Sigma$, Σ fixed 2D compact manifold (Riemann surface)

Embedding coordinate functions: $\mathbf{x} = (x_{j=1,...,d}) : \mathbb{R} \times \Sigma \to \mathbb{R}^d$ (*light-front coordinates*)

Hamiltonian:
$$H[\mathbf{x}, \mathbf{p}] = \int_{\Sigma} \left(\sum_{j=1}^{d} p_j^2 + \sum_{1 \le j < k \le d} \{x_j, x_k\}_{\Sigma}^2 \right)$$

World-volume topology: $\mathbb{R} \times \Sigma$, Σ fixed 2D compact manifold (Riemann surface)

Embedding coordinate functions: $\mathbf{x} = (x_{j=1,...,d}) : \mathbb{R} \times \Sigma \to \mathbb{R}^d$ (*light-front coordinates*)

Hamiltonian:
$$H[\mathbf{x}, \mathbf{p}] = \int_{\Sigma} \left(\sum_{j=1}^{d} p_j^2 + \sum_{1 \le j < k \le d} \{x_j, x_k\}_{\Sigma}^2 \right)$$

Canonical Poisson bracket on Σ : $\{f, g\}_{\Sigma} \sim \partial_1 f \partial_2 g - \partial_2 f \partial_1 g$ Dynamical Poisson bracket: $\{x_j(\varphi), p_k(\varphi')\}_{PB} = \delta_{jk} \delta(\varphi, \varphi')$

Hoppe et. al., previous talks,

J. de Woul, J. Hoppe, D.L., Partial Hamiltonian reduction of relativistic extended objects in light-cone gauge, JHEP, 2011

 $\begin{array}{rcl} \text{Infinite-dimensional Poisson} & \to & (N^2-1)\text{-dimensional algebra of} \\ \text{algebra of zero-mean real-} & \text{traceless hermitian } N \times N \text{ mavalued functions } x_j & \text{trices } X_j \\ \{x_j, x_k\}_{\Sigma} & \to & \frac{1}{i}[X_j, X_k] \\ \int_{\Sigma} & \to & \text{Tr} \\ \text{(with convergence of structure constants } f^{(N)}_{ABC} \text{ in a basis } \{T_A\}) \end{array}$

Respects symmetries (constraints): Diffeomorphism invariance \rightarrow SU(N) invariance (with convergence of structure constants $f_{ABC}^{(N)}$ in a basis $\{T_A\}$)

Respects symmetries (constraints): Diffeomorphism invariance \rightarrow SU(N) invariance \Rightarrow Hamiltonian: $H[\mathbf{X}, \mathbf{P}] = \operatorname{Tr} \left(\sum_{j=1}^{d} P_j^2 - \sum_{1 \leq j < k \leq d} [X_j, X_k]^2 \right)$ (with convergence of structure constants $f_{ABC}^{(N)}$ in a basis $\{T_A\}$)

Respects symmetries (constraints): Diffeomorphism invariance \rightarrow SU(N) invariance \Rightarrow Hamiltonian: $H[\mathbf{X}, \mathbf{P}] = \operatorname{Tr} \left(\sum_{j=1}^{d} P_j^2 - \sum_{1 \leq j < k \leq d} [X_j, X_k]^2 \right)$ $= \sum_{j,A} p_{jA}^2 + \frac{1}{2} \sum_{j,k,A} (f_{ABC} x_{jB} x_{kC})^2, \quad \{x_{jA}, p_{kB}\}_{PB} = \delta_{jk} \delta_{AB}$ Schrödinger representation on $\mathcal{H}_B = L^2(\mathbb{R}^d \otimes \mathbb{R}^{N^2-1})$: $X_j \rightarrow \hat{X}_j = x_{jA}T_A, \quad x_{jA} \text{ coordinate multiplication operators}$ $P_j \rightarrow \hat{P}_j = p_{jA}T_A, \quad p_{jA} = -i\partial_{x_{jA}}$ $\begin{array}{ll} \mbox{Schrödinger representation on } \mathcal{H}_B = L^2(\mathbb{R}^d \otimes \mathbb{R}^{N^2 - 1}) : \\ X_j & \rightarrow & \hat{X}_j = x_{jA}T_A, \qquad x_{jA} \mbox{ coordinate multiplication operators} \\ P_j & \rightarrow & \hat{P}_j = p_{jA}T_A, \qquad p_{jA} = -i\partial_{x_{jA}} \end{array}$

Hamiltonian:
$$H_B = -\Delta_{\mathbb{R}^d \otimes \mathbb{R}^{N^2 - 1}} + \frac{1}{2} \sum_{j,k,A} (f_{ABC} x_{jB} x_{kC})^2$$

Symmetry: $SO(d) \times SU(N) \rightarrow SO(d) \times SO(N^2 - 1)$

Physical Hilbert space $\mathcal{H}_{B,phys}$: SU(N)-invariant states Ψ

 $f_{ABC}x_{jB}p_{jC}\Psi=0$

Standard Dirac (constraint) quantization.

J. Goldstone, unpublished; J. Hoppe, MIT Ph.D. thesis, 1982

Add spin degrees of freedom \rightarrow supermembrane \rightarrow SUSY QM

Add spin degrees of freedom \rightarrow supermembrane \rightarrow SUSY QM

Supersymmetric quantum mechanics $(\mathcal{H}, K, H, \mathcal{Q}_j)$

- Hilbert space \mathcal{H}
- Grading operator $K^2 = 1 \Rightarrow \mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-$
- Hamiltonian operator H even, self-adj.
- Supercharge operators $Q_{j=1,...,N}$ odd s.t. $\{Q_j, Q_k\} = 2\delta_{jk}H$

Add spin degrees of freedom \rightarrow supermembrane \rightarrow SUSY QM

Supersymmetric quantum mechanics $(\mathcal{H}, K, H, \mathcal{Q}_j)$

- Hilbert space \mathcal{H}
- Grading operator $K^2 = 1 \Rightarrow \mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-$
- Hamiltonian operator H even, self-adj.
- Supercharge operators $Q_{j=1,...,\mathcal{N}}$ odd s.t. $\{Q_j, Q_k\} = 2\delta_{jk}H$

Symmetries in the spectrum:

$$H = \mathcal{Q}_j^2 \ge 0 \quad \Rightarrow \text{ spec } H \subseteq [0, \infty)$$
$$H\Psi = E\Psi, \ \Psi \in \mathcal{H}_{\pm} \setminus \{0\}, \ E > 0$$
$$\Rightarrow H\Phi = E\Phi, \ \Phi \in \mathcal{H}_{\mp} \setminus \{0\}, \ \Phi := \mathcal{Q}_j \Psi$$

Supermembrane matrix model

Spin representations $\operatorname{Spin}(d) \times \operatorname{Spin}(N^2 - 1) \to \mathcal{L}(\mathcal{F})$

$\begin{array}{l} \text{Clifford algebras:} \\ \text{Over } \mathbb{R}^d \text{:} \qquad \{\gamma^j, \gamma^k\} = 2\delta^{j,k} \quad \text{real irrep: } \mathbb{R}^{\mathcal{N}_d} \\ \text{Over } \mathbb{R}^{\mathcal{N}_d} \otimes \mathbb{R}^{N^2 - 1} \text{:} \quad \{\boldsymbol{\theta}_{\alpha A}, \boldsymbol{\theta}_{\beta B}\} = 2\delta_{\alpha,\beta}\delta_{A,B} \text{ irrep: } \mathcal{F} = \mathbb{C}^{2^{\frac{1}{2}\mathcal{N}_d(N^2 - 1)}} \end{array}$

Supermembrane matrix model

Spin representations $\operatorname{Spin}(d) \times \operatorname{Spin}(N^2 - 1) \to \mathcal{L}(\mathcal{F})$

Clifford algebras:
Over
$$\mathbb{R}^d$$
: $\{\gamma^j, \gamma^k\} = 2\delta^{j,k}$ real irrep: $\mathbb{R}^{\mathcal{N}_d}$
Over $\mathbb{R}^{\mathcal{N}_d} \otimes \mathbb{R}^{N^2 - 1}$: $\{\boldsymbol{\theta}_{\alpha A}, \boldsymbol{\theta}_{\beta B}\} = 2\delta_{\alpha,\beta}\delta_{A,B}$ irrep: $\mathcal{F} = \mathbb{C}^{2^{\frac{1}{2}\mathcal{N}_d(N^2 - 1)}}$

Hamiltonian:

$$H = p_{jA}p_{jA} + \frac{1}{2}\sum_{A,j,k} (f_{ABC}x_{jB}x_{kC})^2 + \frac{i}{2}x_{jC}f_{CAB}\gamma^j_{\alpha\beta}\,\boldsymbol{\theta}_{\alpha A}\,\boldsymbol{\theta}_{\beta B}$$

Supermembrane matrix model

Spin representations $\operatorname{Spin}(d) \times \operatorname{Spin}(N^2 - 1) \to \mathcal{L}(\mathcal{F})$

Clifford algebras:
Over
$$\mathbb{R}^d$$
: $\{\gamma^j, \gamma^k\} = 2\delta^{j,k}$ real irrep: $\mathbb{R}^{\mathcal{N}_d}$
Over $\mathbb{R}^{\mathcal{N}_d} \otimes \mathbb{R}^{N^2 - 1}$: $\{\boldsymbol{\theta}_{\alpha A}, \boldsymbol{\theta}_{\beta B}\} = 2\delta_{\alpha,\beta}\delta_{A,B}$ irrep: $\mathcal{F} = \mathbb{C}^{2^{\frac{1}{2}\mathcal{N}_d(N^2 - 1)}}$

Hamiltonian:

$$H = p_{jA}p_{jA} + \frac{1}{2}\sum_{A,j,k} (f_{ABC}x_{jB}x_{kC})^2 + \frac{i}{2}x_{jC}f_{CAB}\gamma^j_{\alpha\beta}\,\boldsymbol{\theta}_{\alpha A}\,\boldsymbol{\theta}_{\beta B}$$

Supercharges: $Q_{\alpha=1,...,\mathcal{N}_d} = \left(p_{jA}\gamma^j_{\alpha\beta} + \frac{1}{2}f_{ABC}x_{jB}x_{kC}\gamma^{jk}_{\alpha\beta}\right)\boldsymbol{\theta}_{\beta A}$ s.t. $\{Q_{\alpha}, Q_{\beta}\} = 2\delta_{\alpha\beta}H + 4\gamma^j_{\alpha\beta}x_{jA}J_A$

Requirement: d = 2, 3, 5, or $9 \Rightarrow \mathcal{N}_d = 2(d-1) = 2, 4, 8$, or 16

d	$\mathcal{C}l(\mathbb{R}^d)$	\mathcal{N}_d	\mathcal{S}_d	\supset Spin(d)	
1	$\mathbb{R}\oplus\mathbb{R}$	1	$\mathbb R$	\mathbb{R}	←
2	$\mathbb{R}^{2 \times 2}$	2	\mathbb{R}^2	\mathbb{C}	\leftarrow
3	$\mathbb{C}^{2 \times 2}$	4	\mathbb{C}^2	H	\leftarrow
4	$\mathbb{H}^{2 \times 2}$	8	\mathbb{H}^2	$\mathbb{H}_+ \oplus \mathbb{H}$	
5	$\mathbb{H}^{2 imes 2} \oplus \mathbb{H}^{2 imes 2}$	8	\mathbb{H}^2	\mathbb{H}^2	\leftarrow
6	$\mathbb{H}^{4 \times 4}$	16	\mathbb{H}^4	$\mathbb{C}^4\oplus\mathbb{C}^4$	
7	$\mathbb{C}^{8 \times 8}$	16	\mathbb{C}^{8}	$\mathbb{R}^8\oplus\mathbb{R}^8$	
8	$\mathbb{R}^{16 \times 16}$	16	\mathbb{R}^{16}	$\mathbb{R}^8_+\oplus\mathbb{R}^8$	
9	$\mathbb{R}^{16 imes 16} \oplus \mathbb{R}^{16 imes 16}$	16	\mathbb{R}^{16}	\mathbb{R}^{16}	\leftarrow

D.L., L. Svensson, Clifford algebra, geometric algebra, and applications, 2009 (2016)

Supermembrane matrix model (cont.)

Full Hilbert space: $\mathcal{H} = L^2(\mathbb{R}^d \otimes \mathbb{R}^{N^2-1}) \otimes \mathcal{F}$

Physical Hilbert space \mathcal{H}_{phys} : $J_A \Psi = 0$, where $SU(N) \rightarrow Spin(N^2 - 1) \rightarrow \mathcal{L}(\mathcal{H})$ by

$$J_A = f_{ABC} \left(x_{jB} p_{jC} - \frac{i}{4} \,\boldsymbol{\theta}_{\alpha B} \,\boldsymbol{\theta}_{\alpha C} \right)$$

Spin(d)-symmetry:

$$J_{jk} = x_{jA}p_{kA} - x_{kA}p_{jA} - \frac{i}{8}\gamma^{jk}_{\alpha\beta}\,\boldsymbol{\theta}_{\alpha A}\,\boldsymbol{\theta}_{\beta A}$$

M. Baake, P. Reinicke, V. Rittenberg, *Fierz identities for real Clifford algebras and the number of supercharges*, J. Math. Phys., 1985; Claudson, Halpern, 1985; Flume, 1985

B. de Wit, J. Hoppe, H. Nicolai, On the quantum mechanics of supermembranes, Nucl. Phys. B, 1988

A Fock space representation: $\mathcal{F} = \operatorname{Span}_{\mathbb{C}} \left\{ \prod_{\hat{\alpha},A} \lambda_{\hat{\alpha}A}^{\dagger} | 0 \right\rangle \right\}$

$$\lambda_{\hat{\alpha}A}^{(\dagger)} := \frac{1}{2} \left(\boldsymbol{\theta}_{\hat{\alpha}A} \left(\stackrel{+}{-} \right) i \, \boldsymbol{\theta}_{\frac{\mathcal{N}_d}{2} + \hat{\alpha}, A} \right), \quad \hat{\alpha} = 1, \dots, \mathcal{N}_d/2 = d - 1$$

$$\{\lambda_{\hat{\alpha}A}, \lambda_{\hat{\beta}B}^{\dagger}\} = \delta_{\hat{\alpha}\hat{\beta}}\delta_{AB}, \qquad \{\lambda_{\hat{\alpha}A}, \lambda_{\hat{\beta}B}^{\dagger}\} = 0, \qquad \{\lambda_{\hat{\alpha}A}^{\dagger}, \lambda_{\hat{\beta}B}^{\dagger}\} = 0.$$
With $\mathbb{R}^d \rightsquigarrow \mathbb{R}^{d-2} \times \mathbb{C}, \ \gamma \rightsquigarrow \Gamma$ and corresponding split of coordinates
$$\mathbf{x} = (\mathbf{x}', \operatorname{Re} z, \operatorname{Im} z), \quad \mathbf{x}' := (x_{\hat{j}})_{\hat{j}=1,\dots,d-2}, \quad z := x_{d-1} + ix_d,$$

$$H = H_B - 2ix_{\hat{j}C} f_{CAB} \Gamma_{\hat{\alpha}\hat{\beta}}^{\hat{j}} \lambda_{\hat{\alpha}A}^{\dagger} \lambda_{\hat{\beta}B} + z_C f_{CAB} \lambda_{\hat{\alpha}A}^{\dagger} \lambda_{\hat{\alpha}B}^{\dagger} + \overline{z}_C f_{CAB} \lambda_{\hat{\alpha}A} \lambda_{\hat{\alpha}B}$$

B. de Wit, J. Hoppe, H. Nicolai, On the quantum mechanics of supermembranes, Nucl. Phys. B, 1988

d=3,5 alternative: Use complex structure $J^2=-1$ (\mathbb{C} or $\mathbb{C}\subseteq\mathbb{H}$)

$$\begin{split} \hat{\lambda}_{\hat{\alpha}A} &:= \frac{1}{2} (\boldsymbol{\theta}_{\beta A} + iJ_{\gamma\beta} \,\boldsymbol{\theta}_{\gamma A}) e_{\beta}^{\hat{\alpha}}, \qquad \{e^{\hat{\alpha}}\}_{\hat{\alpha}=1,\dots,\mathcal{N}_d/2=d-1} \\ H &= H_B - 2ix_{sC} f_{CAB} \gamma_{\hat{\alpha}\hat{\beta}}^s \hat{\lambda}_{\hat{\alpha}A}^{\dagger} \hat{\lambda}_{\hat{\beta}B}, \\ J_A &= L_A - if_{ABC} \hat{\lambda}_{\hat{\alpha}B}^{\dagger} \hat{\lambda}_{\hat{\alpha}C}, \\ J_{st} &= L_{st} - \frac{i}{2} \gamma_{\hat{\alpha}\hat{\beta}}^{st} \hat{\lambda}_{\hat{\alpha}A}^{\dagger} \hat{\lambda}_{\hat{\beta}A}, \end{split}$$

Claudson, Halpern, 1985

D.L., Zero-energy states in supersymmetric matrix models, Ph.D. thesis, KTH, 2010

Supermembrane matrix model (cont.)

d = 1 (degenerate) model:

$$H = -\Delta_{\mathbb{R}^{N^2 - 1}} - 2x_A J_A \qquad (V = 0)$$

Supermembrane matrix model (cont.)

d = 1 (degenerate) model:

$$H = -\Delta_{\mathbb{R}^{N^2 - 1}} - 2x_A J_A \qquad (V = 0)$$

with

$$\begin{aligned} \mathcal{Q} &:= -i \,\boldsymbol{\theta}_A \, \frac{\partial}{\partial x_A} \sim \nabla \quad \Rightarrow \quad H = \mathcal{Q}^2 \text{ on } \mathcal{H}_{\mathsf{phys}}, \\ J_A &= f_{ABC} \Big(x_B p_C - \frac{i}{4} \,\boldsymbol{\theta}_B \,\boldsymbol{\theta}_C \Big) \end{aligned}$$

or

$$Q := -i\hat{\lambda}_A^{\dagger} \frac{\partial}{\partial x_A} \sim \mathbf{d}, \quad \{Q, Q^*\} = H + 2x_A J_A, \quad Q^2 = 0, \ (Q^*)^2 = 0,$$
$$J_A := f_{ABC} \left(x_B p_C - i\hat{\lambda}_B^{\dagger} \hat{\lambda}_C \right).$$

Claudson, Halpern, 1985; Samuel 1997; Trzetrzelewski 2007; D.L., Ph.D. thesis, 2010

Spectrum and Ground States of Membrane Matrix Models

Surprising differences between the energy spectra of:

- Classical (regularized) membrane
- Quantum regularized membrane
- Quantum regularized supermembrane

Surprising differences between the energy spectra of:

- Classical (regularized) membrane
- Quantum regularized membrane
- Quantum regularized supermembrane

Illustrated conveniently using toy models.

Hamiltonian:
$$H = \sum_{j=1}^{d} \operatorname{Tr} P_j^2 + V$$

Potential:
$$V = \sum_{1 \le j < k \le d} \operatorname{Tr} (i[X_j, X_k])^2 \ge 0$$

Hamiltonian:
$$H = \sum_{j=1}^{d} \operatorname{Tr} P_j^2 + V$$

Potential:
$$V = \sum_{1 \le j < k \le d} \operatorname{Tr} (i[X_j, X_k])^2 \ge 0$$

Toy model in $\mathbb{R}^2 : V_{\mathsf{toy}} = x^2 y^2$

 $\mathsf{Flat}\ \mathsf{directions} \Rightarrow \mathsf{unconfined}$

Scalar Schrödinger operator: $H_B = -\Delta + V(x) \ge 0$

Scalar Schrödinger operator: $H_B = -\Delta + V(x) \ge 0$

Toy model:
$$H_{B, {
m toy}} = -\partial_x^2 - \partial_y^2 + x^2 y^2$$

Purely discrete spectrum:

$$\begin{aligned} H_{B, \text{toy}} &= \frac{1}{2} (-\partial_x^2 - \partial_y^2) + \frac{1}{2} \underbrace{(-\partial_x^2 + y^2 x^2)}_{\geq |y|} + \frac{1}{2} \underbrace{(-\partial_y^2 + x^2 y^2)}_{\geq |x|} \\ &\geq \frac{1}{2} (-\Delta + |x| + |y|) > 0 \end{aligned}$$

M. Lüscher, NPB 1983; B. Simon, Ann. Phys. 1983

Garcia del Moral et. al., NPB, 2007; 2010 (BLG/ABJM type)

Matrix Schrödinger operator: $H = (-\Delta + V(x))1 + x_{jA}M_{jA}$ s.t. $H = Q_{\alpha}^2 \ge 0$ on \mathcal{H}_{phys} Matrix Schrödinger operator: $H = (-\Delta + V(x))1 + x_{jA}M_{jA}$ s.t. $H = Q_{\alpha}^2 \ge 0$ on \mathcal{H}_{phys}

$$\text{Toy model: } H_{\text{toy}} = (\underbrace{-\Delta_{\mathbb{R}^2} + x^2 y^2}_{\geq |x| \text{ or } |y|}) 1 + \underbrace{x\sigma_1 + y\sigma_2}_{\geq -\sqrt{x^2 + y^2}} = Q_{\text{toy}}^2 \geq 0$$

Matrix Schrödinger operator: $H = (-\Delta + V(x))1 + x_{jA}M_{jA}$ s.t. $H = Q_{\alpha}^2 \ge 0$ on \mathcal{H}_{phys}

$$\text{Toy model: } H_{\text{toy}} = (\underbrace{-\Delta_{\mathbb{R}^2} + x^2 y^2}_{\geq |x| \text{ or } |y|} 1 + \underbrace{x\sigma_1 + y\sigma_2}_{\geq -\sqrt{x^2 + y^2}} = Q_{\text{toy}}^2 \geq 0$$

Theorem (dW-L-N)

For any $\lambda \ge 0$ there exists a sequence Ψ_t of rapidly decaying smooth SU(N)-invariant functions s.t. $\|\Psi_t\| = 1$ and $\|(H - \lambda)\Psi_t\| \to 0$ as $t \to \infty$. Hence, spec $H = [0, \infty)$.

For toy model: $\Psi_t(x,y) := \chi_t(x)\phi_x(y)\xi$

B. de Wit, M. Lüscher, H. Nicolai, The supermembrane is unstable, NPB, 1989

BFSS Conjecture

d = 9: Unique normalizable zero-energy ground state for all N

d = 2, 3, 5: No normalizable zero-energy state for any N

T. Banks, W. Fischler, S. Shenker, L. Susskind, M Theory As A Matrix Model: A Conjecture, Phys. Rev. D, 1997

Conjecture supported by:

• Rigorous proof (by contradiction) for d = 2, N = 2

J. Fröhlich, J. Hoppe, On Zero-Mass Ground States in Super-Membrane Matrix Models, CMP, 1998

• Asymptotics (necessary decay known for N = 2)

M. B. Halpern, C. Schwartz, Asymptotic Search for Ground States of SU(2) Matrix Theory, Int. J. Mod. Phys. A, 1998 J. Fröhlich, G. M. Graf, D. Hasler, J. Hoppe, S.-T. Yau, Asymptotic form of zero energy wave functions in supersymmetric matrix models, NPB, 2000

• Witten index calculations

P. Yi, Witten Index and Threshold Bound States of D-Branes, NPB, 1997

S. Sethi, M. Stern, D-Brane Bound States Redux, CMP, 1998

Green, Gutperle, 1998; Krauth, Nicolai, Staudacher, 1998; Kac, Smilga, 2000; Moore, Nekrasov, Shatashvili, 2000

Caution! Imbimbo, Mukhi, 1984; Staudacher, 2000; Jaffe, 2000

Ground state conjecture (cont.)

d=3,5 embedded eigenvalues: $H|_{\hat{\mathcal{F}}_0}=H_B|_{\hat{\mathcal{F}}_0}>0$

Ground state conjecture (cont.)

d=3,5 embedded eigenvalues: $|H|_{\hat{\mathcal{F}}_0}=H_B|_{\hat{\mathcal{F}}_0}>0$

d = 3 non-normalizable states:

$$Q_{\hat{\alpha}} \sim e^{-W} \hat{\lambda}^{\dagger} \cdot \partial e^{W}, \quad W(x) := \frac{1}{6} \epsilon_{jkl} f_{ABC} x_{jA} x_{kB} x_{lC}$$
$$\Psi_{0,-} = e^{-W(x)} |0\rangle, \quad \Psi_{0,+} = e^{+W(x)} \hat{\lambda}_{1,1}^{\dagger} \dots \hat{\lambda}_{2,N^2-1}^{\dagger} |0\rangle$$

Ground state conjecture (cont.)

d=3,5 embedded eigenvalues: $|H|_{\hat{\mathcal{F}}_0}=H_B|_{\hat{\mathcal{F}}_0}>0$

d=3 non-normalizable states:

$$Q_{\hat{\alpha}} \sim e^{-W} \hat{\lambda}^{\dagger} \cdot \partial e^{W}, \quad W(x) := \frac{1}{6} \epsilon_{jkl} f_{ABC} x_{jA} x_{kB} x_{lC}$$
$$\Psi_{0,-} = e^{-W(x)} |0\rangle, \quad \Psi_{0,+} = e^{+W(x)} \hat{\lambda}_{1,1}^{\dagger} \dots \hat{\lambda}_{2,N^2-1}^{\dagger} |0\rangle$$

d = 1 degenerate model (V = 0):

 $Q\sim \hat{\lambda}^\dagger\cdot\partial$

$$\Psi_{0,-} = |0\rangle, \quad \Psi_{0,+} = \hat{\lambda}_1^{\dagger} \dots \hat{\lambda}_{N^2-1}^{\dagger} |0\rangle$$

Plane-wave (non)normalizable zero-energy states for any N.

Claudson, Halpern, 1985; D.L., 2010; Hynek, 2016

Spectrum and Ground States of Membrane Matrix Models

Some approaches to the study of ground states

I. Construction by recursive methods

J. Hoppe, D.L., M. Trzetrzelewski, Construction of the Zero-Energy State of SU(2)-Matrix Theory: Near the Origin, Nucl. Phys. B, 2009

Hynek, Trzetrzelewski, 2010; Michishita, 2010; 2011

II. Deformation

J. Hoppe, D.L., M. Trzetrzelewski, Octonionic twists for supermembrane matrix models, Ann. Henri Poincaré, 2009

III. Averaging w.r.t. symmetries

J. Hoppe, D.L., M. Trzetrzelewski, Spin(9) Average of SU(N) Matrix Models I. Hamiltonian, J. Math. Phys., 2009

IV. Weighted spaces and index theory

D.L., Weighted Supermembrane Toy Model, Lett. Math. Phys., 2010; Ph.D. thesis, 2010

D.L., Geometric extensions of many-particle Hardy inequalities, J. Phys. A: Math. Theor., 2015

I. Construction by recursive methods

Consider the structure of a possible ground state $\Psi(x)$ around x = 0:

$$\Psi(x) = \psi^{(0)} + x_{jA}\psi^{(1)}_{jA} + \frac{1}{2}x_{jA}x_{kB}\psi^{(2)}_{jA,kB} + \dots,$$

where $\gamma^{j}_{\beta\alpha}\theta_{\alpha A}\psi^{(1)}_{jA} = 0, \quad \gamma^{j}_{\beta\alpha}\theta_{\alpha A}\psi^{(2)}_{jA,kB} = 0,$
 $\gamma^{j}_{\beta\alpha}\theta_{\alpha A}\psi^{(3)}_{jA,kB,lC} + if_{ABC}\gamma^{kl}_{\beta\alpha}\theta_{\alpha A}\psi^{(0)} = 0, \quad \text{etc.}$

Theorem (JH-DL-MT)

For d = 9, N = 2 we have (where $\mathcal{F} = \otimes^3 \mathcal{F}_{256}$ and $\mathcal{F}_{256} = \mathbf{44} \oplus \mathbf{84} \oplus \mathbf{128}$ under $\mathrm{Spin}(9)$) $\psi^{(0)} \propto (44 \otimes 44 \otimes 44)_{\mathsf{sym}} + \frac{13}{36}(44 \otimes 84 \otimes 84)_{\mathsf{sym}}$

$$(44 \otimes 44 \otimes 44)_{sym} := |jl\rangle_1 |kl\rangle_2 |jk\rangle_3$$

$$\begin{array}{lll} (44\otimes 84\otimes 84)_{\mathsf{sym}} &:= & |jk\rangle_1 |jlm\rangle_2 |klm\rangle_3 \\ & & +|klm\rangle_1 |jk\rangle_2 |jlm\rangle_3 \\ & & +|jlm\rangle_1 |klm\rangle_2 |jk\rangle_3 \end{array}$$

Michishita & Trzetrzelewski studied also $\psi^{(1)}$, $\psi^{(2)}$ (for N=2)

II. Deformation

A conjugation of a combination of supercharges:

$$Q(\mu) := e^{\mu g(x)} \frac{1}{\sqrt{2}} (\mathcal{Q}_8 + i\mathcal{Q}_{16}) e^{-\mu g(x)},$$

with

$$g(x) = \frac{1}{6} f_{ABC} x_{jA} x_{kB} x_{lC} \gamma_{8,16}^{jkl},$$

leads to a family of new models $H(\mu) := \{Q(\mu)^{\dagger}, Q(\mu)\} \ge 0$ with $G_2 \times \mathrm{U}(1) \times \mathrm{SU}(N)$ symmetry:

$$H(\mu) = -\Delta_{1\dots7} + (\mu - 1)^2 V_{1\dots7} + H_D + (\mu - 1)x_{1\dots7} \cdot M_1 + x_{89} \cdot M_2$$

cp. M. Porrati, A. Rozenberg, NPB, 1998

Consider $\tilde{H} := H(\mu = 1)$, which is a truncation of H

Theorem (JH-DL-MT)

spec $\tilde{H} = \operatorname{spec} H = [0, \infty)$

Deformation approach has been successful for simpler models

L. Erdős, D. Hasler, J. P. Solovej, *Existence of the D0 - D4 bound state: A Detailed proof*, Ann. Henri Poincaré, 2005

Coordinate split: $\mathbb{R}^9 = \mathbb{R}^7 \times \mathbb{R}^2$

Truncated Hamiltonian $H_D = -\Delta_{89} + x_{89} \cdot S(x_{1\dots 7})x_{89} + x_{1\dots 7} \cdot M$

Interpretation: 2D SUSY $\mathrm{SU}(N)$ matrix model with 7D space of parameters

Simple spectrum: set of $2(N^2-1)$ SUSY harmonic oscillators

Slightly modified operator:

$$H'_D := -\frac{9}{2}\Delta_{89} + \frac{18}{7}x_{89} \cdot S(x_{1\dots7})x_{89} + \frac{36}{7}x_{1\dots7} \cdot M$$

still simple spectrum, rescaled frequencies

Theorem (JH-DL-MT)

The average of the operator H'_D w.r.t. Spin(9) is equal to the full Hamiltonian H.

Asymptotic analysis suggests to allow for more slowly decaying ground states (cp. also d = 1 model).

Weighted Hilbert space:
$$\mathcal{H}_{\alpha} = L^2(\mathbb{R}^{d(N^2-1)}, \rho_{\alpha}(x)dx) \otimes \mathcal{F}$$
,
with $\rho_{\alpha}(x) = (1 + |x|^2)^{-\alpha/2}$, $\alpha \ge 0$ weight.
 $\Rightarrow \quad \langle \Phi, \Psi \rangle_{\alpha} = \langle \Phi, \rho_{\alpha} \Psi \rangle$

Self-adjoint Hamiltonian H_{α} defined by Friedrichs extension of: $\langle \Psi, H_{\alpha}\Psi \rangle_{\alpha} := \langle \Psi, H\Psi \rangle = \|Q\Psi\|^2 \ge 0, \ \Psi \in C_c^{\infty}.$

Ground state correspondence:

$$\Psi \in \ker_{\mathcal{H}} H \quad \Rightarrow \quad \Psi \in \ker_{\mathcal{H}_{\alpha}} H_{\alpha} \quad \Rightarrow \quad \Psi \in C^{\infty} \text{ and } Q\Psi = 0$$

Spectral relation:

$$\langle \Psi, (H_{\alpha} - \lambda)\Psi \rangle_{\alpha} = \langle \Psi, (H - \lambda\rho_{\alpha})\Psi \rangle \quad \Rightarrow \quad N(H_{\alpha} - \lambda)_{\alpha} = N(H - \lambda\rho_{\alpha})$$

Hence, if H_{α} has a discrete spectrum in \mathcal{H}_{α} ($\Leftrightarrow H - \lambda \rho_{\alpha}$ in \mathcal{H} has finitely many negative eigenvalues $\forall \lambda$), then

 $\ker_{\mathcal{H}_\alpha} H_\alpha \neq 0 \quad \Leftrightarrow \quad H - \lambda \rho_\alpha \text{ has a negative eigenvalue } \forall \lambda > 0$

Spectral relation:

$$\langle \Psi, (H_{\alpha} - \lambda)\Psi \rangle_{\alpha} = \langle \Psi, (H - \lambda\rho_{\alpha})\Psi \rangle \quad \Rightarrow \quad N(H_{\alpha} - \lambda)_{\alpha} = N(H - \lambda\rho_{\alpha})$$

Hence, if H_{α} has a discrete spectrum in \mathcal{H}_{α} ($\Leftrightarrow H - \lambda \rho_{\alpha}$ in \mathcal{H} has finitely many negative eigenvalues $\forall \lambda$), then

 $\ker_{\mathcal{H}_\alpha} H_\alpha \neq 0 \quad \Leftrightarrow \quad H - \lambda \rho_\alpha \text{ has a negative eigenvalue } \forall \lambda > 0$

Theorem (DL)

For the supermembrane toy model we have for $\alpha>2$

$$N(H_{toy} - \lambda \rho_{\alpha}) \le C + o(\lambda^{\frac{3}{2}}),$$

and hence discrete spectrum of $H_{toy,\alpha}$.

D.L., Weighted Supermembrane Toy Model, Lett. Math. Phys., 2010

Spectrum and Ground States of Membrane Matrix Models

Sketch of proof: Simpler to consider the domain x>1 with Dirichlet boundary conditions, where

$$H_{\text{toy}} - \lambda \rho_{\alpha} \geq -\partial_x^2 - \partial_y^2 + x^2 \left(y + \frac{1}{2x^2} \sigma_2 \right)^2 - \frac{1}{4x^2} - x - \frac{\lambda}{x^{\alpha}}$$
$$= -\partial_x^2 - \frac{1}{4x^2} \underbrace{-\partial_{\tilde{y}}^2 + x^2 \tilde{y}^2 - x}_{=\sum_{k=0}^{\infty} 2kxP_k} - \frac{\lambda}{x^{\alpha}}$$

and use that for an operator-valued potential V on $(1,\infty),$ V(x) acting on fibers $\hbar=L^2(\mathbb{R},d\tilde{y}),$

$$N\left(\left(-\partial_x^2 - \frac{1}{4x^2}\right) \otimes 1_{\hbar} + V(x)\right) \le C \int_1^\infty \operatorname{Tr}_{\hbar} |V(x)_-|^{\frac{3}{2}} x^2 (\ln x)^2 \, dx.$$

D. Hundertmark, On the number of bound states for Schrödinger operators with operator-valued potentials, Ark. Mat., 2002

Spectrum and Ground States of Membrane Matrix Models Slide 29/32

For the full domain \mathbb{R}^2 , use a partition of unity and a conformal coordinate transformation $z \mapsto z^2$ to map into regions of this form:

Partition of \mathbb{R}^2 into regions $\mathcal{A}, \mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3, \mathcal{B}_4$.

We have
$$H_{\alpha} = Q_{\alpha}^* Q_{\alpha}$$
, $Q_{\alpha} = \rho_{\alpha}^{-1/2} Q$, $Q_{\alpha}^* = \rho_{\alpha}^{-1} Q \rho_{\alpha}^{1/2}$
Consider $H'_{\alpha} := Q_{\alpha} Q_{\alpha}^*$

Weighted index:

$$I_{\alpha} := \operatorname{Tr}_{\mathcal{H}_{\alpha}} e^{-\beta H_{\alpha}} - \operatorname{Tr}_{\mathcal{H}_{\alpha}} e^{-\beta H_{\alpha}'} = \dim \ker_{\mathcal{H}_{\alpha}} H_{\alpha} - \dim \ker_{\mathcal{H}} H,$$

independent of $\beta > 0$ whenever H_{α}, H'_{α} have discrete spectra.

We have
$$H_{lpha} = Q_{lpha}^* Q_{lpha}$$
, $Q_{lpha} = \rho_{lpha}^{-1/2} Q$, $Q_{lpha}^* = \rho_{lpha}^{-1} Q \rho_{lpha}^{1/2}$
Consider $H'_{lpha} := Q_{lpha} Q_{lpha}^*$

Weighted index:

$$I_{\alpha} := \operatorname{Tr}_{\mathcal{H}_{\alpha}} e^{-\beta H_{\alpha}} - \operatorname{Tr}_{\mathcal{H}_{\alpha}} e^{-\beta H_{\alpha}'} = \dim \ker_{\mathcal{H}_{\alpha}} H_{\alpha} - \dim \ker_{\mathcal{H}} H,$$

independent of $\beta > 0$ whenever H_{α}, H'_{α} have discrete spectra.

Works fine for free line model and d = 1 model for sufficient α . Toy model? Calculations suggest $I_{\alpha} = 0...$

D.L., Zero-energy states in supersymmetric matrix models, Ph.D. thesis, KTH, 2010

- I. Continued construction at $x\sim 0$ and $x\rightarrow \infty$
- II. Zero-energy states for the deformed operator \tilde{H} ?
- III. Averaging of eigenstates of H_D resp. H'_D ?
- IV. Discreteness of H'_{α} , and weighted index for toy model? d = 2, 3, 5, 9 SMM? Physical relevance of weighted states?
- V. Embedded eigenvalues for d = 3,5 SMM. Other d?

- I. Continued construction at $x\sim 0$ and $x\rightarrow \infty$
- II. Zero-energy states for the deformed operator \tilde{H} ?
- III. Averaging of eigenstates of H_D resp. H'_D ?
- IV. Discreteness of H'_{α} , and weighted index for toy model? d = 2, 3, 5, 9 SMM? Physical relevance of weighted states?
- V. Embedded eigenvalues for d = 3,5 SMM. Other d?

Thank you!