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Outline of Talk

@ Introduction to the quantum membrane

@® Spectrum and ground state conjecture

© Approaches to the study of ground states

® Outlook
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Extremal bosonic membrane in R:1+4

World-volume topology: R x ¥,
Y. fixed 2D compact manifold (Riemann surface)

Embedding coordinate functions: x = (zj=1,..4): R x ¥ — R4
(light-front coordinates)
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Extremal bosonic membrane in R +4

World-volume topology: R x ¥,
Y. fixed 2D compact manifold (Riemann surface)

Embedding coordinate functions: x = (zj=1,..4): R x ¥ — R4
(light-front coordinates)

Hamiltonian: H[x,p] = / ij+ Z {z, 74 }%

1<j<k<d
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Extremal bosonic membrane in R +4

World-volume topology: R x ¥,
Y. fixed 2D compact manifold (Riemann surface)

Embedding coordinate functions: x = (zj=1,..4): R x ¥ — R4
(light-front coordinates)

Hamiltonian: H[x,p] = / ij+ Z {z, 74 }%

1<j<k<d

Canonical Poisson bracket on X: {f, g} ~ 01 f029 — 02f019
Dynamical Poisson bracket: {z;(¢), pr(¢’)}rB = 0£0(¢, ¢)

Hoppe et. al., previous talks,

J. de Woul, J. Hoppe, D.L., Partial Hamiltonian reduction of relativistic extended objects in light-cone gauge,
JHEP, 2011
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Matrix regularization (or “lst quantization”)

Infinite-dimensional Poisson — (N2?—1)-dimensional algebra of

algebra of zero-mean real- traceless hermitian N x N ma-
valued functions x; trices X
1
{zj, 2 }e = 71X, Xi]
Js — Tr

(with convergence of structure constants f,(qjj\zfe)c in a basis {T'4})

Respects symmetries (constraints):
Diffeomorphism invariance ~ — SU(N) invariance
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Matrix regularization (or “lst quantization”)

Infinite-dimensional Poisson — (N2?—1)-dimensional algebra of

algebra of zero-mean real- traceless hermitian N x N ma-
valued functions x; trices X
1
{zj, 2 }e = 71X, Xi]
Js — Tr

(with convergence of structure constants f,(qjj\zfe)c in a basis {T'4})

Respects symmetries (constraints):
Diffeomorphism invariance ~ — SU(N) invariance

d
= Hamiltonian: H[X,P]=Tr [ Y P~ Y [X;,X;]?
j=1 1<j<k<d
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Matrix regularization (or “lst quantization”)

Infinite-dimensional Poisson — (N2?—1)-dimensional algebra of

algebra of zero-mean real- traceless hermitian N x N ma-
valued functions x; trices X
1
{zj, 2 }e = 71X, Xi]
Js — Tr

(with convergence of structure constants f,(qjj\zfe)c in a basis {T'4})

Respects symmetries (constraints):
Diffeomorphism invariance  — SU( ) invariance

= Hamiltonian: H[X,P] = ZP2 > X, X
1<j<k<d

=Y Al Zj,k,A(fABcl‘jB:Ekc)Q. {zja, prB}PB = 0;K04B
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Quantization (or “2nd quantization”)

Schrodinger representation on Hp = L2(R? @ RV*~1):
X; — )gj =z;4T4, x4 coordinate multiplication operators
Pj - P] = ijTA7 bjA = _iamjA
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Quantization (or “2nd quantization”)

Schrodinger representation on Hp = L2(R? @ RV*~1):
X; — )gj =z;4T4, x4 coordinate multiplication operators
Pj - P] = ijTA7 bjA = _iaxjA

. . 1
Hamiltonian: Hg = _A]Rd®]RN2—1 + 3 Z (fABC$jB$kC)2
Jk,A
Symmetry: SO(d) x SU(N) — SO(d) x SO(N? — 1)
Physical Hilbert space H g phys: SU(IV)-invariant states W
fapcxippijc¥ =0

Standard Dirac (constraint) quantization.

J. Goldstone, unpublished; J. Hoppe, MIT Ph.D. thesis, 1982
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Supersymmetry

Add spin degrees of freedom — supermembrane — SUSY QM
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Supersymmetry

Add spin degrees of freedom — supermembrane — SUSY QM

Supersymmetric quantum mechanics (H, K, H, Q;)
e Hilbert space H
o Grading operator K2 =1 = H=H, ®H_
e Hamiltonian operator H even, self-ad].
e Supercharge operators Q;—;, n odd s.t. {Q;, Qr} = 20, H
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Supersymmetry

Add spin degrees of freedom — supermembrane — SUSY QM

Supersymmetric quantum mechanics (H, K, H, Q;)

e Hilbert space H
o Grading operator K2 =1 = H=H, ®H_
e Hamiltonian operator H even, self-ad].

e Supercharge operators Q;—;, n odd s.t. {Q;, Qr} = 20, H

Symmetries in the spectrum:
H= Q? >0 = specH C[0,00)

HU = BV, ¥ e Hi\{0}, E>0
= H® = E®, & ¢ H:\ {0}, ®:=Q;U
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Supermembrane matrix model

Spin representations Spin(d) x Spin(N? — 1) — L(F)

Clifford algebras: ‘ _
Over R¢: {79, 4k} = 269+ real irrep: R4

NG (NZ-1)

Over RVi @ RN?~1. {004,058} = 26,304 5 irrep: F = C?*
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Supermembrane matrix model

Spin representations Spin(d) x Spin(N? — 1) — L(F)

Clifford algebras: ‘ _
Over R%: {47, F} = 267k real irrep: R4

1
Over RVa @ RN?~1. {004,085} = 204804, irrep: F = C??

Ng(N2-1)

Hamiltonian:

1 i )
H =pjapja+ 5 > (fasorjpzre)® + §l‘jcfc,43’yi5 004055
A’j7k
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Supermembrane matrix model

Spin representations Spin(d) x Spin(N? — 1) — L(F)

Clifford algebras: ‘ _
Over R%: {47, F} = 267k real irrep: R4

1
Over RVa @ RN?~1. {004,085} = 204804, irrep: F = C??

Ng(N2-1)

Hamiltonian:

1 i )
H =pjapja+ 5 > (fasorjpzre)® + §l‘jcfc,437i5 004055
A’j’k

Supercharges: Qn—1,.. A, = (ijViﬁ + %fABCiEjB%C’Yi%) 054
st. {Qa, Qs =200H + 4fyiﬂ:chJA

Requirement: d =2,3,5, 0or 9 = Ny;=2(d—1) =2,4,8, or 16
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Supermembrane matrix model (cont.)

D.L., L. Svensson, Clifford algebra, geometric algebra, and applications, 2009 (2016)
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d | CI(R%) Ng | Sa | 2 Spin(d)

1| R&R 1 |R |R -
2 | R?x2 2 |R? |C —
3| C2x2 4 |C* |H —
4 | H>*? 8 |H? |Hy®H_

5 | H>*? @ H>*? 8 |H? | H? —
6 | H*4 16 |H* |C*eC

7| C8*8 16 | C® |R®*@ RS

8 | R16x16 16 | R'® | RS ¢ R®

9 R16><16@R16><16 16 R16 | R16 —



Supermembrane matrix model (cont.)

Full Hilbert space: H = L2(R¢ @ RN’ ~1) @ F

Physical Hilbert space Hphys: J4¥ = 0, where
SU(N) — Spin(N? — 1) — L(H) by

1
Ja = faBc (iL‘ijjC — 2 0.8 0.c )
Spin(d)-symmetry:

Uk
Jjk = TjADKA — TpAPjA — gvig 0,405

M. Baake, P. Reinicke, V. Rittenberg, Fierz identities for real Clifford algebras and the number of supercharges, J.
Math. Phys., 1985; Claudson, Halpern, 1985; Flume, 1985

B. de Wit, J. Hoppe, H. Nicolai, On the quantum mechanics of supermembranes, Nucl. Phys. B, 1988
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Supermembrane matrix model (cont.)

A Fock space representation: F = SpanC{Hd’A )\EA|0>}
2D = . (aaA( ) i0x A) a=1,...,Ny/2=d—1

{Naa, /\EB} = 045048, {Aaa, Az} =0, {)‘aAa 5t =0
With R% ~» R%~2 x C, v ~ T and corresponding split of coordinates

x = (x',Rez,Imz), x :=(zj)j=1,. d-2, 2:1=Tdq_1+iTq,

H = HB—Qil'j()fC’ABFiB)\ZAYA)\BB‘FZCfCAB)\jiA)\EB+ZCfC’AB)\dA)\&B

B. de Wit, J. Hoppe, H. Nicolai, On the quantum mechanics of supermembranes, Nucl. Phys. B, 1988
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Supermembrane matrix model (cont.)

d = 3,5 alternative: Use complex structure J2 = —1 (C or C C H)

1 . 6 g
Aaa =5 (0pa+iTy505a)eh,  {e™Vam1,Nu/2=a
H=Hp— 2i$sCfCAB’72[§5‘2A5‘BB’
Ja=1La— ifABCj‘tBS‘dC’
Jsp = Ly — ftﬁ)‘LAj‘,BA’

Claudson, Halpern, 1985
D.L., Zero-energy states in supersymmetric matrix models, Ph.D. thesis, KTH, 2010
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Supermembrane matrix model (cont.)

d =1 (degenerate) model:

H=—Agwoy —2zads  (V=0)
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Supermembrane matrix model (cont.)

d =1 (degenerate) model:

H=—Agwoy —2zads  (V=0)

with
. 0 2
Q= —ZOA%NV = H = Q" on Hppys,
)
Ja = faBc (IBPC — 498 90)
or

. q 0 * *
Q= iz ~d {QQ7) = Ht2eada, Q=0 (Q") =0,

Ja = fac (ﬂ?BPc - MB)\O> .
Claudson, Halpern, 1985; Samuel 1997; Trzetrzelewski 2007; D.L., Ph.D. thesis, 2010
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Spectrum

Surprising differences between the energy spectra of:
e Classical (regularized) membrane
e Quantum regularized membrane

e Quantum regularized supermembrane

Spectrum and Ground States of Membrane Matrix Models Slide 13/32



Spectrum

Surprising differences between the energy spectra of:
e Classical (regularized) membrane
e Quantum regularized membrane

e Quantum regularized supermembrane

Illustrated conveniently using toy models.
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Spectrum: Classical model

d
Hamiltonian: H = E:Ter2 +V
j=1

Potential: V = Z Tr (i[X;, Xx])? >0
1<j<k<d
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Spectrum: Classical model

d
Hamiltonian: H = E:Ter2 +V
j=1

Potential: V = Z Tr (i[X;, Xx])? >0
1<j<k<d

Toy model in R?: Viey = x2y?

Flat directions = unconfined
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Spectrum: Quantum mechanical model

Scalar Schrédinger operator: Hg = —A+V(x) >0
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Spectrum: Quantum mechanical model

Scalar Schrédinger operator: Hg = —A+V(x) >0
Toy model: Hp 1oy = —07 — 05 + 2°y°
Purely discrete spectrum:

1
Hptoy = ( 82 ) §£ +y33)+

1
> S(-A+ ]+ Iy

M. Liischer, NPB 1983; B. Simon, Ann. Phys. 1983

Garcia del Moral et. al., NPB, 2007; 2010 (BLG/ABJM type)
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Spectrum: Supersymmetric quantum mechanical model

Matrix Schrodinger operator: H = (=A + V(x))1 + z;4M;a
st. H=02>0on Hphys
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Spectrum: Supersymmetric quantum mechanical model

Matrix Schrodinger operator: H = (=A + V(x))1 + z;4M;a
st. H=02>0on Hphys

Toy model: Hioy = (:ARz + 221 + zoy + yoy = Qfoy >0

~
>lz| or |yl >—/z2+y?
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Spectrum: Supersymmetric quantum mechanical model

Matrix Schrodinger operator: H = (=A + V(x))1 + z;4M;a
st. H=02>0on Hphys

Toy model: Hioy = (:ARz + 221 + zoy +yoy = Q%oy >0

~
>lz| or |yl >—/z2+y?

Theorem (dW-L-N)

For any A > 0 there exists a sequence W, of rapidly decaying
smooth SU (N )-invariant functions s.t. ||U|| = 1 and
|(H — X\)U|| - 0 ast — co. Hence, spec H = [0, c0).

For toy model: Wy(x,y) := x¢(2)ds(y)E

B. de Wit, M. Liischer, H. Nicolai, The supermembrane is unstable, NPB, 1989
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Ground state conjecture

BFSS Conjecture
d =9: Unique normalizable zero-energy ground state for all N

d=2,3,5: No normalizable zero-energy state for any N

T. Banks, W. Fischler, S. Shenker, L. Susskind, M Theory As A Matrix Model: A Conjecture, Phys. Rev. D, 1997
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Ground state conjecture (con

Conjecture supported by:
e Rigorous proof (by contradiction) for d = 2, N = 2

J. Fréhlich, J. Hoppe, On Zero-Mass Ground States in Super-Membrane Matrix Models, CMP, 1998

o Asymptotics (necessary decay known for N = 2)

M. B. Halpern, C. Schwartz, Asymptotic Search for Ground States of SU(2) Matrix Theory, Int. J. Mod.
Phys. A, 1998

J. Fréhlich, G. M. Graf, D. Hasler, J. Hoppe, S.-T. Yau, Asymptotic form of zero energy wave functions in
supersymmetric matrix models, NPB, 2000

e Witten index calculations

P. Yi, Witten Index and Threshold Bound States of D-Branes, NPB, 1997
S. Sethi, M. Stern, D-Brane Bound States Redux, CMP, 1998

Green, Gutperle, 1998; Krauth, Nicolai, Staudacher, 1998; Kac, Smilga, 2000; Moore, Nekrasov,
Shatashvili, 2000

Caution! Imbimbo, Mukhi, 1984; Staudacher, 2000; Jaffe, 2000
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Ground state conjecture (cont.)

d = 3,5 embedded eigenvalues: H

Fo :HB|]§-O >0
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Ground state conjecture (cont.)

d = 3,5 embedded eigenvalues: H

Fo :HB|]:-O >0

d = 3 non-normalizable states:

e 1
Qa~e VAT 0V, W(z):= g‘fjklfABCijAkaxlC

Ty = e—W(x)lo>7 \I]O,+ — e—l—W(a?)j\J{’l ... S\J;’NQ_1|0>

)
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Ground state conjecture (cont.)

d = 3,5 embedded eigenvalues: H

Fo :HB|]:-O >0

d = 3 non-normalizable states:

e 1
Qa~e VAT 0V, W(z):= g‘fjklfABCijAkaxlC

Ty = e—W(x)lo>7 \I]O,+ — e—l—W(I)S\Ll - 5\J£’N2_1|0>

)

d = 1 degenerate model (V = 0):
Q ~ ;)

Wo_ = [0), Woy=Al...AL, |[0)

Plane-wave (non)normalizable zero-energy states for any N.

Claudson, Halpern, 1985; D.L., 2010; Hynek, 2016
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Some approaches to the study of ground states

I. Construction by recursive methods

J. Hoppe, D.L., M. Trzetrzelewski, Construction of the Zero-Energy State of SU(2)-Matrix Theory: Near the
Origin, Nucl. Phys. B, 2009

Hynek, Trzetrzelewski, 2010; Michishita, 2010; 2011
I1. Deformation

J. Hoppe, D.L., M. Trzetrzelewski, Octonionic twists for supermembrane matrix models, Ann. Henri Poincaré, 2009

I1l. Averaging w.r.t. symmetries

J. Hoppe, D.L., M. Trzetrzelewski, Spin(9) Average of SU(N) Matrix Models I. Hamiltonian, J. Math. Phys., 2009

IV. Weighted spaces and index theory

D.L., Weighted Supermembrane Toy Model, Lett. Math. Phys., 2010; Ph.D. thesis, 2010

D.L., Geometric extensions of many-particle Hardy inequalities, J. Phys. A: Math. Theor., 2015

Spectrum and Ground States of Membrane Matrix Models Slide 20/32



|. Construction by recursive methods

Consider the structure of a possible ground state ¥(zx) around

z =0:
1
U(z) = O + zjapl + §$jA93kB¢J(-,24),kB T
where fyéa 0,4 wj(.z) =0, 'yg;a 004 wﬁ;)’kB =0,

. X .
Vo Oaa wy('A),kB,lc +ifapovhn 0aa @ =0, ete.

Theorem (JH-DL-MT)

Ford =9, N = 2 we have
(where F = ®3 Fase and Fase = 44 © 84 @ 128 under Spin(9))

13
36
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P© o (44 ® 44 ® 44)sym + — (44 © 84 ® 84)eym




|. Construction by recursive methods (cont.)

(4440 d)sym = |jlh]kl)2|jk)s3
(44 ©84 @ 84)ym = |jk)1|jlm)a|kim)s

+|klm)1|jk)2|jlm)s
+[jlm)1|klm)a|jk)s

Michishita & Trzetrzelewski studied also 1), ()
(for N =2)
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. Deformation

A conjugation of a combination of supercharges:
1
= M) _—_(Qg 4 iQyg)e9®)
Q(lu) \/5( 8 16)

with
1 jkl
g(x) = ngBcij:kaﬂflcvé,m,

leads to a family of new models H(u) := {Q(u)t, Q(1)} >0
with G x U(1) x SU(N) symmetry:

H(p) = —A1 7+ (u—1)*Vi 74+ Hp+(u—1)x1_7- My + 2589 - Mo

cp. M. Porrati, A. Rozenberg, NPB, 1998
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Il. Deformation (cont.)

Consider H := H(y = 1), which is a truncation of H
Theorem (JH-DL-MT)

spec H = spec H = [0, 00)

Deformation approach has been successful for simpler models
L. Erdds, D. Hasler, J. P. Solovej, Existence of the DO - D4 bound state: A Detailed proof, Ann. Henri Poincaré,

2005
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lll. Averaging w.r.t. Spin(9)

Coordinate split: R? = R” x R?

Truncated Hamiltonian
Hp = —Agg +x89 - S(x1..7)x89 + 1.7 - M

Interpretation: 2D SUSY SU(N) matrix model with 7D space of
parameters

Simple spectrum: set of 2(N? — 1) SUSY harmonic oscillators
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IIl. Averaging w.r.t. Spin(9) (cont.)

Slightly modified operator:

9 18 36
Hp = _§A89 + — Tgo S(x1..7)x89 + T M

still simple spectrum, rescaled frequencies

Theorem (JH-DL-MT)

The average of the operator H}, w.r.t. Spin(9) is equal to the full
Hamiltonian H.
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V. Weighted spaces and index theory

Asymptotic analysis suggests to allow for more slowly decaying
ground states (cp. also d = 1 model).

Weighted Hilbert space: Ho = L2(RYN’D) p, (z)dz) @ F,
with po () = (1 + |2]2)7%/2, a > 0 weight.
= (D, V), = (P, p,T)

Self-adjoint Hamiltonian H,, defined by Friedrichs extension of:
(U, Hy W), = (U, HU) = |QY|*> > 0, ¥ e O,

Ground state correspondence:

VekeryH = VYekery H, = ¥YeC®and Q¥ =0
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IV. Weighted spaces and index theory (cont.)

Spectral relation:
(U, (Ha=A)¥)a = (¥, (H=XApa)¥) = N(Ha—=A)a=N(H-Apa)

Hence, if H, has a discrete spectrum in H,,
(& H — Apo in H has finitely many negative eigenvalues V),
then

kery, Ho #0 <& H — Ap, has a negative eigenvalue VA > 0
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IV. Weighted spaces and index theory (cont.)

Spectral relation:
(U, (Ha=A)¥)a = (¥, (H=XApa)¥) = N(Ha—=A)a=N(H-Apa)

Hence, if H, has a discrete spectrum in H,,
(& H — Apo in H has finitely many negative eigenvalues V),
then

kery, Ho #0 <& H — Ap, has a negative eigenvalue VA > 0

Theorem (DL)

For the supermembrane toy model we have for ac > 2
N(Hioy — Apa) < C +0(A2),

and hence discrete spectrum of Hieoy .

D.L., Weighted Supermembrane Toy Model, Lett. Math. Phys., 2010
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IV. Weighted spaces and index theory (cont.)

Sketch of proof:
Simpler to consider the domain = > 1 with Dirichlet boundary

conditions, where

o o 1 \* 1 A
Htoy—)\paz_ax—ay‘i‘x y+ﬁ02 —@—x—xa

1 A
2 2 2~2
=D re 2k Py,

and use that for an operator-valued potential V" on (1, c0),
V() acting on fibers £ = L%(R, dj),

N ((_ag - ﬁ) @14+ V(x)) < c/loom V(2)_|? 22(n2)? da.

D. Hundertmark, On the number of bound states for Schrédinger operators with operator-valued potentials, Ark.

Mat., 2002
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IV. Weighted spaces and index theory (cont.)

For the full domain R?, use a partition of unity and a conformal
coordinate transformation z — 22 to map into regions of this form:

K2M ®

|
|
|
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
|
|
|

N

Partition of R? into regions A, By, Ba, B3, Bj.
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IV. Weighted spaces and index theory (cont.)

We have Hy = Q%Q0, Qo = pa’Q, Q= pa'Qp”

Consider H), := Q.Q},

Weighted index:
I, :=1Tr Hae_ﬁHO‘ —Tr Hae_BH& = dimkery,, H, — dimkery H,

independent of 3 > 0 whenever H,, H/, have discrete spectra.
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IV. Weighted spaces and index theory (cont.)

We have Hy = Q%Q0, Qo = pa’Q, Q= pa'Qp”
Consider H), := Q. Q7

Weighted index:
I, :="Tr Hae_ﬁHO‘ —Tr Hae_BH& = dimkery,, H, — dimkery H,
independent of 3 > 0 whenever H,, H/, have discrete spectra.

Works fine for free line model and d = 1 model for sufficient a.

Toy model? Calculations suggest I, = 0...

D.L., Zero-energy states in supersymmetric matrix models, Ph.D. thesis, KTH, 2010
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Outlook

I. Continued construction at x ~ 0 and x — oo
Il. Zero-energy states for the deformed operator H?
[1l. Averaging of eigenstates of Hp resp. H},?

IV. Discreteness of H},, and weighted index for toy model?
d=2,3,5,9 SMM? Physical relevance of weighted states?

V. Embedded eigenvalues for d = 3,5 SMM. Other d?
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Outlook

I. Continued construction at x ~ 0 and x — oo
Il. Zero-energy states for the deformed operator H?
[1l. Averaging of eigenstates of Hp resp. H},?

IV. Discreteness of H},, and weighted index for toy model?
d=2,3,5,9 SMM? Physical relevance of weighted states?

V. Embedded eigenvalues for d = 3,5 SMM. Other d?

Thank you!
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