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Introduction

In this talk I will present a number of different approaches to
solving discrete versions of minimal surface equations.

There are several motivations for doing this. First, there are
physical motivations since such equations appear in matrix models,
like in the IKKT model and Membrane theory. Secondly, it is of
interest in mathematics to understand in what sense there is a nice
theory of noncommutative minimal surfaces in analogy with the
classical situation.

(Joint work with J. Choe, J. Hoppe, G. Huisken, M. Kontsevich)
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Outline

1 Poisson algebraic formulation of Kähler geometry, Laplace
operators and the relation to double commutator equations.

2 Discrete Minimal Surface Algebras - studying solutions of

m∑
j=1

[[X i ,X j ],X j ] = µiX
i .

3 Noncommutative Minimal Surfaces from the Weyl algebra:[
[X i ,U],U

]
+
[
[X i ,V ],V

]
= 0

where [U,V ] = i~1.

4 A noncommutative catenoid:
3∑

j=1

[
[X i ,X j ],X j

]
= 0

Note that these type of equations have been studied under the
name (inhomogeneous) Yang-Mills algebras.
[Connes, Dubois-Violette, Lett. Math. Phys 61 (2002)], [Berger, Dubois-Violette, Lett. Math. Phys 76 (2006)]

[Herscovich, Solotar, Ann. Math. 173 (2011)]
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Poisson algebraic formulation of Kähler geometry

In order to motivate the different approaches that we’ve taken, let
me quickly review how one may formulate Kähler geometry in
terms of the Poisson algebra generated by (isometric) embedding
coordinates into an ambient space. (For an arbitrary n-dimensional
Riemannian manifold, one uses multilinear n-brackets instead.)
[A., Hoppe, Huisken, J. Diff Geo. 91 (2012)], [A., Huisken, Lett. Math. Phys 104 (2014)]

On a Kähler manifold, the fact that the Poisson/symplectic
structure is compatible with the metric has the following particular
consequence (in local coordinates)

γ2gab = θapθbqgpq (1)

where θab is the Poisson bivector and γ = 1. The introduction of γ
seems superfluous at this point, but this freedom turns out to be
useful. If the Poisson structure is compatible with the metric, in
the sense of (1), there exists a Poisson algebraic formulation of the
Riemannian geometry.
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Embedded surfaces

For simplicity (and as our examples will be of this form), let us
consider the case of a surface Σ embedded in Rm (via the
embedding coordinates x1, . . . , xm), with a metric induced from
the Euclidean metric. For an arbitrary density ρ,

{f , h} =
1

ρ
εab(∂af )(∂bh)

defines a Poisson structure on Σ. The “natural” (Kähler-)choice
corresponds to ρ =

√
g . However, setting γ =

√
g/ρ one finds that

γ2gab = θapθbqgpq

(since the right-hand-side is simply the cofactor expansion of the
inverse of the matrix gab).
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The Laplace operator

The Laplace-Beltrami operator on Σ:

∆(f ) =
1
√
g
∂a

(√
ggab∂bf

)
.

can be written as

∆(f ) = γ−1
m∑
i=1

{γ−1{f , x i}, x i}

∆(f ) = γ−1{γ−1{f , ua}gab, ub}.

where {x i (u1, u2)}mi=1 are the embedding coordinates of Σ, and
u1 = u, u2 = v is a set of local coordinates on Σ.
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The Laplace operator

For γ = 1 (i.e. ρ =
√
g) the first forumla becomes

∆(f ) =
m∑
i=1

{{f , x i}, x i}.

For a conformal metric gab = Eδab and ρ = 1 (giving {u, v} = 1
and γ =

√
g = E ) the second formula becomes

∆(f ) =
1

E

[
{{f , u1}, u1}+ {{f , u2}, u2}

]
.
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Some remarks

As claimed, one can express all objects of Riemannian geometry in
a similar way; for instance, the Gaussian curvature of a surface
embedded in Rm can be computed as

m∑
j ,k,l=1

(
1

2
{{x j , xk}, xk}{{x j , x l}, x l} − 1

4
{{x j , xk}, x l}{{x j , xk}, x l}

)
.

Morevover (however, unrelated to this talk), it is natural to turn
the question around and ask: Can one do Riemannian geometry in
a Poisson algebra without any reference to an underlying manifold?
It turns out that one may find simple conditions for a Poisson
algebra to allow for such a formulation.
[A., Al-Shujary, J. Geom. Phys. 136 (2018)]
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Minimal surfaces in Rm

With the help of the reformulations of the Laplace operator, one
can formulate the equations for minimal surfaces in the following
way.

A surfaces embedded in Rm, via the embedding functions x i , is
minimal if (assuming ρ =

√
g)

∆(x i ) =
m∑
j=1

{{x i , x j}, x j} = 0

or (assuming ρ = 1)

∆(x i ) = {{x i , u}, u}+ {{x i , v}, v} = 0

when the metric is conformal; i.e. ~x ′u · ~x ′v = 0 and ~x ′u · ~x ′u = ~x ′v · ~x ′v .
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Minimal surfaces in Sd

We have also been interested in noncommutative analogues of
minimal surfaces in Sd−1, which can be found by considering
embeddings in Rd such that |~x |2 = 1 and

∆(x i ) =
d∑

j=1

{{x i , x j}, x j} = −2x i

Noncommutative analogues of these equations also appear in
Membrane theory, when constructing solutions to the equations of
motion. The above equations are already very rich for d = 4 as
there exist surfaces of arbitrary genus in S3. [Lawson, Ann. Math. 92 (1970)]

We will in the following consider noncommutative/discrete versions
starting from the correspondence {·, ·} ↔ [·, ·]/(i~).
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Discrete Minimal Surface Algebras

[A., Hoppe, SIGMA 6 (2010)]

In this paper, we study properties of the equation

∆X (xi ) =
m∑
j=1

[
[xi , xj ], xj

]
= µixj . (2)

where X = {x1, x2, . . . , xm}. The above equation makes sense in a
Lie algebra, as well as a (noncommutative) associate algebra.
However, I will in this talk not focus so much on algebraic
properties, but rather on solutions.

The set {µ1, . . . , µm} will be called the spectrum.
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Clifford algebra solutions

Let Clp,q be a Clifford algebra generated by e1, e2, . . . , ep+q with

e2i = 1 for i = 1, . . . , p

e2i = −1 for i = p + 1, . . . , p + q

eiej = −ejei when i 6= j .

It is then easy to check that

p+q∑
j=1

[
[ei , ej ], ej

]
=

{
4(p − q − 1)ei if i ∈ {1, . . . , p}
4(p − q + 1)ei if i ∈ {p + 1, . . . , p + q}.
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Lie algebra solutions in sln

It is easy to see that if {x1, . . . , xd} is an orthonormal basis (with
respect to the Killing form) of a semi-simple Lie algebra, then
{xi}di=1 is a solution to the equations.

Let α1, . . . , αn−1 denote the simple roots of sln and for every
positive root α, we choose elements eα, e−α, hα such that

[h, eα] = α(h)eα

[eα, e−α] = hα,

and hα is the element of the Cartan subalgebra h such that
α(h) = K (hα, h) for all h ∈ h. Moreover, let l2 = α(hα) denote
the length of a root.

For every positive root α in sln, we set

e+α = ic
(
eα + e−α

)
and e−α = c

(
eα − e−α

)
,

for arbitrary c ∈ R.
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Lie algebra solutions in sln

Then the following holds

1
[
[e+α , e

+
β ], e+β

]
=
[
[e+α , e

−
β ], e−β

]
= −1

2c
2l2e+α

(when α± β is a root)

2
[
[e−α , e

+
β ], e+β

]
=
[
[e−α , e

−
β ], e−β

]
= −1

2c
2l2e−α

(when α± β is a root)

3
[
[e±α , e

∓
α ], e∓α

]
= −2c2l2e±α

4
[
[e±α , hβ], hβ

]
= (α, β)2e±α

5
[
[hα, e

±
β ], e±β

]
= ∓2c2(α, β)hβ

Let X = {e±β1 , . . . , e
±
βd
} for any positive roots βi . In this case,[

[xi , xj ], xj
]

is proportional to xi for all xi , xj ∈ X .

Let X = {hβ1 , . . . , hβk , e+γ1 , e
−
γ1 , . . . , e

+
γl
, e−γl }. Now,

[
[hβi , e

+
γj

], e+γj
]

might not be proportional to hβi . However, since both e+γj , e
−
γj
∈ X

this term will cancel against
[
[hβi , e

−
γj

], e−γj
]
. Thus, ∆X (hβi ) = 0 for

i = 1, . . . , k .
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d = 4

Let us consider the particular but interesting case when d = 4 and
µ1 = µ2 = µ and µ3 = µ4 = ρ, and xi = Xi are hermitian
matrices. Setting

Λ = X1 + iX2 T = X3 + iX4,

the equations become

2µΛ =
[
[Λ,T ],T †

]
+
[
[Λ,T †],T

]
+
[
[Λ,Λ†],Λ

]
2ρT =

[
[T ,Λ],Λ†

]
+
[
[T ,Λ†],Λ

]
+
[
[T ,T †],T

]
.

When Λ is normal one may choose a basis where Λ is diagonal, and
depict the solution with the help of a directed graph.
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The directed graph of a matrix

Let G = (V ,E ) be a (directed) graph with vertices consisting of
the eigenvalues of Λ, V = {λ1, . . . , λn}, and

(ij) ∈ E ⇔ Tij 6= 0.

Thus, the graph encodes the eigenvalues of Λ and the non-zero
matrix elements of T . We can depict the graph in the complex
plane by plotting the eigenvalues and connecting them with
appropriate edges. For instance

This simple representation of solutions to matrix equations has
turned out to be useful in a number of different situations.
[A., J. Math. Phys 49 (2008)], [A., Bordemann, Hofer, Hoppe, Shimada, Comm. Math. Phys 288 (2009)]

[A., Bordemann, Hofer, Hoppe, Shimada, JHEP (2009)], [A., Silvestrov, Contemp. Math. 503 (2009)]
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The fuzzy sphere

(
S1
)
k,k+1

=
1

2

√
k(n − k) =

(
S1
)
k+1,k

k = 1, . . . , n − 1(
S2
)
k,k+1

= − i

2

√
k(n − k) = −

(
S2
)
k+1,k

k = 1, . . . , n − 1(
S3
)
k,k

=
1

2
(n + 1− 2k) k = 1, . . . , n,

satisfying [Si ,Sj ] = iεijkSk , yields a solution with µ = ρ = 2 for

Λ = S3

T = S1 + iS2.
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Other solutions from su(2)

However, one can construct other inequivalent representations

Λ = zS3

T = w(S1 + aS2)

for a ∈ R and z ,w ∈ C, giving µ = |z |2 and ρ = |w |2(1 + a2).
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The fuzzy torus

The fuzzy torus is generated by the matrices g and h, with
non-zero elements

(h)k,k+1 = 1, (h)n,1 = 1 k = 1, . . . , n − 1

(g)kk = qk−1 k = 1, . . . , n,

fulfilling the relation hg = q · gh with qn = 1.
A solution is obtained by setting

Λ = φ(t1) = e iθg

T = φ(t2) = e iθ
′
h,

for any θ, θ′ ∈ R giving µ = ρ = |1− q|2/2.
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Representations from sl3

Let α and β be the simple roots of sl3. By setting

t1 = e iθ
(
hα + e iπ/3hβ

)
t2 = e iθ

′
(
eα + e iϕ1eβ + e iϕ2e−α−β

)
and letting φ be a representation by (anti-)hermitian matrices, one
sets Λ = φ(t1) and T = φ(t2) giving µ = 3l2/2 and ρ = 3l4/4.
If φ is the {n, 0} highest weight representation of sl3, the
representation graph becomes
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Noncommutative minimal surfaces in the Weyl algebra

[A., Choe, Hoppe, Lett. Math. Phys. 106 (2016)]

Let us return to the equations defining a minimal surface in Rm.
We think of a parametrized minimal surface given by
~x(u, v) : U → R3 such that

∆(x i ) = {{x i , u}, u}+ {{x i , v}, v} = 0

when the metric is conformal; i.e. ~x ′u · ~x ′v = 0 and ~x ′u · ~x ′u = ~x ′v · ~x ′v .
(Recall that the above formula is valid for {u, v} = 1.)

What happens, if one naively translates these conditions to
noncommutative algebras? Can one find noncommutative minimal
surfaces this way? There are many explicitly known minimal
surfaces in R3.

Of course, we do not solve the (perhaps) more relevant physical
equations, but one may gain insight on what to expect (and the
problem turns out to be interesting in itself).
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Since {u, v} = 1, it is natural to start with a noncommutative
algebra generated by U and V , satisfying [U,V ] = i~1. That is,
the Weyl algebra, which we denote by A~ and (for technical
reasons) its fraction field F~. Let us start from the following
extremely naive definition.

Definition

An element X = (X 1, . . . ,X n) ∈ Fn
~ is called a noncommutative

minimal surface if (X i )∗ = X i and

∆(X i ) =
[
[X i ,U],U

]
+
[
[X i ,V ],V

]
= 0 for i = 1, 2, . . . , n

n∑
i=1

(∂uX
i )(∂uX

i ) =
n∑

i=1

(∂vX
i )(∂vX

i )

n∑
i=1

[
(∂uX

i )(∂vX
i ) + (∂vX

i )(∂uX
i )
]

= 0

∂u(a) = [a,V ]/(i~) and ∂v (a) = −[a,U]/(i~)
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Noncommutative Weierstrass representation

Theorem

Let X ∈ F3
~ be a minimal with ∂(X 1 − iX 2) 6= 0. Then there exist

r-holomorphic elements f , g ∈ F~ (i.e. ∂̄f = ∂̄g = 0) together with
x i ∈ R (for i = 1, 2, 3), such that

X 1 = x11 + Re

∫
1

2
f (1− g2)dΛ

X 2 = x21 + Re

∫
i

2
f (1 + g2)dΛ

X 3 = x31 + Re

∫
fgdΛ.

(3)

Conversely, for any r-holomorphic f and g such that f (1− g2),
f (1 + g2) and fg are integrable, (3) defines a minimal surface.

Note: Integration is just the “anti-derivative” in Λ.
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Another classical representation formula

Proposition

Let F ∈ F~ be r-holomorphic and assume that

Φ1 =
(
1− Λ2

)
F , Φ2 = i

(
1 + Λ2

)
F , Φ3 = 2ΛF

are integrable. Then (X 1,X 2,X 3) ∈ F3
~, defined by

X i = x i1 + Re

∫
ΦidΛ,

is a minimal surface for arbitrary x1, x2, x3 ∈ R.

Thus, given any polynomial F (Λ) the above result constructs a
minimal surface.
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Algebraic minimal surfaces

The previous result gives a class of algebraic minimal surfaces

X 1 = Re
[
(n − 1)

(
nΛn−2 − (n − 2)Λn

)]
X 2 = Re

[
i(n − 1)

(
nΛn−2 + (n − 2)Λn

)]
X 3 = Re

[
2n(n − 2)Λn−1

]
.

and the case n = 3 corresponds to the Enneper surface:

X 1 = U + UV 2 − 1

3
U3 − i~V

X 2 = −V − U2V +
1

3
V 3 + i~U

X 3 = U2 − V 2.
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A change of coordinates?

[A., Hoppe, Kontsevich, ]

Recall that for {f , h} = 1√
g ε

ab(∂af )(∂b):

m∑
j=1

{{x i , x j}, x j} = 0 (4)

and for {f , h} = εab(∂af )(∂b):

{{x i , u}, u}+ {{x i , v}, v} = 0 (5)

(in conformal parametrization) are the equations for the
embedding coordinates of a minimal surface in Rm.

For the corresponding noncommutative equations, we have an
infinite number of explicit examples for the latter, but far less for
the former. Is there a way to obtain solutions to (4) from solutions
to (5)? How does one do it in ordinary geometry?
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A change of coordinates?

Assume that ~x(u, v) is a parametric minimal surface and assume
that ũ(u, v) and ṽ(u, v) are such that∣∣∣∣∂(ũ, ṽ)

∂(u, v)

∣∣∣∣ =
√
g .

If {ũ, ṽ} = 1 then

m∑
j=1

{{x i , x j}, x j} = 0.

Can we make use of this in the noncommuative setting? Let us
consider the case of the catenoid.



Introduction Poisson algebraic geometry DMSA NC Surfaces in Weyl algebras A NC Catenoid

The catenoid

Parametrizing the catenoid in R3 as

~x(u, v) =
(

cosh(v) cos(u), cosh(v) sin(u), v
)
,

implying w := x1 + ix2 = cosh(v)e iu and reparametrizing as

ũ = u, ṽ(v) =
1

2
v +

1

4
sinh(2v),

with ∣∣∣∣∂(ũ, ṽ)

∂(u, v)

∣∣∣∣ = cosh2(v) =
√
g ,

gives

w = cosh
(
v(ṽ)

)
e i ũ

z = v(ṽ).
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In analogy with Ũ(f )(ϕ) = ϕf (ϕ) and Ṽ (f )(ϕ) = −i~ ∂
∂ϕ f (ϕ),

giving e i Ũ(f )(ϕ) = e iϕf (ϕ), [Ũ, Ṽ ] = i~1 and

e i Ũe−inϕ = e−i(n−1)ϕ

Ṽ e−inϕ = −~n e−inϕ,

one makes the following Ansatz

W
∣∣n〉 = wn

∣∣n − 1〉 Z
∣∣n〉 = zn

∣∣n〉
for the operators corresponding to the functions

w = cosh
(
v(ṽ)

)
e i ũ z = v(ṽ).
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In terms of W = X 1 + iX 2 and Z = X 3, the equations

3∑
j=1

[
[X i ,X j ],X j

]
= 0 (i = 1, 2, 3)

are equivalent to

1

2

[
[W ,W †],W

]
+
[
[W ,Z ],Z

]
=

1

2

[
[Z ,W ],W †]+

1

2

[
[Z ,W †],W

]
= 0.

In terms of our Ansatz, these equations are equivalent to

rn − 1
2 rn+1 − 1

2 rn−1 + (zn − zn−1)2 = 0

rn(zn − zn−1) = rn+1(zn+1 − zn)

for rn = |wn|2 and n ∈ Z. One immediately notes that for every
solution to the above recursion relations, c := rn(zn − zn−1) is
constant.
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Since rn = |wn|2 we are interested in positive solutions to the
recursion relations. These may easily be constructed as follows.

For c 6= 0, r0 > 0 and r0 ≤ r1 ≤ r0 + 2c2/r20 set

rn = 2rn−1 − rn−2 +
2c2

r2n−1
for n ≥ 2 (6)

rn = 2rn+1 − rn+2 +
2c2

r2n+1

for n ≤ −1 (7)

zn = zn−1 +
c

rn
for n ≥ 1 (8)

zn = zn+1 −
c

rn+1
for n ≤ −1. (9)

It is easy to see that with the initial conditions given as above,
rn > 0. Hence, one defines the operators

W
∣∣n〉 =

√
rn
∣∣n〉 Z

∣∣n〉 = zn
∣∣n〉
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Example of rn (top) and zn (bottom):

(There are interesting relations between the initial conditions of the
recursion relations, and the classical parameters of the catenoid.)
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Summary

I’ve tried to give an overview of the different approaches to
quantum/noncommutative minimal surfaces we’ve taken.

The algebras we construct and the equations we try to solve
are motivated both from physics and mathematics.

In particular, I’ve presented two different ways (in terms of
different Poisson structures) to obtain noncommutative
equations for minimal surfaces.

One may find solutions to these equations, and in the Weyl
algebra one obtains infinitely many explicit noncommutative
minimal surfaces.

At the end, an idea to connect the two approaches was
presented, with the hope of being able to construct solutions
to the equations which are more relevant in physics.
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Thank you for your attention!
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