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Large-N reduction



1. What is Large-N reduction?

Large-N reduction is a typical example of 
emergence of space-time from matrices.



The basic statement is

“The large-N gauge theory with periodic 

boundary condition does not depend on the 

volume of the space-time.”

In particular, the theory in the infinite 

space-time is equivalent to that on one point.

The space-time emerges from the internal 

degrees of freedom of the reduced model.



Lattice version

Consider U(N) or SU(N) lattice gauge theory
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in a d-dimensional periodic box of size

𝑳𝟏 × 𝑳𝟐 × ⋯× 𝑳𝒅 .

In the large-N limit 𝑵 → ∞, 𝝀: 𝐟𝐢𝐱𝐞𝐝,

physics does not depend on the size of

the box 𝑳𝒊 if the center invariance

𝑼𝒏,𝝁 → 𝒆𝒊𝜽𝝁𝑼𝒏,𝝁

is not broken spontaneously.
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Here “physics” means

(1) Free energy per unit volume
F

f
V



(2) Wilson loop

Wilson loop in a periodic box is defined 
as the next two slides:
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First of all a closed loop C in the infinite 
lattice space is specified by a starting point 
𝒏 and the sequence of directions 𝜶,𝜷,⋯ .   

Therefore we can define the corresponding 
loop C’ that is folded in the periodic box by 
the same expression once the starting point n’ 
is specified:
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Then the Wilson loop in the periodic box is 
defined as usual:
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Lattice version

Consider U(N) or SU(N) lattice gauge theory
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in a d-dimensional periodic box of size

𝑳𝟏 × 𝑳𝟐 × ⋯× 𝑳𝒅 .

In the large-N limit 𝑵 → ∞, 𝝀: 𝐟𝐢𝐱𝐞𝐝,

physics does not depend on the size of

the box 𝑳𝒊 if the center invariance

𝑼𝒏,𝝁 → 𝒆𝒊𝜽𝝁𝑼𝒏,𝝁

is not broken spontaneously.



if we consider the minimum 
size of the box 𝟏 × 𝟏 × ⋯× 𝟏,

we have a model with d
unitary matrices: 
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“the large-N reduced model”
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The large-N reduced model

is equivalent to the d-

dimensional Yang-Mills

if the eigenvalues of 𝑨𝝁

are uniformly distributed.

However, it is not automatically realized. 

It is known that the eigenvalues collapse 

to one point unless we do something.

Continuum version

𝐴𝜇: 𝑁 × 𝑁

Hermitian

⇔ center invariance



2. How is the center invariance 
broken spontaneously?



To be concrete we consider the continuum 

version.

In order to examine the center invariance, 

let’s consider the one-loop effective action 

for the diagonal elements of 𝑨𝝁 obtained 

after integrating out the off-diagonal 

elements:
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The quadratic part of the action

and the one-loop effective action becomes
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If d > 2, the eigenvalues of 𝑨𝝁 are 

attractive, and collapse to a point.

is of order N2 for N variables.

It is minimized in the large-N limit.

(1 loop)

effS 

This indicates the spontaneous breaking 

of the translational invariance of the 

eigenvalues: 

This is the continuum version of the 

center invariance: 
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3. How can we recover 
the center invariance?

In order for space-time to emerge from 
matrices, the center invariance should be 
recovered.



Strong coupling

If the coupling is sufficiently strong, 

quantum fluctuation might overwhelm 

the attractive force. 

It actually happens at least for the lattice 

version of the reduced model.
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Actually there are several ways to recover 

the center invariance.



quenching

We constrain the diagonal elements of 𝑨𝝁

to a uniform distribution by hand

(𝑨𝝁)𝒊𝒊= 𝒑𝝁
(𝒊)

.        

Then the perturbation series reproduce 

that of the d-dimensional gauge theory. 

However, this is rather formal, and the 

gauge invariance is no longer manifest.

A lattice version of quenching that keeps 

manifest gauge invariance was proposed, 

but now it is known that it does not work.
Bhanot-Heller-Neuberger, 
Gross-Kitazawa



twisting
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the theory is equivalent to gauge theory 

in a non-commutative space-time.

If we expand      around the non-

commutative back ground 

A

Gonzalez-Arroyo, Korthals Altes (‘83)



Because the equation of motion of the 

reduced model is given by

, , 0,A A A  
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the non-commutative back ground 

is a classical solution.

But it is not the absolute minimum of the 

action. 

One way to make it stable is to modify the 

model to
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The lattice version of this is called the 

twisted reduced model:
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Gonzalez-Arroyo, Okawa 

Several MC analyses have been made on the 

twisted reduced model, and they found some 

discrepancy from the infinite volume theory, 

which is related to the UV-IR mixing.



Heavy adjoint fermions

They have introduced 

additional heavy adjoint

fermions.

Kovtun-Unsal-Yaffe (2007),
Bringoltz-Sharpe (2009),
Poppitz, Myers, Ogilvie, 
Cossu, D’Elia, Hollowood, 
Hietanen, Narayanan,
Azeyanagi, Hanada, Yacobi

Then the collapse of the eigenvalues can 

be avoided without changing the long 

distance physics. 



4. Proof of Large-N reduction

There are several proofs, each of which 
shows an aspect of the large-N reduction.



Loop equations are nothing but SD equations 

obtained from the variation of a link variable 

on a Wilson loop.

Loop equations

For example, for a non self intersecting loop 

it looks like
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However for the corresponding folded loop 

in a periodic box we have additional terms:
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In the large N limit, traced operators are 

factorized in general, and we have

𝒘 𝑪𝟏 𝒘 𝑪𝟐 = 𝒘 𝑪𝟏 𝒘 𝑪𝟐 .

The crucial point is that

𝐶1 (or 𝐶2) contains different numbers of 𝑼𝒏,𝝁

and 𝑼𝒏,𝝁
†

at least for one direction μ, because 

it is not closed in the infinite space.

Therefore if the center invariance

𝑼𝒏,𝝁 → 𝒆𝒊𝜽𝝁𝑼𝒏,𝝁

is not broken spontaneously, 𝒘 𝑪𝟏 is zero,

and the additional terms disappear.



Strong coupling expansion

The essence is captured by the Weingarten 

model that is obtained from the Wilson 

action by replacing the unitary measure with 

the Gaussian measure:

“The strong-coupling expansion series of the 

Wilson action and the reduced model agree 

in the large-N limit.”
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Wilson loop is simply defined by replacing 
𝑼𝒏,𝝁 with 𝑽𝒏,𝝁 :

 
   

 

   

, Weingarten

,

, Weingarten

,

ˆ ˆ, , ,

exp

exp

1
,

n

n

n

n

n n n

dV S w C

W C
dV S

w C Tr V V V
N









     












where
†

ˆ, , .n nV V   



1

2

3

n
C

Then the Feynman diagrams for a Wilson loop 
look like 

Each face corresponds to the 𝑽𝟒 interaction.

Each side corresponds the propagator.
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Suppose a vertex A corresponds to the site n .

For any vertex B find a path P from A to B,

B

P

n 1

1

1

1

2 2 2 2

3
3

3 3

A

The site corresponding to B is 
obtained by summing up the 
displacement vectors along P:

ˆ ˆ ˆ3 1 .2n   
This does not depend on 
the choice of P,

The crucial point is that we do not need the 
precise information of the sites if the graph is 
planar:

The situation is analogous to the existence of a
potential for a rotation free vector field.



This means that Weingarten model and the 
reduced Weingarten model give the same 
values of Wilson loop.

A similar analysis can be applied to the 

Wilson action by using the standard source 

formula:
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We can show that 

the strong-coupling expansion series of the 

Wilson action and the reduced model agree 

in the large-N limit.



Perturbative expansion around 

diagonal background
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As the simplest example we start with the 

large-N 𝝓𝟑 theory in the continuum space,

and the expectation values of single trace 

operators such as
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Parisi’s reduced model

(1) Let                            be N ×N diagonal

matrices whose elements distribute  

uniformly in the d- dimensional space,

which we regard as the momentum 

space.

 ˆ 1, ,P d  



(2) Corresponding to the field           , 

introduce a N ×N Hermitian matrix     ,

and construct the corresponding action

and operators by substituting
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For the action the space-time integral of 1 

should be replaced with

Λ is the cut off that appears in      . P̂

Volume of the unit cell
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“In the large-N limit the expectation value
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agrees with the original field theory.”
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action  

operators 

Thus we obtain
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For simplicity, we consider the free energy.

The generalization to the expectation values 

of the operators are straightforward.

      
22 2

( ) ( ) 2

,
,

ˆ , ,i j

i j
i j

Tr P p p m         

the propagator  for         is given by
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Feynman diagrams are something like
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We apply Parisi’s rule to the continuum 

gauge theory.
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the action becomes

ˆ ,A P A   If we define

and  𝑃𝜇’s disappear from the theory. 

One might conclude that this theory is 

equivalent to the gauge theory in d-dimensions.

But it is too naïve.
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Actually, in the proof of Parisi’s rule, we 

have assumed that the diagonal elements 

are negligible, because we have only N

such variables while the action is of order 

N2.

But it is not necessarily true in massless 

theory.

In that case, the propagators 

for diagonal elements become 

infinite.

ikj

2 2 2
( ) ( ) 2 ( ) ( ) 2 ( ) ( ) 2

1
.

i j j k k i
i j k p p m p p m p p m



We have to be careful, when we apply 

Parisi’s rule to a massless theory such 

as gauge theory.

This is why we have to worry about the 

center invariance.



S becomes the action of gauge theory in a non-

commutative space-time.

Expansion around non-commutative 

background

(0) ˆ

ˆ ˆ, ( ),

A p

p p i B B

 

   



    

(0) ˆ .A A a   

if we expand 𝑨𝝁 in the matrix model action  
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4
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    

around a non-commutative back ground 

As I said for the twisted reduced model,

This can be shown in the next two slides:
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ˆ ˆ , .x C p B C   
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Then we have the following correspondence
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ˆ ˆ * ,
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First we introduce a mapping between 

operators and functions

and identity

 
 
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
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Then the matrix model action becomes a field 

theory on the non-commutative space-time:

 
2

/ 2
*

det B 1
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
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 


The crucial point is that the commutator 

𝑨𝝁 , 𝑨𝝂 is mapped to the field strength in the 

noncommutative space-time:
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ˆ ˆ ˆ ˆ, ,
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                 

      

 



Naively, if UV-IR mixing is not there, this theory is 

equivalent to the large-N gauge theory in the low 

energy region. But it is not true, and the matrix 

theory is not completely equivalent to the ordinary 

field theory. 

UV-IR mixing and SSB of the center invariance are 

related.

 † †

reduced

1

d
iN

S e Tr U U U U

   

   

  

is equivalent to the original reduced model in the 

strong coupling region, because the phases cancel out 

in the strong coupling expansion.

Actually the twisted reduced model

⇒ no UV-IR mixing in the strong coupling region



5. Large-N reduction
and string theory

Large-N reduced model looks like world 
sheet string theory. 



The basic idea

For simplicity, we start with bosonic string.

In fact, in the Schild action, the worldsheet

can be regarded as a symplectic manifold, 

and the action is given by the integration of 

a quantity that is expressed in terms of the 

Poisson bracket.

“Worldsheet of string has a structure of 

phase space.”

This situation becomes manifest when we 

express the string in terms of the Schild

action.

Nambu (‘77)



Bosonic string is described by the Nambu-Goto

action

2 21
, .
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NG a bS d X X           

Schild action

It is nothing but the area of the worldsheet, which is 

expressed in terms of an anti-symmetric tensor 𝚺𝝁𝝂

that is constructed from the space-time coordinate 

𝑿𝝁. 



It is known that the Nambu-Goto action is 

equivalent to the Schild action


2

2 2

Schild
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, ,

2 4 2
S d g X X d g  

 
 

  



: a volume density on the world shee

1
, ,

t

ab

a bX Y

g

X Y
g
  

which is nothing but the Poisson bracket if 

we regard the worldsheet as a phase space.
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The equivalence can be seen easily, by eliminating

𝒈 from the Scild action:



The crucial point is that the Schild action 

has a structure of phase space.


21

, .
2 4 2

X X  

 


In fact it is given by the integration over the 

phase space

of a quantity that is expressed in terme the 

Poisson bracket

2d g

Symplectic structure of the worldsheet

Note that we do not need Worldsheet metric, but 

what we need is just the volume density 𝒈.



Matrix regularization

Then we want to discretize the worldsheet

in order to define the path integral.

  

2

-symm

function matrix
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etry ( )-symmet y
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A B A B
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rA

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









A natural discretization of phase space is 

the “quantization”.

If we quantize a phase space, it becomes 

the state-vector space, and we have the 

following correspondence:



Then the Schild action becomes

   
2

Matrix

1
, 1 ,

4
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and the path integral is regularized like

 
   Schild Matrix

1

exp exp .
vol(Diff ) ( )n

dg dX dA
Z iS iS

SU n





   

Here we have used the fact that the phase 

space volume   is diff. invariant and 

becomes the matrix size               after the 

regularization.

Therefor the path integral over                 

becomes summation over     . 

2d g
 1Tr n

g

n



Multi-string states

One good point of the matrix regularization is 

that all topologies of the worldsheet are 

automatically included in the matrix integral. 

Disconnected worldsheets are also included as 

block diagonal configurations as



Furthermore the sum over the size of the 

matrix is automatically included, if the 

worldsheet is imbedded in a larger matrix 

as a submatrix.



If we take this picture that all the worldsheets

emerge as submatrices of a large matrix, the 

second term of  

   
2

Matrix

1
, 1

4
S Tr A A Tr      

can be regarded as describing the chemical 

potential for the block size.

Thus we expect that the whole universe is 

described by a large matrix that obeys 
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This is nothing but the large-N reduced model.



On the other hand, if we start from type IIB 

superstring, we will get the reduced model for 

supersymmetric gauge theory. In this case 

eigenvalues do not collapse, and we can have 

non-trivial space-time.

We have seen that in this model the 

eigenvalues collapse to one point, and it can 

not describe an extended space-time.

This might be related to the instability of 

bosonic string by tachyons. 



IIB matrix model



1. Definition of IIB matrix model



Schild action of IIB string

First we constract the Schild action of 

type IIB superstring. 

Green-Schwarz action
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κ-symmetry
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Gauge fixing for the κ-symmetry 1 2   
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N=2 SUSY should be combined with 𝜿 symmetry 

so that the gauge condition is maintained
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N=2 SUSY becomes simple if we consider a 

combination
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Then we have the following simple form:



Schild action

N=2 SUSY

 

Schild

2
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Everything is 

written in terms of 

Poisson bracket.

Then we convert the action to the Schild action 

as in the case of bosonic string:  



Matrix regularization
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N=2 SUSY

Applying the matrix regularization, we have

,F i A A       

Everything is 

written in terms of 

commutator.



IIB matrix model
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Drop the second term, and consider large-N

Formally, this is the large-N reduced 

model of 10D super YM theory.

A good point is that the N=2 SUSY is 

manifest even after the discretization.

IIB matrix model

Ishibashi, HK, Kitazawa, Tsuchiya

Jevicki, Yoneya



N=2 SUSY

One of the N=2 SUSY is nothing but the 

supersymmety of the 10D super YM theory. 

 

 

1

1

1

2
F

A i





 

  

  

  

 

 
2

Matrix

1 1
, ,

4 2
S Tr A A A

    
 

         
 

Even so, they form non trivial N=2 SUSY:
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The other one is almost trivial.
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IIB matrix model is nothing but the 

dimensional reduction of the 10D super YM 

theory to 0D.

The other matrix modelscomment

It is natural to think about the other possibilities.

In fact, they have considered the dimensional 

reduction to various dimensions:

0D ⇒ IIB matrix model

1D ⇒Matrix theory 

2D ⇒Matrix string

4D ⇒AdS/CFT

Motl,  Dijkgraaf-Verlinde-Verlinde

de Witt-Hoppe-Nicolai,
Banks-Fischler-Shenker-Susskind

⇒O’Connor’s    



From the viewpoint of the large-N reduction,

they are equivalent if we quench the diagonal 

elements of the matrices.

However the dynamics of the diagonal elements 

are rather complicated. 

At present the relations among them are not 

well-understood.
comment end



Open questions

We expect that the IIB matrix model 
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],[
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1
(
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2
   AAATr

g
S

gives a constructive definition of superstring.

However there are some fundamental 

open questions:

Is an infrared cutoff  necessary?

How should the large-N limit be taken?

How does the space-time emerge?

How does the diff. invariance appear? 



2. Ambiguities in the definition

• Euclidean or Lorentzian
• Necessity of the IR cutoff
• How to take the (double) scaling limit



Euclidean or Lorentzian?

In general, systems with gravity do not 

allow a simple Wick rotation, because the 

kinetic term of the conformal mode (the 

size of the universe) has wrong sign.

On the other hand, the path integral of the 

IIB matrix model seems well defined for the 

Euclidean signature, because the bosonic 

part of the action is positive definite:

 2

2

1 1
[ , ] .

24

1
[ , ]S A AA TrTr

g

   


  


  






How about Lorentzian signature?

If we simply apply the analytic continuation

the path integral becomes unbounded:

0 10 ,A iA 
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From the point of view of the large-N 

reduction, it is natural to take

 exp .MZ dAd i S 



Is IR cutoff necessary?

Because of the supersymmetry 

the force between two 

eigenvalues cancels between 

bosons and fermions  
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It seems that we have to impose an infrared 

cutoff by hand to prevent the eigenvalues 

from running away to infinity.
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But there is a subtlety.

Because the diagonal elements of fermions are 

zero modes of the quadratic part of the action,

we should keep them when we consider the 

effective Lagrangian. 

The one-loop effective Lagrangian for the 

diagonal elements is given by
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Aoki,  Iso, Kitazawa, 
Tada, HK



Because of the fermionic degrees of freedom, 

there appears a weak attractive force between 

the eigenvalues, and at least the partition 

function becomes finite. 

However it is not clear whether all the 

correlation functions are finite or not.

Austing and Wheater,
Krauth, Nicolai and Staudacher,
Suyama and Tsuchiya,
Ambjorn, Anagnostopoulos, Bietenholz, Hotta and 
Nishimura,
Bialas, Burda, Petersson and Tabaczek,
Green and Gutperle,
Moore, Nekrasov and Shatashvili.
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( , )i jS    i j
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 ( , ) 0, 8n

i jS n 

Since is quadratic in ,

which has only 16 components, we have

and
        

    

4 8

, ,1-loop

eff
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Let’s estimate the order of this interaction.     

We first integrate out the fermionic variables   
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N
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
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           

  

(1 loop)

various terms

exp .

i j i j
Z p f p p f p p

O N

   

    

Therefore, for each pair of i and j we have 3 

choices

which carry the powers of 

0, 8, 16 respectively.

Therefore the number of factors other than 1 

should be less than or equal to  2N, and  we 

can conclude that the effective action induced

from the fermionic zero modes is of 𝑶 𝑵 :

.

On the other hand, we have  16N dimensional 

fermionic integral              .

2N



.

This should be compared to the bosonic case 

        

 

2
(1 loop)

2

exp 2 log

exp ( )

i j

i j

Z p D p p

O N





 
    

 


SUSY reduces the attractive force by at least 

a factor 1/N.

So, in the naïve large-N limit, simultaneously 

diagonal backgrounds are stable. 

However, it is not clear what happens in the 

double scaling limit.



How to take the large-N limit

In the IIB matrix model , we usually regard 

A as the space-time coordinates.

)],[
2

1
],[

4

1
(

1 2

2
   AAATr

g
S

gSo,       has dimensions of length squared.

How is the Planck scale expressed?

If it does not depend on the IR cutoff  l, as 

we normally guess, we should have
1

2
Planck .l N g

In other words, we should take the large-N 

limit keeping this combination finite.

 ?

At present we have no definite answer.



3. Interpretation of the matrices 



What do the matrices stand for?

If we regard the IIB matrix model 

)],[
2

1
],[

4

1
(

1 2

2
   AAATr

g
S

as the matrix regularization of the Schild 

action, Aμ are space-time coordinates.

On the other hand if we regard it as the 

large-N reduced model, the diagonal 

elements of Aμ represent momenta.



0
ˆ 1 , 0, ,3

.
0, 4, ,9

kp
A

Here       satisfy the CCR’sp̂

Another interesting possibility is to consider a 

non-commutative back ground such as

ˆ ˆ, ( ),p p i B B       

There are many possibilities to realize the 

space-time.

and      is the           unit matrix.  

Then we have a 4D noncommutative flat 

space with SU(k) gauge theory.

1k k k



Actually various models that are close to the 

standard model can be constructed by choosing 

an appropriate background.

“Intersecting branes and a standard model realization

in matrix models.”

A. Chatzistavrakidis, H. Steinacker,  and G. Zoupanos.

JHEP09(2011)115  

(ex.)

“An extended standard model and its Higgs geometry 

from the matrix model,”

H. Steinacker and J. Zahn,

PTEP 2014 (2014) 8, 083B03



Expandind universe
S.-Kim, J. Nishimura, A. Tsuchiya

Phys.Rev.Lett. 108 (2012) 011601

can be regarded as 

an expanding 3+1 

D universe. 

(ex.)



Expanding universe 2

Recently another interesting picture of the expanding 

universe has been obtained by considering fuzzy 

manifolds.

(ex.)

“Quantized open FRW cosmology from Yang-Mills matrix models”

H. Steinacker,

Phys.Lett. B782(2018) 176-180

“The fuzzy 4-hyperboloid 𝑯𝒏
𝟒 and higher-spin in Yang-Mills 

matrix models”

Marcus Sperling, H. Steinacker,

arXiv:1806.05907



4. Diffeomorphism invariance
and 

Gravity



Diff. invariance and gravity

Because we have exact N=2 SUSY, it is 

natural to expect to have graviton in the 

spectrum of particles. 

Actually there are some evidences.

(1) Gravitational interaction appears from 

one-loop integral.

(2) Emergent gravity by Steinacker. Gravity 

is induced on the non-commutative back 

ground.



However, it would be nicer, if we can 

understand how the diffeomorphism 

invariance is realized in the matrix model.

I would like to introduce an attempt, 

although it is not complete.



Y. Kimura, 
M. Hanada and HK

The basic question :

In the large-N reduced model, a background 

of simultaneously diagonalizable matrices 

𝑨𝝁
(𝟎)

= 𝑷𝝁 corresponds to the flat space,

if the eigenvalues are uniformly distributed.

In other words, the background 𝑨𝝁
(𝟎)

= 𝒊𝝏𝝁

represents the flat space.

How about curved space? 

Is it possible to consider some background  

like

𝑨𝝁
(𝟎)

= 𝒊𝛁𝝁 ?

Covariant derivatives as matrices 



Actually, there is a way to express the covariant 

derivatives on any D-dim manifold by D matrices.

More precisely, we consider 

𝑴: any D-dimensional manifold, 

𝝋𝜶: a regular representation field on 𝑴. 

Here the index 𝜶 stands for the components of 

the regular representation of the Lorentz group 

𝑺𝑶(𝑫 − 𝟏, 𝟏).

The crucial point is that for any representation 𝒓,

its tensor product with the regular representation 

is decomposed into the direct sum of the regular 

representations:

.r reg reg regV V V V   



In particular the Clebsh-Gordan coefficients for 

the decomposition of the tensor product of the 

vector and the regular representaion

vector reg reg regV V V V   

are written as ,

( ) , ( 1,.., ).b

aC a D

 

Here 𝒃 and β are the dual of the vector and the 

regular representation indices on the LHS.

(𝒂) indicates the 𝒂-th space of the regular 

representation on the RHS, and 𝜶 is its index.



Then for each 𝒂 (𝒂 = 𝟏. . 𝑫)
,

( )

b

a bC 

    

is a regular representation field on 𝑴.

In other words, if we define 𝛁(𝒂) by 

each 𝛁(𝒂) is an endomorphism on the space of the 

regular representation field on 𝑴. 

Thus we have seen that any covariant 

derivative on any D dimensional manifold 

can be expressed by D matrices.

  ,

( ) ( )

b

a a bC 

 
   



Therefore any D-dimensional manifold 𝑴
with 𝑫 ≤ 𝟏𝟎 can be realized in the space 

of the IIB matrix model as

0 ( ) , 1, ,
,

0, 1, ,10

a

a

a D
A

a D

where 𝛁(𝒂) is the covariant derivative on 𝑴

multiplied by the C-G coefficients. 



Good point 1

Good points and bad points 

Einstein equation is obtained at the classical level.

In fact, if we impose the Ansatz ( )a aA i 

on the classical EOM  , 0,a a bA A A   

we have

 

( ) ( ) ( ), 0

0 , ,

, ( )

0 , 00 .

a a b

a a b

cd cd ca

a ab cd a ab cd ab c

a

d

a b ab b

c

a

R O R O R

R R R

       

      

       

    

Any Ricci flat space with 𝑫 ≤ 𝟏𝟎 is a 

classical solution of the IIB matrix model.



Good point 2

Both the diffeomorphism and local Lorentz 

invariances are manifestly realized as a part of 

the 𝑺𝑼(𝑵) symmetry.

In fact, the infinitesimal diffeomorphism and 

local Lorentz transformation act on 𝝋𝜶 as 

𝝋 → 𝟏 + 𝝃𝝁𝝏𝝁 𝝋 and

𝝋 → 𝟏 + 𝜺𝒂𝒃𝑶𝒂𝒃 𝝋 , respectively. 

Both of them are unitary because they preserve 

the norm of 𝝋𝜶

𝝋𝜶
𝟐 = ∫ 𝒅𝑫𝒙 𝒈 𝝋𝜶∗𝝋𝜶



Bad points

Fluctuations around the classical solution 

𝑨𝒂
(𝟎)

= 𝒊𝛁(𝒂)

1. contain infinitely many massless states.

2. Positivity is not guaranteed.

This can be seen by considering the 

fluctuations around the flat space.

In this case the background is equivalent to

𝑨𝒂
(𝟎)

= 𝒊𝝏𝒂 ⊗ 𝟏𝒓𝒆𝒈 ,

where 𝟏𝒓𝒆𝒈 is the unit matrix on the space of 

the regular representation.



Because the unit matrix 𝟏𝒓𝒆𝒈 is infinite 

dimensional, we have infinite degeneracy, and 

in particular we have infinitely many massless 

states.    → bad point 1

In general, the regular representation contains 

infinite tower of higher spins, and we have 

many negative norm states. It is not clear 

whether we have sufficiently many symmetries 

to eliminate those negative norm states.

→ bad point 2



One possible way out is to consider a non-

commutative version.

What we have done is to regard the matrices 

as endomorphisms on the space of the regular 

representation fields.

It is easy to show that this space is equivalent 

to the space of the functions on the frame 

bundle of the spin bundle.

If we can construct a non-commutative version 

of such bundle, we can reduce the degrees of 

freedom significantly without breaking the 

diffeomorphism and local Lorentz invariance.



Topology change of space-time



1. Low energy effective action of
Quantum gravity/string theory



A. Tsuchiya,  Y. Asano and HK

Low energy effective action of IIB matrix model 

We have seen that any D-dim manifold is 

contained in the space of D matrices.

Therefore IIB matrix model should contain the 

effects of the topology change of space-time.

As was pointed out by Coleman some years 

ago, such effects give significant corrections 

to the low energy effective action.

It is interesting to consider the low energy 

effective action of the IIB matrix model.
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Actually we can show that if we integrate out the heavy 

states in the IIB matrix model, the remaining low 

energy effective action is not a local action but has a 

special form, which we call the multi-local action:

Here 𝑶𝒊 are local scalar operators such as    

𝟏 , 𝑹 , 𝑹𝝁𝝂𝑹
𝝁𝝂 , 𝑭𝝁𝝂 𝑭𝝁𝝂, 𝝍𝜸𝝁𝑫𝝁𝝍 ,⋯ .

𝑺𝒊 are parts of the conventional local actions.

The point is that 𝑺𝐞𝐟𝐟 is a function of 𝑺𝒊’s.



0 .a a aA A  

This is essentially the consequence of the well-

known fact that the effective action of a matrix 

model contains multi trace operators.

Then we integrate over 𝝓 to obtain the low energy 

effective action.

Here we assume that the background 𝑨 𝒂
𝟎 contains 

only the low energy modes, and 𝝓 contains the rest.

We also assume that this decomposition can be 

done in a SU(N) invariant manner.

More precisely, we first decompose the matrices 𝑨𝒂

into the background 𝑨 𝒂
𝟎 and the fluctuation 𝝓 :



Substituting the decomposition into the action of 

the IIB matrix model, and dropping the linear 

terms in 𝝓, we obtain



 

    

2
0 0 0 0

0

0

2

2
0

0

1

4

2 , , , 2 , ,

4 , , , fermion

,

.

a b a b a b a b b a

a b a

a

b

b

a b

S Tr

A A

A

A

A

A A

A

    

    

  

                

    

In principle, the 0-th order term  2
0 0

0 ( ) ( )

1
,

4
a bS Tr A A   

can be evaluated with some UV regularization, 

which should give a local action.



The one-loop contribution is obtained by the Gaussian 

integral of the quadratic part. 

Then the result is given by a double trace operator as 

usual:

𝑾 =  𝑲𝒂𝒃𝒄⋯ , 𝒑𝒒𝒓⋯ 𝑻𝒓 𝑨𝒂
𝟎𝑨𝒃

𝟎𝑨𝒄
𝟎 ⋯ 𝑻𝒓(𝑨𝒑

𝟎𝑨𝒒
𝟎𝑨𝒓

𝟎 ⋯)

The crucial assumption here is that both of the 

diffeomorphism and the local Lorentz invariance are 

realized as a part of the SU(N) symmetry.

Then each trace should give a local action that is 

invariant under the diffeomorphisms and the local 

Lorentz transformations:

1-loop

eff

1
, ( ) ( ).

2

D

i j i j i i

i j

S c S S S d x g x O x  



In the two loop order, from the planar 

diagrams we have a cubic form of local

actions
2-loop Planar

eff

, ,

1
,

6
i jk i j k

i j k

S c S S S

while non-planar diagrams give a local 

action
2-loop NP

eff .i i

i

S c S

z y

x

x

Similar analyses can be applied for higher loops.



the low energy effective theory of the IIB matrix 

model is given by the multi-local action:
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We have seen that

This reminds us of the theory of baby universes 

by Coleman.



Consider Euclidean path integral which involves 

the summation over topologies,

Then there should be a wormhole-like configuration in 

which a thin tube connects two points on the universe.  

Here, the two points may belong to either the same 

universe or different universes.

   
topology

exp .dg S 

If we see such configuration from the side of the large 

universe(s), it looks like two small punctures. 

But the effect of a small puncture is equivalent to an 

insertion of a local operator.

Coleman (1989)



Summing over the number of wormholes, we have

bifurcated wormholes  

⇒ cubic terms, quartic terms, …

   4 4

,

( ) ( ) ( ) ( ) exp .i j

i j

i j

c d xd d y g x g y O x O yg S 

Therefore, a wormhole contributes to the path 

integral  as

  4 4

,

( ) ( ) ( ) ( )exp .i j

i j

i j

c d x d y g x g y O xg yS Od
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x

y

4 4

0 ,

4 4

,

1
( ) ( ) ( ) ( )

!

exp ( ) ( ) ( ) ( ) .

n

i j

i j

N i j
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i j

i j

c d x d y g x g y O x O y
n

c d x d y g x g y O x O y





 
 
 

 
  

 

  

 

Thus wormholes contribute to the path integral as



Although there is no precise correspondence, the 

loops in the IIB matrix model resemble the 

wormholes. 

x

x

𝑥

𝑦 ≅

Probably this phenomenon occurs universally. 

We may say that if the theory involves gravity 

and topology change, its low energy effective 

action becomes the multi-local action.



2. Fine tunings by nature itself

Multi-local action may provide a mechanism 
of automatic fine tunings and give a solution 
to the naturalness problem.



We consider the action given by

eff ,

( ) ( ).

i i i j i j i j k i j k

i i j i j k

D

i i

S c S c S S c S S S

S d x g x O x
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Because 𝑺𝐞𝐟𝐟 is a function of 𝑺𝒊’s , we can express 

𝐞𝐱𝐩(𝒊𝑺𝐞𝐟𝐟) by a Fourier transform as

    1 2 1 2exp , , , , exp ,eff i i

i

iS S S d w i S   


 
 


where 𝝀𝒊’s are Fourier conjugate variables to 𝑺𝒊’s, 

and 𝒘 is a function of 𝝀𝒊’s .

Physics of the multi-local action 



       effexp exp .i i

i

dZ d iS Sd w i    

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  

The last integral is the ordinary path integral for 

the action  

 𝒊 𝝀𝒊 𝑺𝒊 = ∫ 𝒅𝑫𝒙 𝒈  𝝀𝒊 𝑶𝒊.

Then the path integral for 𝑺𝐞𝐟𝐟 can be written as 

Because 𝑶𝒊 are local scalar operators such as    

𝟏 , 𝑹 , 𝑹𝝁𝝂𝑹
𝝁𝝂 , 𝑭𝝁𝝂 𝑭𝝁𝝂, 𝝍𝜸𝝁𝑫𝝁𝝍 ,⋯ .

 𝒊𝝀𝒊 𝑺𝒊 is an ordinary local action and 𝝀𝒊 are 

nothing but the coupling constants.

Therefore the system we are considering is very 

close to the ordinary field theory, but we have to 

integrate over the coupling constants with weight 

𝒘(𝝀𝟏, 𝝀𝟐. ⋯ ).



If                              has a sharp peak at            ,

we can say that the coupling constants are fixed 

to       .      

 exp i i

i

d i S 



 


(0) 

(0)

However, it is not clear how to define the value 

of the path integral

 exp i i

i

d i S 



 


in the Lorentzian theory, because we do not 
know a priori the initial and final states of 
the universe. 



Instead, we can take a working hypothesis:

Maximum Entropy Principle (MEP):

Coupling constants are tuned so that the 
entropy of the universe becomes maximum.

Suppose that we pic up a universe randomly 
from the multiverse. Then the most probable 
universe is expected to be the one that has the 
maximum entropy.  (T. Okada and HK)



If the cosmological evolution is completely 

understood, we can calculate the total entropy of  

the universe, and in principle all of the independent 

low-energy couplings are determined by 

maximizing it.

For example if we accept the inflation scenario in which 

universe pops out from nothing and then inflates, most 

of the entropy of the universe is generated at the stage of 

reheating just after the inflation stops. Therefore the 

potential of the inflaton should be tuned so that inflation 

occurs as much as possible.

Furthermore, if we assume that Higgs field plays the 

role of inflaton, the above analysis tells that Higgs 

potential should become flat at some high energy scale.



Actually from the recent experimental data, we 

see that 

(1) the parameters of the SM indeed seem to be 

chosen such that Higgs potential becomes 

flat around the Planck scale.

(2) We can obtain realistic cosmological model 

of Higgs inflation.

Hamada, Oda, Park, HK
Bezrkov, Shaposhnikov



If we introduce a non-minimal coupling          

a realistic Higgs inflation is possible.

2R 
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
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

In the Einstein frame the 

effective potential becomes

𝜉 can be as small as 10.  

Critical Higgs inflation



• It is natural to expect that space-time emerges 

from matrices.

• But there are various possibilities.

• It is also important to understand the time 

evolution of universe. 

• In particular matrix models may describe the 

very beginning of the universe.

• It is important to develop numerical techniques 

to solve space-time matrix models.

• Topology change of universe is automatically 

included in matrix models, and it may give a 

clue to resolve the naturalness problem.

Summary and conclusions


