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The dynamics

Λ two-dimensional L× L square in Z2

XΛ the set of spin configurations in Λ., i.e., XΛ = {−1, 1}Λ

In Λ we fix a set B with fixed spins:
state space XΛ,B = {σ ∈ XΛ : σx = +1 ∀x ∈ B}.

Pair Hamiltonian on (σ, τ) on XΛ,B ×XΛ,B :

H(σ, τ) = −
∑
x∈Λ

[Jτx(σx↓ + σx←) + qτxσx − λ(σx + τx)]

where x↓, x← are down, left neighbors of the site x on Λ with periodic
b.c., J > 0, q > 0 is an inertial constant and λ > 0 an external field.



H(σ, τ) = −
∑
x∈Λ

[Jτx(σx↓ + σx←) + qτxσx − λ(σx + τx)] =

−
∑
x∈Λ

[Jσx(τx↑ + τx→) + qσxτx − λ(σx + τx)]

where x↑, x→ are up, right neighbors of x . We have

H(σ, σ) = H(σ)− q|Λ|+ λ
∑
x∈Λ

σx

where H(σ) is the usual Ising hamiltonian with magnetic field −λ

H(σ) = −
∑

〈x,y〉∈BΛ

Jσxσy + λ
∑
x∈Λ

σx

Note also that H(σ, τ) 6= H(τ, σ), interaction in opposite directions:

dl : x↓, x← ⇐⇒ ur : x↑, x→

[ISS ’07], [GSSV ’11], [DSS ’12], [PSS ’16], [DSS ’15]



Define

−→
Z σ =

∑
σ′∈XΛ,B

e−H(σ,σ′) ←−
Z σ =

∑
σ′∈XΛ,B

e−H(σ′,σ)

and the two asymmetric parallel updatings on XΛ,B

Pdl(σ, σ′) :=
e−H(σ,σ′)

−→
Z σ

=
∏
x∈Λ

eh
dl
x (σ)σ′x

2 cosh(hdlx (σ))

with
hdlx (σ) =

[
J(σx↓ + σx←) + qσx − λ

]
,

and

Pur (σ, σ′) :=
e−H(σ′,σ)

←−
Z σ

=
∏
x∈Λ

eh
ur
x (σ)σ′x

2 cosh(hurx (σ))
.

with
hurx (σ) =

[
J(σx↑ + σx→) + qσx − λ

]



The shaken dynamics is the composition of these two steps, with
interactions in opposite directions:

P(σ, τ) =
∑

σ′∈XΛ,B

Pdl(σ, σ′)Pur (σ′, τ) =
∑

σ′∈XΛ,B

e−H(σ,σ′)

−→
Z σ

e−H(τ,σ′)

←−
Z σ′

Every step of the shaken dynamics: two asymmetric parallel updatings



A geological motivation

Terrestrial tides: amplitude: ∼ 0.3 m, period: ∼ 12h

The source of this very fast deformation of the Earth is clear in the
non-inertial frame in which the x-axis is directed toward the Sun/Moon.
The tides are due to the gradient of the gravitational and of the
centrifugal forces.

Fc(r) = mω2r Fg (r) = −KmM

r2

Fc(RES) + Fg (RES) = 0. Let rE
RES

= ε. For small ε and ρ ≤ rE :

Fc(RES −ρ) ∼ mω2RES

[
1− ρ

RES

]
Fg (RES −ρ) = −KmM

R2
ES

[
1 + 2

ρ

RES

]
Solar tide force:

Fc(RES − ρ) + Fg (RES − ρ) ∼ −KmM

R2
ES

3
ρ

RES



A geological model

In [Doglioni et al., 2006] it has been proposed that tides are one of the
driving forces, beside convection, of the drift of the tectonic plates.

It is introduced a model to describe friction between lithosphere and
mantle in terms of discrete bonds subject to random fractures.
Breakage occurs with exponential distribution with rate depending on the
number of active present bonds (mean field model without geometry).



A toy model with tide effect

Assume that the bonds are located on a square lattice, and that the
exponentially small probability of each fracture has a dependence on the
state of the nearest neighbor bonds. Bonds surrounded by broken bonds
breaks with slightly higher probability. Bonds with intact neighbors tend
to remain (ferromagnetic interaction).
The main forces (convection, gravitation,...) responsible of the drift of
tectonic plates are much more relevant but correspond to very large time
scales in the evolution. We represent their effect in our toy model with
an external field (possibly not constant) and with an inertial constant in
the dynamics.
Since the plates are driven back and forth to the faults by the tides, we
assume that twice a day each bond may be fractured first on the basis of
the state of the bonds above and to its right, and then below and to its
left: a shaken dynamics.
A fracture is an earthquake. Interpret σx = +1 an earthquake at location
x . Faults can be described as boundary condition B. We assume
J � λ < q.



The pair hamiltonian on XΛ,B ×XΛ,B

H(σ, σ′) = −
∑
x∈Λ

[Jσ′x(σx↓ + σx←) + qσ′xσx − λ(σx + σ′x)]

q

J

J

Λ

Λ′

From the square to the hexagonal lattice

XΛ,B ×XΛ,B = XH



First results

The stationary measure of the shaken dynamics is

πΛ,B(σ) =

−→
Z σ

Z
with

−→
Z σ =

∑
σ′∈XΛ,B

e−H(σ,σ′), Z =
∑

σ∈XΛ,B

−→
Z σ

and reversibility holds. This stationary measure is the marginal of the
measure on XΛ,B ×XΛ,B = XH defined by:

π2(σ, τ) :=
1

Z
e−H(σ,τ).

Since H is a bipartite graph, the vertex set V of H can be decomposed is
two sets V = V 1 + V 2, with |V i | = |Λ|, i = 1, 2 and each σ∈ XH can be
written as σ= (σ1, σ2) with σi ∈ XV i ,B , i = 1, 2. The shaken dynamics
on XΛ,B corresponds to an alternate dynamics on XH in the following
sense

Psh(σ1, τ 1) =
∑

τ 2∈{−1,+1}V 2

Palt(σ,τ )



where

Palt(σ,τ ) =
e−H(σ1,τ 2)

−→
Z σ1

e−H(τ 1,τ 2)

←−
Z τ 2

=
∏
x∈V 2

ehx (σ1)τ 2
x

2 cosh(hx(σ1))

∏
x∈V 1

ehx (τ 2)τ 1
x

2 cosh(hx(τ 2))

with
hx(σi ) = J(σz1 + σz2 ) + qσz3 − λ,

where z1, z2, z3 ∈ V i nearest neighbors of x , and the measure π2(σ1, σ2)
is the non reversible stationary measure of Palt .

Noting that Palt(σ,τ ) does not depend on σ2, we can define the
evolution of X sh

t as a marginal of the evolution of the alternate process
X alt . Given a path ω for the process X alt

ω : ω(0),ω(1), ...,ω(t)

and the associated path for the process X sh ω

ω : ω1(0),ω1(1), ...,ω1(t)

we have
Psh(ω) =

∑
ω2(1),...,ω2(t)

Palt(ω).



Different regimes in q

On the hexagonal anisotropic lattice H, with two bonds J and one bond
q exiting from each site, different regimes:

q = J hexagonal regular lattice;

q →∞ in any x ∈ Λ with large probability σ1
x = σ2

x , so σ1 = σ2 ∈ XΛ:
configurations on the square lattice;

q → 0 in any x ∈ Λ the spin interact only with two nearest neighbor sites,
i.e. independent copies of one dimensional systems.



Distance between πΛ and πG
Λ

From now on let B = ∅, i.e., we consider standard periodic boundary
conditions.

πG
Λ (σ) =

e−H(σ)

ZG
with ZG =

∑
σ∈XΛ

e−H(σ)

‖πΛ − πG
Λ ‖TV =

1

2

∑
σ∈XΛ

|πΛ(σ)− πG
Λ (σ)|.



Theorem1

Set δ = e−2q, and let δ be such that

lim
|Λ|→∞

δ2|Λ| = 0,

there exist J0 such that for any J > J0

lim
|Λ|→∞

‖πΛ − πG
Λ ‖TV = 0

Extension of [PSS1] where λ = 0.

Remark (finite volume regime)

Let Λ be fixed and finite. There exist J0 sufficiently large and η ∈ (0, 1)
such that if J0 < J < q(1− η) then there exists a constant
C = C (J0, η, |Λ|) such that

‖πΛ − πG
Λ ‖TV ≤ Cδ2



Convergence to equilibrium at low temperature

We will use the following parametrization:

J =
β

2
, q = β, λ =

εβ

2

and suppose ε small but fixed, β →∞ and Λ large (|Λ| > 1
ε2 ) fixed, i.e.,

independent of β.
In this low temperature regime πΛ concentrates on −1, parallel to the
external magnetic field −λ:

−1 is the stable state;
+1 is a metastable state.



In this low temperature regime

πΛ(σ) ∝
∑
τ

e−H(σ,τ) ≈ e−H(σ)

with H(σ) = minτ H(σ, τ).

The configuration +1 corresponds to a local minimum of the energy
H(σ) and there is a local drift to this minimum given by typical
transitions of probability of order one.

To leave +1 the process has to go “against” this drift, with transitions of
exponentially small probability.

Indeed small clusters of minus spin in a see of positive spins, have the
tendency to shrink, and there is a critical size of cluster of minus spin to
overcome in order to prefer to grow.



Theorem 2

Let τ sh−1 be the first hitting time to the configuration −1 for the shaken
dynamics P+1(τ sh−1 > t) its distribution starting from the configuration
+1.
For β sufficiently large and for any α > 0 arbitrarily small we have

P+1(τ sh−1 > T sheαβ) < exp
{
− eaβ

}
(1)

for some a > 0, with T sh = eE
sh
c β and

E sh
c = 4lc − 2ε(lc − 1)lc − ε, where lc =

1

ε



Note that with the same parameters J and λ for the usual Glauber single
spin flip dynamics we have that for β large and α > 0 arbitrarily small
(see e.g. [OV], [BdH])

P+1

(
TGle−αβ < τGl−1 < TGleαβ

)
∼ 1 for large β

with

TGl = eE
Gl
c β , where EGl

c = 4lGlc −ε(lGlc −1)lGlc −ε with lGlc =
2

ε

so that E sh
c ∼ 2

ε = 1
2 ·

4
ε ∼

1
2E

Gl
c and therefore

T sh �
√
TGl .



The advantage is not due to parallelization. Indeed even if the shaken
dynamics is parallel, so that

Psh(+1,−1) > 0

at low temperature (β large) the shaken dynamics behaves with large
probability like a single spin flip dynamics when starting from +1.
Parallelization has positive effects when the dynamics is going along and
not against the drift.

The gain is due to geometrical reasons, related to the fact that shaken
dynamics is equivalent to the alternate dynamics on the hexagonal
lattice, and the potential barrier on this lattice is lower than the
corresponding barrier on the square lattice.



Some idea of the proofs

First resuts DBC for shaken:

∑
σ′∈XΛ,B

e−(H(σ,σ′)+H(τ,σ′))

←−
Z σ′

=
−→
Z σP

sh(σ, τ) =
−→
Z τP

sh(τ, σ) =

∑
σ′∈XΛ,B

e−(H(τ,σ′)+H(σ,σ′))

←−
Z σ′

Invariant measure of the alternate dynamics:∑
σ1,σ2

π2(σ1, σ2)Palt(σ,τ ) =

∑
σ1,σ2

e−H(σ1,σ2)

Z

e−H(σ1,τ 2)

−→
Z σ1

e−H(τ 1,τ 2)

←−
Z τ 2

=
e−H(τ 1,τ 2)

Z
= π2(τ 1, τ 2)

even if in general no reversibility

π2(σ1, σ2)Palt(σ,τ ) 6= π2(τ 1, τ 2)Palt(τ ,σ).



Theorem 1
Standard cluster expansion argument as in [PSS’16]

Theorem 2
Metastability in Freidlin Wentzel regime in an anisotropic hexagonal
lattice (vertical bonds q = 2J ).

Palt(σ,τ ) =
e−H(σ1,τ 2)

−→
Z σ1

e−H(τ 1,τ 2)

←−
Z τ 2

=

∏
x∈V 2

ehx (σ1)τ 2
x

2 cosh(hx(σ1))

∏
x∈V 1

ehx (τ 2)τ 1
x

2 cosh(hx(τ 2))
� e−∆(σ,τ )β .

∆(σ,τ ) =
∑

x2∈V 2

∆x2 (σ,τ ) +
∑

x1∈V 1

∆x1 (σ,τ )

where

∆x2 (σ,τ ) =
[
τ 2
x2 2hx2 (σ1)

]
−
, ∆x1 (σ,τ ) =

[
τ 1
x1 2hx1 (τ 2)

]
−

hx2 (σ1) =
1

2

(
σ1
z1

+ σ1
z2

+ 2σ1
z3
− ε
)

with z1, z2, z3 ∈ V 1 the nearest neighbors of x2, z3 being the neighbor
related to x2 by a q-bond and similarly for hx1 (τ 2).



z1 x

z3

z2

Figure : A spin configuration on portion of the hexagonal lattice with its
Peierls’ contour. Black dots represent “minus” spins and white dots “plus”
spins. Red edges in the contour have cost q whereas black edges have cost J.



cost to create a new line: 2− ε
cost to erase a line of length l : 2εl − ε

critical side:
2− ε = 2εlc − ε

Typical time to reach −1 is related to minimal cost to reach size lc
Isoperimetric problem: maximal area for rhombus.
Area of rhombus of side l is 2l2.

E sh
c = 4lc − 2ε(lc − 1)lc − ε

Final remark

Different is the case of shaken dynamics with J = q (hexagonal regular
lattice).
Relevant configuration are hexagons. We expect

E sh(J=q)
c ∼ 6lc − 6εl2c , where lc =

1

2ε

E sh(J=q)
c ∼ 3

2ε



Conclusion

The advantages of the shaken dynamics can be summarized as follows:

- the dynamics is actually on a different lattice so there is a gain of a
square root when moving “against the drift” in the small
temperature regime;

- the dynamics is parallel so there is a gain in the efficiency
proportional to |Λ| when moving “along the drift”, moreover the
dynamics can be efficiently simulated on computers with parallel
architecture;

- by Theorem 1 and Theorem 2 we can conclude that in small
temperature regime the shaken dynamics is an efficient tool for
Gibbs sampling within a given error depending on β;

- there is an additional parameter q tuning the geometry of the
system.


