Homogenization in amorphous media and applications

Alessandra Faggionato

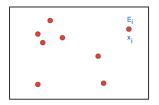
University La Sapienza - Rome

arXiv:1903.0731

Motivations

- Population dynamics
- Mott variable range hopping
 - Fundamental hopping mechanism of electron transport in strongly disordered systems, as doped semiconductors
 - In the regime of low impurity density, one encodes the electron interactions into the jump rates and considers independent random walkers.
 - Final object: random walk on a marked simple point process

Marked simple point process

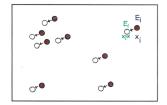


- $\{\bullet\} = \{x_i\}$: simple point process, random locally finite subset of \mathbb{R}^d
- E_i : mark of x_i , real random variable
- $\omega = \{(x_i, E_i)\}$ marked simple point process
- Ω space of possible configurations ω

Action of the group \mathbb{R}^d by translations

• Given $x \in \mathbb{R}^d$ and $\omega = \{(x_i, E_i)\}$, we set

$$\tau_x \omega := \{ (x_i - x, E_i) \}$$



- \mathbb{P} : law of $\omega = \{(x_i, E_i)\}$
- P stationary and ergodic w.r.t. spatial translations

Example 1: marked Poisson point process

• Sample $\hat{\omega} := \{x_i\}$ as PPP on \mathbb{R}^d with density λ

- ∘ $|\{x_i\} \cap A|$ ~ Poisson rv with mean $\lambda \ell(A)$, $\ell(\cdot)$: Lebesgue measure
- $A \cap B = \emptyset \implies |\{x_i\} \cap A| \text{ and } |\{x_i\} \cap B| \text{ are independent}$
- Mark the points $x_i's$ with i.i.d. random variables E_i

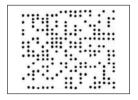
Example 1: marked Poisson point process

- Sample $\hat{\omega} := \{x_i\}$ as PPP on \mathbb{R}^d with density λ
- Mark $x_i's$ with i.i.d. random variables E_i

If $E_i \sim \nu$, then \mathbb{P} is called the ν -randomization of the simple point process on \mathbb{R}^d .

Example 2: marked diluted crystal

• Let $\{z_i\} \subset \mathbb{Z}^d$ be the vertexes of site percolation



- U: uniformly distributed random vector in $[0,1)^d$
- Set $x_i := z_i + U, \forall i$
- Mark the points $x_i's$ with i.i.d. random variables E_i

Palm distribution \mathbb{P}_0

- $\omega = \{(x_i, E_i)\}$ marked simple point process
- Ω : space of possible configurations ω
- Ω_0 : space of configurations ω with $0 \in \{x_i\}$
- \mathbb{P}_0 : Palm distribution associated to \mathbb{P} Probability with support in Ω_0 Roughly, $\mathbb{P}_0 = \mathbb{P}(\cdot|0 \in \{x_i\})$

Palm distribution \mathbb{P}_0

Expectations: $\mathbb{P} \to \mathbb{E}$, $\mathbb{P}_0 \to \mathbb{E}_0$

Due to ergodicity:

Fact

For
$$\mathbb{P}$$
-a.a. $\omega = \{(x_i, E_i)\}$ it holds
$$\lim_{k \to \infty} Av_{x:|x| \le k} f(\tau_x \omega) = \mathbb{E}_0[f].$$

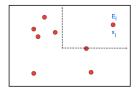
Av=Average

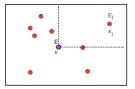
Example

 \mathbb{P} : ν -randomization of a PPP

Then, \mathbb{P}_0 is the law of ω obtained as follows:

- Sample $\{(x_i, E_i)\}$ with law \mathbb{P}
- Sample independently a r.v. E with distribution ν
- Set $\omega := \{(x_i, E_i)\} \cup \{(0, E)\}$





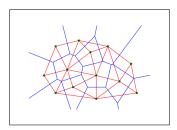
Random walk $(X_t^{\omega})_{t\geq 0}$

- $\omega = \{(x_i, E_i)\}$ random environment
- $(X_t^{\omega})_{t\geq 0}$ continuous time random walk
- State space $\hat{\omega} = \{x_i\}$
- $\mathbb{P}(X_{t+dt}^{\omega} = x_j \mid X_t^{\omega} = x_i) = c_{x_i, x_j}(\omega) dt, \qquad i \neq j$
- Symmetric jump rates: $c_{x_i,x_j}(\omega) = c_{x_j,x_i}(\omega)$
- Covariant jump rates: $c_{x_i,x_j}(\omega) = c_{x_i-z,x_j-z}(\tau_z\omega) \ \forall z \in \mathbb{R}^d$
- Irriducible random walk

Examples

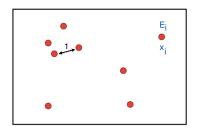
• Mott v.r.h. $c_{x_i,x_j}(\omega) = \exp\{-|x_i - x_j| - (|E_i| + |E_j| + |E_i - E_j|)\}$

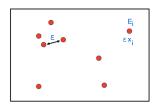
Nearest-neighbor random walk on the Delaneauy triangulation



ε -rescaling

• $\varepsilon > 0$ and $\omega = \{(x_i, E_i)\}$





• $\mu_{\omega}^{\varepsilon}$: measure on \mathbb{R}^d , $\mu_{\omega}^{\varepsilon} := \varepsilon^d \sum_i \delta_{\varepsilon x_i}$

ε -rescaling

- Intensity: $m := \mathbb{E}\left[|\{x_i\} \cap [0,1)^d| \right]$
- Due to ergodicity: $\mu_{\omega}^{\varepsilon} \to m \, dx$
- Ω_0 : space of configurations ω with $0 \in \{x_i\}$

Proposition

Given $\varphi \in C_c(\mathbb{R}^d)$ and $g: \Omega_0 \to \mathbb{R}$ in $L^1(\mathbb{P}_0)$, for \mathbb{P} -a.a. ω it holds

$$\lim_{\varepsilon \downarrow 0} \int d\mu_{\omega}^{\varepsilon}(\mathbf{x}) \varphi(\mathbf{x}) g(\tau_{\mathbf{x}/\varepsilon} \omega) = \int \varphi(\mathbf{x}) m d\mathbf{x} \cdot \mathbb{E}_0[g]. \tag{1}$$

• In (1) the spatial variables x appears on "2 scales": macroscopic $(x = \varepsilon x_i)$ / microscopic $(x/\varepsilon = x_i)$

Diffusively rescaled generator

- $\omega = \{(x_i, E_i)\}, \hat{\omega} = \{x_i\}, \varepsilon \hat{\omega} := \{\varepsilon x_i\}$
- Rescaled Markov generator of the random walk

$$\mathbb{L}_{\omega}^{\varepsilon} f(\varepsilon x_i) := \varepsilon^{-2} \sum_{j} c_{x_i, x_j}(\omega) \left(f(\varepsilon x_j) - f(\varepsilon x_i) \right), \quad \varepsilon x_i \in \varepsilon \hat{\omega},$$

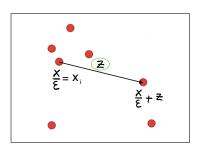
• $\mathbb{L}_{\omega}^{\varepsilon}$ self-adjoint operator in $L^{2}(\mu_{\omega}^{\varepsilon})$.

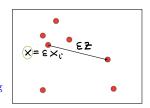
Amorphous gradient

$$u: \varepsilon \hat{\omega} \to \mathbb{R},$$

$$\nabla_{\varepsilon} u(x,z) := \frac{u(x+\varepsilon z) - u(x)}{\varepsilon}, \qquad x \in \varepsilon \hat{\omega}, \qquad \frac{x}{\varepsilon} + z \in \hat{\omega}.$$

Warning: x macroscopic, z microscopic





 $\stackrel{\varepsilon - \mathrm{rescaling}}{\leadsto}$

Measure $\nu_{\omega}^{\varepsilon}$

- $\nu_{\omega}^{\varepsilon}$: atomic measure
- above $(x,z) \rightsquigarrow \text{weight } \varepsilon^d c_{\frac{x}{\varepsilon},\frac{x}{\varepsilon}+z}(\omega)$
- $\mu_{\omega}^{\varepsilon} = \varepsilon^d \sum_{x \in \varepsilon \hat{\omega}} \delta_x$
- Key identity

$$\langle -\mathbb{L}_{\omega}^{\varepsilon} f, g \rangle_{\mu_{\omega}^{\varepsilon}} = \frac{1}{2} \langle \nabla_{\varepsilon} f, \nabla_{\varepsilon} g \rangle_{\nu_{\omega}^{\varepsilon}}$$

Weak solution of Poisson equation

- $H^1_{\omega,\varepsilon}$ space: $\{u \in L^2(\mu^{\varepsilon}_{\omega}) : \nabla_{\varepsilon} u \in L^2(\nu^{\varepsilon}_{\omega})\}$
- norm in $H^1_{\omega,\varepsilon}: ||u||_{L^2(\nu_\omega^\varepsilon)} + ||\nabla_\varepsilon u||_{L^2(\nu_\omega^\varepsilon)}$

Definition

Let $f \in L^2(\mu_\omega^\varepsilon)$, $\lambda > 0$. $u \in H^1_{\omega,\varepsilon}$ is weak solution of

$$-\mathbb{L}^{\varepsilon}_{\omega}u + \lambda u = f,$$

if

$$\frac{1}{2} \langle \nabla_{\varepsilon} v, \nabla_{\varepsilon} u \rangle_{\nu_{\omega}^{\varepsilon}} + \lambda \langle v, u \rangle_{\mu_{\omega}^{\varepsilon}} = \langle v, f \rangle_{\mu_{\omega}^{\varepsilon}} \qquad \forall v \in H_{\omega, \varepsilon}^{1} \,.$$

Lax-Milgram theorem: u exists, unique

Effective diffusion matrix D

- Given $f: \Omega \to \mathbb{R}$, set $\nabla f(\omega, x) := f(\tau_x \omega) f(\omega)$
- $D: d \times d$ symmetric matrix D such that

$$a \cdot Da = \inf_{f \in L^{\infty}(\mathbb{P}_{0})} \frac{1}{2} \int d\mathbb{P}_{0}(\omega) \int_{x \in \hat{\omega}} c_{0,x}(\omega) \left(a \cdot x - \nabla f(\omega, x) \right)^{2}$$

• Macroscopic equation: $-\text{div}D\nabla u + \lambda u = f$

Weak/strong convergence

- Fix $\omega \in \Omega$, $\{v_{\varepsilon}\}$ with $v_{\varepsilon} \in L^2(\mu_{\omega}^{\varepsilon}), v \in L^2(mdx)$
- $v_{\varepsilon} \rightharpoonup v$:

$$\begin{cases} \sup \|v_{\varepsilon}\|_{L^{2}(\mu_{\omega}^{\varepsilon})} < +\infty, \\ \lim_{\varepsilon \downarrow 0} \int d\mu_{\omega}^{\varepsilon}(x) v_{\varepsilon}(x) \varphi(x) = \int dx \, mv(x) \varphi(x), \end{cases}$$

for all $\varphi \in C_c(\mathbb{R}^d)$.

Weak/strong convergence

• $v_{\varepsilon} \rightarrow v$:

$$\begin{cases} \sup \|v_{\varepsilon}\|_{L^{2}(\mu_{\omega}^{\varepsilon})} < +\infty, \\ \lim_{\varepsilon \downarrow 0} \int d\mu_{\omega}^{\varepsilon}(x) v_{\varepsilon}(x) g_{\varepsilon}(x) = \int dx \, mv(x) g(x), \end{cases}$$

for all $\forall g_{\varepsilon} \rightharpoonup g$

Weak/strong convergence

Example:

- take $v \in C_c(\mathbb{R}^d)$
- $v \in L^2(\mu_\omega^\varepsilon)$ and $v \in L^2(mdx)$
- set $v_{\varepsilon} := v$
- then $v_{\varepsilon} \to v$

• $\lambda_k(\omega) := \sum_i c_{0,x_i}(\omega) |x_i|^k$

Theorem

Assume $\mathbb{E}_0[\lambda_0^2] < \infty$, $\mathbb{E}_0[\lambda_2] < \infty$, D strictly positive.

Then $\exists \Omega_{\rm typ} \subset \Omega$ with $\mathbb{P}(\Omega_{\rm typ}) = 1$ such that $\forall \omega \in \Omega_{\rm typ}$ the following holds:

Let $\lambda > 0$, $f_{\varepsilon} \in L^{2}(\mu_{\omega}^{\varepsilon})$ and $f \in L^{2}(mdx)$.

Consider the weak solutions u_{ε} , u of

$$-\mathbb{L}_{\omega}^{\varepsilon} u_{\varepsilon} + \lambda u_{\varepsilon} = f_{\varepsilon},$$

$$-\mathrm{div} D \nabla u + \lambda u = f.$$

...

$$-\mathbb{L}_{\omega}^{\varepsilon} u_{\varepsilon} + \lambda u_{\varepsilon} = f_{\varepsilon},$$

$$-\operatorname{div} D\nabla u + \lambda u = f.$$

Theorem (Continuation)

Then:

(i) Convergence of solutions

$$f_{\varepsilon} \rightharpoonup f \implies u_{\varepsilon} \rightharpoonup u,$$

 $f_{\varepsilon} \to f \implies u_{\varepsilon} \to u.$

$$-\mathbb{L}_{\omega}^{\varepsilon} u_{\varepsilon} + \lambda u_{\varepsilon} = f_{\varepsilon},$$

$$-\operatorname{div} D\nabla u + \lambda u = f.$$

Theorem (Continuation)

Then:

(ii) Convergence of flows:

$$f_{\varepsilon} \to f \implies \nabla_{\varepsilon} u_{\varepsilon} \to \nabla u$$
$$f_{\varepsilon} \to f \implies \nabla_{\varepsilon} u_{\varepsilon} \to \nabla u$$

$$-\mathbb{L}_{\omega}^{\varepsilon} u_{\varepsilon} + \lambda u_{\varepsilon} = f_{\varepsilon}$$
$$-\operatorname{div} D \nabla u + \lambda u = f$$

Theorem (Continuation)

Then:

(iii) Convergence of energies:

$$f_{\varepsilon} \to f \implies \langle \nabla u_{\varepsilon}, \nabla u_{\varepsilon} \rangle_{\nu_{\omega}^{\varepsilon}} \to \int dx \, m \nabla u(x) \cdot D \nabla u(x)$$

Convergence of semigroups

- $P_{\omega,t}^{\varepsilon}$: Markov semigroup of diffusively rescaled random walk
- P_t : Markov semigroup of Brownian motion with diffusion matrix D

Theorem

For any $\omega \in \Omega_{\text{typ}}$, $t \geq 0$ and $f \in C_c(\mathbb{R}^d)$, it holds

$$\lim_{\varepsilon \downarrow 0} \int |P_{\omega,t}^{\varepsilon} f(x) - P_t f(x)|^2 d\mu_{\omega}^{\varepsilon}(x) = 0$$

$$\lim_{\varepsilon \downarrow 0} \int |P_{\omega,t}^{\varepsilon} f(x) - P_t f(x)| d\mu_{\omega}^{\varepsilon}(x) = 0.$$

2-scale convergence

- The proof is based on 2–scale convergence.
- In definition of weak/strong convergence, replace

$$\lim_{\varepsilon \downarrow 0} \int d\mu_{\omega}^{\varepsilon}(x) v_{\varepsilon}(x) \varphi(x)$$

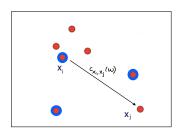
with

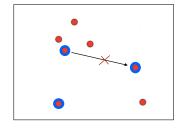
$$\lim_{\varepsilon \downarrow 0} \int d\mu_{\omega}^{\varepsilon}(x) v_{\varepsilon}(x) \varphi(x) g(\tau_{x/\varepsilon} \omega) .$$

- V.V. Zhikov, A.L. Pyatnitskii; *Homogenization of random singular structures and random measures*. Izv. Math. 70, (2006).
- F. Flegel, M. Heida, M. Slowik. Random conductance model. Weaker form of Thm.1–(i) under stronger assumptions.

Exclusion process

- Population dynamics
- Interacting random walks: site-exclusion constraint





Exclusion process

- $\eta \in \{0,1\}^{\hat{\omega}}$: particle configuration
- $c_{x,y}(\omega) \le g(|x-y|), g \in L^1(dx)$
- $\rho_0: \mathbb{R}^d \to [0,1]$ macroscopic density profile
- $\rho(x,t)$ solution of Cauchy system

$$\begin{cases} \partial_t \rho = \operatorname{div}(D \cdot \nabla \rho), \\ \rho(x, 0) = \rho_0(x) \end{cases}$$

• $\mathfrak{m}_{\varepsilon}$: initial distribution of the exclusion process

Theorem

Let \mathbb{P} be the law of a marked Poisson point process.

• Suppose that $\{\mathfrak{m}_{\varepsilon}\}$ corresponds to ρ_0 , i.e. $\forall \delta > 0$ and $\forall \varphi \in C_c(\mathbb{R}^d)$

$$\mathfrak{m}_{\varepsilon} \left(\left| \varepsilon^d \sum_{x \in \hat{\omega}} \varphi(\varepsilon x) \eta_x - \int_{\mathbb{R}^d} \varphi(x) \rho_0(x) dx \right| > \delta \right) \to 0.$$

• Then for all t > 0, $\varphi \in C_c(\mathbb{R}^d)$ and $\delta > 0$ we have

$$\mathbb{P}_{\omega,\mathfrak{m}_{\varepsilon}}\left(\left|\varepsilon^{d}\sum_{x\in\hat{\Omega}}\varphi(\varepsilon x)\eta_{x}(\varepsilon^{-2}t)-\int_{\mathbb{R}^{d}}\varphi(x)\rho(x,t)dx\right|>\delta\right)\rightarrow0\,.$$

Hydrodynamic limit of exclusion processes with symmetric jump rates

- K. Nagy; Symmetric random walk in random environment. Period. Math. Hung. 45, (2002).
- If one looks only at a finite family of times, one mainly needs a weak form of convergence of semigroup (see Thm.2):
 - A. Faggionato; Random walks and exclusion processes among random conductances on random infinite clusters: homogenization and hydrodynamic limit. EJP 13 (2008).
 - A. Faggionato; Hydrodynamic limit of zero range processes among random conductances on the supercritical percolation cluster. EJP 15 (2010).
- F. Redig, E. Saada, F. Sau; Symmetric simple exclusion process in dynamic environment: hydrodynamics. arXiv:1811.01366 Tool: the invariance principle