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Population dynamics of d interacting species is often modeled by a

vector field ~X (~x) on R
d
+, xj representing the concentration of

species j (1 ≤ j ≤ d).

There is often a built-in splitting ~X (~x) = ~B(~x)− ~D(~x) (birth and

death rates) coming from the details of individual interactions.

~B(~x) and ~D(~x) have non-negative components and

~B(~0) = ~D(~0) = ~0 reflect the absence of spontaneous generation.
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There is often a built-in splitting ~X (~x) = ~B(~x)− ~D(~x) (birth and

death rates) coming from the details of individual interactions.

~B(~x) and ~D(~x) have non-negative components and

~B(~0) = ~D(~0) = ~0 reflect the absence of spontaneous generation.

We will consider a situation where the number of individuals is

large. This is represented by a parameter K > 0 (large) giving the

order of magnitude of the number of individuals (a scale)
maintained by the available resources.

We will denote by nj the number of individuals of specie j , and

xj = nj/K .
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evolution of a birth and death (b.d.) process ~N(t) ∈ Z
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For example if Bj(~x) = λj xj , we have

P
(

Nj(t + dt) = nj + 1
∣

∣ ~N(t) = ~n
)

= λj nj

and λj is the birth rate of each individual of specie j .

Note that for populations of order K , the jump rate of the process

~N is of order K , hence the time interval between two consecutive

jumps is of order 1/K .



We will now distinguish different time scales (≫ 1/K ).

On a time scale of order 1, we have convergence of the process to
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> ε

)

= 0;

where d~x(t)/dt = ~X (~x) and ~x(0) = ~x0.

On a larger time scale, the trajectory of the process ~N(K , t)/K

stay close to the trajectory of the diffusion process ~Z given by

dZj = Xj

(

~Z
)

dt +

√

Bj

(

~Z
)

+ Dj

(

~Z
)

√
K

dWt

where ~W is the standard Brownian motion and ~Z (0) = ~NK (0)/K .

This is standard stochastic perturbation.
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What about very large (infinite) time scale?

We introduce a hypotheses of “descent from infinity”, namely if

the population is too large, the death rates (strongly) dominate the

birth rates, namely lim~x→∞ supj Bj(~x)/ inf j Dj(~x) = 0. This is a

consequence of competition, there is not enough food for

everybody.

Under this hypothesis the process reaches ~0 almost surely in finite

time. If T~0 denotes the first (and last) time the process ~N reaches

~0, for any initial point ~n we have P~n

(

T~0 < ∞) = 1. This holds

even if the fixed point ~0 of the vector field ~X is repulsive. “In the

long run we are all dead” (J.M.Keynes).

How long does it take for the process to reach ~0? In other words

what is the time scale of T~0? In order to answer this question we

have to make more hypothesis. They are tailored to make the

model “as simple as possible” and can certainly be relaxed.



Besides the descent from infinity, we assume that ~0 is a repeller

and there is a unique fixed point ~x∗ for the vector field ~X , lying in

the interior of R
d
+, linearly stable and globally attracting. This is

not a very interesting dynamical system but a rather frequent

situation in ecology.

It turns out that T~0 ∼ exp(O(1)K ), namely a very long time scale.

I will make this statement more precise later on but before let us

consider some numerical simulations to get a feeling of the

behavior of the process. They were done with only one specie

(d = 1), K = 100 and using different initial conditions, three of

order K and the last one of order 1. Notice in this last case a

behavior very different from the prediction of the vector field.
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However the process will almost surely reach n = 0 in a finite time

and stay there forever (extinction).
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Sketch of a long trajectory



Summarizing:
1. If we start with ~n of order K , the size of the population stays

of order K for a very long time with fluctuations (some

eventually large ones) until a catastrophic event. A sort of

“temporary stationarity” sets in.

2. If we start with ~n of order 1, there is a sizable probability

(independent of K ) such that ~0 is reached in a time or order

one (note the different scale of the graph).

How to describe more precisely the first case?
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How to describe more precisely the first case? A measure ν (νK )

on Z
d
+\{~0} is a quasi stationary distribution (q.s.d.) if for any

t > 0 and any set A ⊂ Z
d
+\{~0} we have

Pν

(

~N(t) ∈ A
∣

∣ T~0 > t
)

= ν(A) .

The notion of q.s.d.replaces the notion of invariant measure when

there is “leaking”. For a b.d.p., if ν is a q.s.d.there exists ρ0 > 0

such that for any t ≥ 0, Pν

(

T~0 > t
)

= e−ρ0 t .



A necessary and sufficient condition for the existence of a (unique)

q.s.d.for b.d.p.processes was established by N.Champagnat and

D.Villemonais. They provide in particular an estimate for the rate

of convergence (spectral gap). For d > 1 we used their result in

our model and quantified the K dependence of the estimates.

For 1/ρ0, the time scale of extinction in the

q.s.d.
(

Pν

(

T~0 > t
)

= exp(−ρ0 t)
)

, we get

1

ρ0
≃ eO(1)K

with a very precise estimate for d = 1 using WKB methods.

For the rate of convergence we get for some a > 0 independent of

K

sup
~n∈Z

d
+\{

~0}

∥

∥P~n

(

~N(t) ∈ ·
)

− P~n

(

T~0 > t
)

νK ( · )
∥

∥

TV
≤ 2 e−a t/ logK .

In our case TV is just the ℓ1 norm.



This can be rephrased as (for all ~n)

∥

∥P~n

(

~N(t) ∈ ·
)

− νK ( · )
∥

∥

TV
≤ 2 e−a t/ logK + P~n

(

T~0 < t
)

,

a kind of (pseudo) uniform ergodic theorem saying that the law of

~N approaches νK if we can ensure that the r.h.s. is small (note

that δ~0 is the unique ergodic measure).

We proved that there exists b > 0, c > 0, d > 0 and D > 0,

independent of K such that any ~n ∈ Z
d
+ and any t ≥ 0

P~n

(

T~0 ≤ t
)

≤ e−b(‖~n‖1∧(c K)) + t D e−d K .

Therefore we get the error estimate for the uniform approach to

the q.s.d . sup
~n∈Z

d
+\{

~0}

∥

∥P~n

(

~N(t) ∈ ·
)

− νK ( · )
∥

∥

TV
≤

e−b(‖~n‖1∧(c K)) + 2 e−a t/ logK + t D e−d K .



This error estimate e−b(‖~n‖1∧(c K)) + 2 e−a t/ logK + t D e−d K

reflects what we saw in the simulations.

1. If the starting point ~n is of order one, the error is not small

and the population can disappear in a time of order one (but

it has also a sizable probability to survive for a long time).

2. If the starting point ~n is of order K , the error decreases with

time at an exponential rate of order 1/ logK and becomes

small if t ≪ exp(dK ).

3. If t ≈ exp(dK ) the error becomes large again.

4. Hence if logK ≪ t ≪ exp(dK ), the distribution of ~N(t) is

very near to νK (for a starting point of order K ).

Note the huge difference of time scales between logK (rate of

convergence to νK ), and exp(dK ) (lower bound on the time scale

of extinction), if K is “large”.



Properties of the q.s.d.and of the process.

1. Exponential moments exists νK
(

exp(‖ ~N‖
)

≤ exp
(

O(1)K
)

.

2. νK ( ~N) = K ~x∗ +O(1), the carrying capacity.

3. Centered moments. For any ℓ ∈ Z+, there exists Cℓ > 0 such

that for any K ≥ 1 νK
(

‖ ~N − νK ( ~N)‖2 ℓ
)

≤ Cℓ K
ℓ.

4. There exists C > 0 such that for any K ≥ 1,

νK
(

‖ ~N − νK ( ~N)‖2
)

≥ C K .

5. There is a Gaussian approximation of νK near νK ( ~N) with

variance of order K (kind of C.L.T.).

Let St(f )(~n) = E~n

(

f ( ~N(t))
)

be the Markov semi-group, then for

some C > 0 independent of K > 1

sup~n∈Z
d
+
S1

(

e‖ · ‖
)

(~n) ≤ eC K .

In particular, S1 maps polynomially growing functions to bounded

functions and is a compact operator in such Banach spaces.



Properties of the q.s.d.for one specie (d = 1).

ρ0(K ) =

(

a+O
(

(logK )3√
K

)) √
K e−bK

a =
1√
2π

(
√

B ′(0)

D ′(0)
−
√

D ′(0)

B ′(0)

)
√

D ′(x∗)

D(x∗)
− B ′(x∗)

B(x∗)
x∗ B(x∗) ,

b =

∫ x∗

0

B(x)

D(x)
,

dTV
(

Pn

(

N(t) ∈ ·
)

, αn(K ) νK + (1− αn(K )) δ0
)

≤ O(1) ×
(√

K logK e−c K +
(

1− e−ρ0 t
)

+ Ke−d t/4 + K 3/4 eeK e−ρ1 t
)

,

where c, d and e are positive constants independent of K , and

αn(K ) = 1−
(

D ′(0)

B ′(0)

)n

+
O(1)

K
, ρ1 ≥

O(1)

logK
.



Resilience.

Back to the dynamical system. Let

M = D ~X (~x∗) .

The engineering resilience is defined by (recall we assumed ~x∗ to

be a stable fixed point)

R = − sup
z∈Sp

(

M
)

Re(z) > 0,

The ecological resilience measures the size of the basin of

attraction, a quantity more difficult to quantify (see Holling).

Engineering resilience is useful for at least two major purposes:

1) It gives the exponential rate of relaxation to the equilibrium

after a (small) perturbation. Large resilience means more stability.

2) It gives an estimation of the change of the equilibrium after a

(small) perturbation of the system.



How to determine the (engineering) resilience?
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returns to equilibrium. This may be difficult to perform and is not

very ecological. Can one measure the resilience just by observing

and recording the time evolution of the system?
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very ecological. Can one measure the resilience just by observing
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One can prove a Einstein relation (fluctuation dissipation

relation) M Σ+ Σ Mt + 2 D = O
(
√
K
)

. (1)

where D is the diagonal matrix with entries

Di i = K Di (~x∗) = K Bi (~x∗) and Σ is the convariance matrix of νK

Σi ,j =

∫

(

ni − µi

) (

nj − µj

)

dνK (~n) , ~µ =

∫

~n dνK (~n) .

Note that each term on the l.h.s. of (1) is of order K . The

Einstein result from 1905 was

dq = v dt , m dv = −γ v dt − U ′(q) dt +
√

2 γ k mT dWt

relating friction (resilience, dissipation) to fluctuations.



Given an observed trajectory of the process ~N(t)0≤t≤T , with

K 2 ≪ T ≪ exp(O(1)K ) one can estimate Σ and D .

If d = 1 (only one specie) we get

R =
D

Σ
.

If d > 2 (several species), the equation M Σ+ Σ Mt + 2 D = 0

has many solutions for M (this is called a Sylvester equation).

There is a unique symmetric solution but generically M is not

symmetric.

Note that in statistical mechanics, the matrix M Σ is the matrix

of kinetic coefficients. This matrix is symmetric if the system is

reversible (Onsager). In ecological models this is in general not the

case.



How to determine the (engineering) resilience if d > 1?



How to determine the (engineering) resilience if d > 1?

One can use the time correlations. Define for τ > 0

Σi , j(τ) = EνK

(

(

Ni (τ)− µi

) (

Nj(0)− µj

)

)

.

Note that Σ(0) = Σ. One can prove that

eτM = Σ(τ) Σ(0)−1 + O

(

1√
K

)

.

The matrices Σ(τ) and Σ(0) can be estimated from the data

~N(t)0≤t≤T , and choosing for example τ = 1 one can estimate the

matrix M and hence the resilience.

Note that the Einstein relation should still be valid providing some

kind of verification of the result.

Note also that in the Einstein relation and in the above relation,

the scale K does not appear explicitly, it is not an observable

quantity.



We have obtained relations between micro fluctuations and macro
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One can also integrate Σ(τ) from τ = 0 to logK to get

M−1 =

∫ logK

0
Σ(τ) Σ(0)−1dτ + O

(

1/
√
K
)

,

somewhat reminiscent of Kubo’s fluctuation dissipation theorem.



We have obtained relations between micro fluctuations and macro

resilience.

One can also integrate Σ(τ) from τ = 0 to logK to get

M−1 =

∫ logK

0
Σ(τ) Σ(0)−1dτ + O

(

1/
√
K
)

,

somewhat reminiscent of Kubo’s fluctuation dissipation theorem.

Note that estimation of the ecological resilience (size of the basin

of attraction) requires the observation of large excursions

(deviations) which only occur after a very long time, unless the

system is near instability.



Statistics.

One can introduce statistics to estimate the various quantities of

interest from the data. For T > 0 let

S~µ
p =

1

T

∫ T

0

~Np(s) ds ,

SΣ
p, q =

1

T

∫ T

0

(

~Np(s)− S~µ
p

) (

~Nq(s)− S~µ
q

)

ds ,

SD
p =

1

T
#
[

birth of specie p for 0 ≤ t ≤ T
]

,

S∗
p, q(τ) =

1

T − τ

∫ T−τ

0

(

~Np(s + τ)− S~µ
p

) (

~Nq(s)− S~µ
q

)

ds .

We will use the statistics S~µ to infer ~µ, SΣ to infer Σ, SD to infer

D and S∗(τ) to infer Σ(τ). From SΣ and S∗(τ), we obtain an

estimate of M as explained before. For one specie (d = 1), SΣ

and SD allow also to infer M using the Einstein relation.



Rates of convergence of the statistics.

The errors in the inferences depend on T and the starting point.

We have estimates for the L2-distance between each of the above

statistics and the quantities to infer, starting in the q.s.d. or from

an initial condition. For example there exists C > 0, θ > 0, f > 0,

g > 0, h > 0, and l such that for any K > 2 and T > 0

Eν

(
∥

∥S~µ(T )− ν(~n)
∥

∥

2) ≤ C K 2

(

1 + logK

T
+ (1 + T ) e−θK

)

and

E~n

(∥

∥S~µ(T )− ν(~n)
∥

∥

2) ≤

C (‖~n‖1 + K )

[‖~n‖1 + K logK

T ∨ 1
+ K e−f

(

g
‖~n‖1
K

∧h
)

K + TK e−θK

]

.

Similar variance estimates hold for the other statistics.
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