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Background on random forests

Random forests are a class of algorithms used to solve regression and classification
problems

They are often used in applied fields since they handle high-dimensional
settings.

They have good predictive power and can outperform state-of-the-art meth-
ods.
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Background on random forests

Random forests are a class of algorithms used to solve regression and classification
problems

They are often used in applied fields since they handle high-dimensional
settings.

They have good predictive power and can outperform state-of-the-art meth-
ods.

But mathematical properties of random forests remain a bit magical.
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General framework of the presentation

Regression setting

We are given a training set Dn = {(X1,Y1), ..., (Xn,Yn)} where the pairs
(Xi ,Yi ) ∈ [0, 1]d × R are i .i .d . distributed as (X ,Y ).

We assume that

Y = m(X) + ε.

We want to build an estimate of the regression function m using random
forest algorithm.

Erwan Scornet A walk in random forests



How to build a tree?

Trees are built recursively by splitting the current cell into two children
until some stopping criterion is satisfied.
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How to build a tree?

Breiman Random forests are defined by

1 A splitting rule : minimize the variance within the resulting cells.

2 A stopping rule : stop when each cell contains less than nodesize = 2
observations.
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Construction of random forests

Randomness in tree construction

Resample the data set via bootstrap;

At each node, preselect a subset of mtry variables eligible for
splitting.

Erwan Scornet A walk in random forests



Construction of Breiman forests

Breiman tree

Select an observations with replacement among the original sample
Dn. Use only these observations to build the tree.

At each cell, select randomly mtry coordinates among {1, . . . , d}.

Split at the location that minimizes the square loss.

Stop when each cell contains less than nodesize observations.
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Literature

Random forests were created by Breiman [2001].

Many theoretical results focus on simplified version on random forests,
whose construction is independent of the dataset.
[Biau et al., 2008, Biau, 2012, Genuer, 2012, Zhu et al., 2012, Arlot
and Genuer, 2014].

Analysis of more data-dependent forests:

Asymptotic normality of random forests [Mentch and Hooker, 2015,
Wager and Athey, 2017].
Variable importance [Louppe et al., 2013, Kazemitabar et al., 2017].
Rate of consistency [Wager and Walther, 2015].

Literature review on random forests:

Methodological review [Criminisi et al., 2011, Boulesteix et al., 2012].
Theoretical review [Biau and Scornet, 2016].

Erwan Scornet A walk in random forests



Different types of forests

Centred forest

Median forests Breiman’s forests

Independent of Xi and Yi Independent of Yi Dependent on Xi and Yi
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Tree consistency

For a tree whose construction is independent of data, if

1 diam(An(X))→ 0, in probability;

2 Nn(An(X))→∞, in probability;

then the tree is consistent, that is

lim
n→∞

E [mn(X)−m(X)]2 = 0.
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Centered forests

Theorem (Biau [2012])

Under proper regularity hypothesis, provided k →∞ and n/2k →∞, the
centred random forest is consistent.
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Centered forests

Theorem (Biau [2012])

Under proper regularity hypothesis, provided k →∞ and n/2k →∞, the
centred random forest is consistent.

→ Forest consistency results from the consistency of each tree.

→ Trees are not fully developed.
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Construction of Breiman/Median forests

Breiman tree

Select an observations with replacement among the original sample
Dn. Use only these observations to build the tree.

At each cell, select randomly mtry coordinates among {1, . . . , d}.
Split at the location that minimizes the square loss.

Stop when each cell contains less than nodesize observations.

Median tree

Select an observations without replacement among the original sample
Dn. Use only these observations to build the tree.

At each cell, select randomly mtry = 1 coordinate among {1, . . . , d}.
Split at the location of the empirical median of Xi .

Stop when each cell contains exactly nodesize = 1 observation.
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Consistency

Theorem [S.(2016)]

Assume that

Y = m(X) + ε,

where ε is a centred noise such that V[ε|X = x] ≤ σ2 < ∞, X has
a density on [0, 1]d and m is continuous. Then, provided an → ∞ and
an/n→ 0, median forests are consistent, i.e.,

lim
n→∞

E [m∞,n(X)−m(X)]2 = 0.

Remarks

Good trade-off between simplicity of centred forests and complexity
of Breiman’s forests.

First consistency results for fully grown trees.

Each tree is not consistent but the forest is, because of subsampling.
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The Mondrian process (Roy and Teh, 2008)

MP(λ,C ): distribution on recursive, axis-aligned partitions of

C =
∏d

j=1[aj , bj ] ⊂ Rd (= trees).

λ > 0 “lifetime” = complexity parameter.
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The distribution MP(λ,C )

Start with cell C (root), formed at time τC = 0.

Sample time till split E ∼ Exp(|C |) with |C | :=
∑d

j=1(bj − aj), split

coordinate J ∈ {1, . . . , d} with P(J = j) =
bj−aj
|A| , and split threshold

SJ |J ∼ U([aJ , bJ ]).

If τC + E ≤ λ:

Split C in CL = {x ∈ C : xJ ≤ SJ} and CR = C \ CL.
Apply the procedure to (CL, τC + E), (CR , τC + E).

Else don’t split C (which becomes a leaf of the tree).
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Basic properties

Mondrian process (Πλ)λ∈R+ ∼ MP(C ) is a Markov process.

When d = 1, Mondrian partition Πλ ∼ MP(λ, [0, 1]): sub-intervals
whose extremities form a Poisson point process of intensity λdx .

Fundamental restriction property: if Πλ ∼ MP(λ,C ) and C ′ ⊆ C ,
then Πλ|C ′ ∼ MP(λ,C ′).
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Mondrian forests

Introduced in [1] for computational reasons: predictions updated
efficiently with new sample point (online algorithm).

Approximately: sample independent partitions

Π
(1)
λ , . . . ,Π

(M)
λ ∼ MP(λ, [0, 1]d), fit them and average their

predictions.

No theoretical analysis of the algorithm.

Choice of the parameter λ ?

1Lakshminarayanan, Roy, Teh. Mondrian forests: Efficient online random forests.
In NIPS, 2014.
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Theoretical results

Denote f̂
(M)
λ,n the (randomized) Mondrian forest estimator with M trees and

parameter λ (n = sample size). Assume:

(H) Var(Y |X ) ≤ σ2 <∞ a.s.

Theorem (Mourtada, Gäıffas, S.)

Assume (H) and that f ∗ is L-Lipschitz. Then:

R(f̂
(M)
λ,n ) ≤ 4dL2

λ2
+

(1 + λ)d

n

(
2σ2 + 9‖f ∗‖2

∞
)
. (1)

In particular, the choice λ := λn � n1/(d+2) gives

R(f̂
(M)
λ,n ) = O(n−2/(d+2)), (2)

which is the minimax optimal rate for the estimation of a Lipschitz
function in dimension d.
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“Forest effect”: influence of the number of trees

The above result is true for every M ≥ 1 (number of trees): in
particular, a single tree is already optimal for the estimation of a
Lipschitz function in dimension d .

In practice, forests with M � 1 perform better than trees.

How to account for this ? Do we gain something by randomizing
partitions ?

When is M “large enough” ?
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Improved rates under C 2 regularity

Theorem (Mourtada, Gäıffas, S.)

Assume (H), f ∗ of class C 2, and that X has a positive, Lipschitz density
on [0, 1]d . Then, for every ε > 0:

E
[
(f̂

(M)
λ,n − f ∗)2|X ∈ [ε, 1− ε]d

]
= O

( 1

Mλ2
+

1

λ4
+

e−λε

λ3
+

(1 + λ)d

n

)
For λ := λn � n1/(d+4) and M := Mn & n2/(d+4), this implies

E
[
(f̂

(M)
λ,n − f ∗)2|X ∈ [ε, 1− ε]d

]
= O(n−4/(d+4))

which is the optimal rate for twice differentiable f ∗ in dimension d.
Without conditioning, we get O(n−3/(d+3)) (boundary effect). By
contrast, Mondrian trees do not exhibit improved rates.

Remark: Similar result obtained by Arlot and Genuer (2014) in dimension 1
for another variant of Random forests.
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Proof ideas

Bias-variance decomposition: standard decomposition in
approximation error + estimation error.

Exact geometric properties (local and global) of Mondrian partitions
are directly available, without reasoning conditionally on the graph
structure / on earlier splits.

Restriction property: enables to obtain the exact distribution of the
cell Cλ(x) of x ∈ [0, 1]d in the partition Πλ ∼ MP(λ, [0, 1]d) (4 lines
proof).

By modifying the distribution of the Mondrian and using the
one-dimensional case, one can show that the expected number of
leaves in Πλ is (1 + λ)d .
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Online implementation and adaptivity to smoothness

If f ∗ : x 7→ E[Y |X = x ] is α-Hölder (α ∈ (0, 1]), optimal rate

R(f̂λ,n) = O(n−2α/(d+2α)) for λ � n−1/(d+2α).

In practice, α is unknown. How to choose λ ?

Exponentially weighted aggregation over the class of all finite
labeled subtrees of the “infinite Mondrian” Π∞. BUT: infinite tree
(sampled from the start ??) + number of subtrees exponential in
the number of nodes.

Extension properties of Mondrian + efficient algorithm for branching
process prior (“Context Tree Weighting”: one weight per node) =⇒
online and efficient exact algorithm (O(log n) update, O(n log n)
training time, O(log n) prediction).

Resulting f̂n is adaptive to α: R(f̂n) = Õ(n−2α/(d+2α)).
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Experiments

Input data

.94

OF(agg)

.90

OF(no agg)

.93

MF

.91

RF

.92

ET

.89 .86 .83 .86 .86

.92 .87 .86 .91 .89
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Conclusion

First optimal rates in arbitrary dimension under nonparametric
assumptions for Random forests.

Influence of the number of trees M: reduction of bias, improved
rates for forests in arbitrary dimension.

Aggregation over trees can be performed efficiently; gives an online
algorithm which is parameter-free and competitive with optimal
choice of λ (⇒ adaptive to regularity of f ∗).

Minimax rates for Lipschitz / C 2 functions: the best we can hope
for Purely Random forests. Further work should consider more
refined variants to achieve better adaptivity (e.g. variable selection).
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Conclusion

Centred forests: their consistency results from the consistency of
each tree.

→ No benefits from using a forest instead of a single tree.

Median forests: the aggregation process can turn inconsistent trees
into a consistent forest.

→ Benefits from using a random forest compared to a single tree.

Mondrian forests: universally consistent. Minimax rates of
consistency on both C 1 and C 2.

→ Minimax rates on C 2 compared to single Mondrian Trees.
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Thank you!
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