Hyperbolic Structures on Surfaces

10 July 2019

Exercise 1 (The hyperboloid model). Consider the hyperboloid model \mathbb{H} of the hyperbolic space, embedded into the Minkowski space $\mathbb{R}^{n,1}$.

- (a) Show that the restriction of the Minkowski scalar product $\langle \cdot, \cdot \rangle_M$ induces a Riemannian metric $g^{\mathbb{H}}$ on \mathbb{H} .
- (b) Determine the group of isometries $\mathbf{Isom}(\mathbb{H}, g^{\mathbb{H}})$.
- (c) Let $v \in \mathbb{H}$ be a point, and $u \in T_v \mathbb{H}$ be a tangent vector. Determine the geodesic through v in the direction of u.

Exercise 2 (Möbius transformations). Consider the Riemannian sphere $\widehat{\mathbb{C}}$.

- (a) Show that the cross ratio function $cr: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ is invariant under Möbius transformations.
- (b) Show that every Möbius transformation $f \in \mathbf{M\ddot{o}b}(\widehat{\mathbb{C}})$ is conformal.
- (c) Write down four simple conformal automorphisms.
- (d) Show that $\mathbf{M\ddot{o}b}(\widehat{\mathbb{C}})$ acts transitively on $\widehat{\mathbb{C}}$, on ordered tuples of distinct points, and on ordered triples of distinct points. Bonus: Show that the action on triples is free.
- (e) Show that $z_1, z_2, z_3, z_4 \in \widehat{\mathbb{C}}$ lie on a circle or a line (i.e., a circle with infinite radius) if and only if $cr(z_1, z_2, z_3, z_4) \in \mathbb{R} \cup \{\infty\}$.
- (f) Show that Möbius transformations map generalized circles to generalized circles.
- (g) Prove that the Hilbert metric on the Klein model gives the hyperbolic metric.

Exercise 3 (The upper half plane model). Consider the upper half plane model $(\mathcal{H}, g^{\mathbb{H}})$ of the hyperbolic 2-space.

- (a) Determine the group of isometries $\mathbf{Isom}(\mathcal{H}, g^{\mathcal{H}})$.
- (b) Determine the distance in \mathcal{H} between the points *ia* and *ib* for a, b > 0.

- (c) Show that balls in \mathcal{H} are also balls with respect to the Euclidean metric on \mathbb{C} .
- (d) What can you say about the centers of the hyperbolic ball and its center with respect to the Euclidean metric?
- (e) Prove that the sum of inner angles of a hyperbolic (geodesic) triangle is less than 180° .
- **Exercise 4** (Hyperbolic polygons). (a) Let a, b, c > 0. Show that there is an (up to isometry) unique hyperbolic right angled hexagon, with the following side lengths:

- (b) Show that there is an (up to isometry) unique ideal hyperbolic triangle.
- (c) Show that there is an (up to isometry) unique one-parameter family of ideal hyperbolic quadrilaterals.
- (d) Let $z_1, z_2, z_3, z_4 \in \widehat{\mathbb{C}}$. Express the cross ratios $cr(z_{\sigma(1)}, z_{\sigma(2)}, z_{\sigma(3)}, z_{\sigma(4)})$ in terms of $cr(z_1, z_2, z_3, z_4)$ for any permutation $\sigma \in \mathfrak{S}_4$.