\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Hyperbolicity \& Generalisations
HES, $\mathrm{Jol}_{0} / 201 \mathrm{~g}$
(1)
E - Compute the stabilises of O, and of ∞ in $S C_{2} \mathbb{R} \curvearrowright \mathbb{H}^{2} \cup(\mathbb{R} \cup(\alpha \infty))$.
E - Show that $S L_{2} \mathbb{R}$ acts transitively on the set of (unordered) triples of $\mathbb{R} \cup\{\infty\}$.
M - Show that the ideal triangle $(-1, \infty, 1)$ in the upper half plane model of H^{2}, is δ-thin for some δ.
M - Show that H^{2} is coromor-hyperbolic.
(2) Show that H^{2} is not quasi-isometric to $\mathrm{PSC}_{2} Z$.
(3) Show that if S_{1} and S_{2} are two finite generating sets of a group G, then $C_{a y} G$ and $C_{s_{1}} y_{s_{2}} G$ are quasi-isometric.
Write a proof of Swara-Milnor Lemma.
(4) Let G be a finitely generated group.

E Show that if H is a finite index subgroup of G then H is quasi-isometric to G
M Deduce that all finitely generated, non abelian free groups are quasi-isometric to each other-
H? On the contrary, show that \mathbb{Z}^{2} is not quasi-isometric to \mathbb{Z}^{3}.
(5) Show that a hyperbolic group G ads properly discontinuously M and cocompactly on $(\partial G)^{3} \backslash \Delta$
where $\Delta=\left\{\left(\xi_{1}, \xi_{2}, \xi_{3}\right) / \exists i \neq j\right.$ with $\left.\xi_{i}=\xi_{j}\right\}$.
(6) E - Show that \mathbb{Z}^{2} is not hyperbolic
M - Show that if G is a h perbolic group, then no subgroups is isomorphic to \mathbb{Z}^{2}.
(7) Show that ever isoncts> of a tree either fix a point, a fix exactly two points in the boundary.
(8) M- Show that if G is hyperbolic, it is finitely presented.
?H-Show that if G is hyperbolic relative to P, and P is finitely presented, then G also.
(9) Show that if G is h peebolic relative to P, and if $g \notin P$ E (but $g \in G)$ then $P \cap\left(g P_{g^{-}}\right)$is finite.
M Assume G is hyperbolic relative to P, a finite index subgroup of G What can then be said?
(9) Let G be a group $h_{7 p}$ ecbolic relative to P.

M Show that P is a lipschity quasi retract of $G: \exists P \underset{\sim}{i} G \xrightarrow{\Omega} P$
H? Deduce that if G is finitely presented such that roil $=I_{d} p$ then P is finitely presented.
(11) Show that $P S L_{2} \mathbb{F}$ is hyperbolic relatively to $\operatorname{Stab}\{\infty\}$.
(for its action on the upper half plane)
E Show that $\operatorname{Stab}_{\mathrm{PN}_{2} \mathrm{~L}_{\mathrm{z}}}(\infty) \simeq \mathbb{Z}$.
M Show directly that most Dehn fillings of PSL A_{2} are hyperbolic (compare to triangle groups).
Identify a set \bar{T} of forbidden elements as in the statement.
(12) Let G be hyperbolic relative to P, and $\widehat{C a y} G$ be a cone-off H Cayley graph (over left coset of P).
Show that the action of G on $\widehat{a_{y} G}$ is $a c>l i n d r i c a l$.
(13) Assume that "All hyperbolic groups are residually 7 finite" (WHICH IS NOT PROVEN, and perhaps hard to believe..) Prove that, under this asumption, all groups that are hyperbolic relative to residually finite groups would be residually $>$ finite.
(14) can π^{2} act acylindricully on a hyperbolic space?
(15) Recall that MCG($\left.\Sigma_{g}\right)$ is generated by Dehm twists about curves M in a system of curves.

Show that $\operatorname{MCG}\left(\Sigma_{y}\right)$ is not hypubolic relative to a proper subgroup
(16) Assume that G contains an $h>$ peebalicall embedded subgroup H M which is free of rank?

Show that G is $S Q$-universal: an $7 f \cdot g$ group is a subgroup of a quotient of G.

