Séminaire de géométrie algébrique

Laura Pertusi (Milano): Twisted cubics on cubic fourfolds and stability conditions

Europe/Paris
001 (batiment I)

001

batiment I

Département de mathématiques Bâtiment I Faculté des Sciences 2 Boulevard Lavoisier F-49045 Angers cedex 01 France
Description

A famous result of Beauville and Donagi states that the Fano variety of lines on a cubic fourfold is a smooth projective irreducible holomorphic symplectic (IHS) variety of dimension four, equivalent by deformation to the Hilbert square on a K3 surface. More recently, Lehn, Lehn, Sorger and van Straten constructed an IHS eightfold of K3 type from twisted cubic curves on a cubic fourfold Y non containing a plane.