Mapping class group representations in combinatorial quantization

 $Matthieu \ FAITG$

Rencontre annuelle du GDR Topologie Algébrique

25/10/2018

- Origin of combinatorial quantization
- Definition and properties of $\mathcal{L}_{0,1}(H), \mathcal{L}_{1,0}(H)$ and $\mathcal{L}_{g,n}(H)$
- Representation of $\mathrm{MCG}(\Sigma_g)$ obtained via $\mathcal{L}_{g,0}(H)$
- Example of the torus Σ_1 with $H = \overline{U}_q(\mathfrak{sl}(2))$

Let S be a compact orientable surface, G a Lie group and A_f/G the set of flat G-connections up to gauge equivalence.

Origin of combinatorial quantization

Let S be a compact orientable surface, G a Lie group and A_f/G the set of flat G-connections up to gauge equivalence.

• There exists a Poisson structure $\{\cdot, \cdot\}$ on $C^{\infty}(\mathcal{A}_f/\mathcal{G})$.

Let S be a compact orientable surface, G a Lie group and A_f/G the set of flat G-connections up to gauge equivalence.

- There exists a Poisson structure $\{\cdot, \cdot\}$ on $C^{\infty}(\mathcal{A}_f/\mathcal{G})$.
- Fock and Rosly found a combinatorial description ((A_f/G)^{FR}, {·, ·}_{FR}) of (A_f/G, {·, ·}) based on a discretization of S by a fat graph.
 - \rightarrow notion of lattice gauge field theory based on a (Lie) group.

Let S be a compact orientable surface, G a Lie group and A_f/G the set of flat G-connections up to gauge equivalence.

- There exists a Poisson structure $\{\cdot, \cdot\}$ on $C^{\infty}(\mathcal{A}_f/\mathcal{G})$.
- Fock and Rosly found a combinatorial description ((A_f/G)^{FR}, {·, ·}_{FR}) of (A_f/G, {·, ·}) based on a discretization of S by a fat graph.

 \rightarrow notion of lattice gauge field theory based on a (Lie) group.

- Alekseev-Grosse-Schomerus and Buffenoir-Roche introduced a quantization of $((\mathcal{A}_f/\mathcal{G})^{\mathrm{FR}}, \{\cdot, \cdot\}_{\mathrm{FR}})$, which is called combinatorial quantization.
 - \rightarrow notion of lattice gauge field theory based on a quantum group, or more generally on a Hopf algebra.

Let *H* be a finite-dimensional ribbon Hopf algebra, with universal *R*-matrix $R \in H \otimes H$ and ribbon element *v*.

We say that H is factorizable if β → (β ⊗ Id)(RR') is a vector space isomorphism between H^{*} and H.

Let *H* be a finite-dimensional ribbon Hopf algebra, with universal *R*-matrix $R \in H \otimes H$ and ribbon element *v*.

- We say that H is factorizable if $\beta \mapsto (\beta \otimes \mathrm{Id})(RR')$ is a vector space isomorphism between H^* and H.
- For *I* representation of *H*, we define $\stackrel{I}{T} \in M_{\dim(I)}(H^*)$ by $\stackrel{I}{T}(h) = \stackrel{I}{h}$.

Let *H* be a finite-dimensional ribbon Hopf algebra, with universal *R*-matrix $R \in H \otimes H$ and ribbon element *v*.

- We say that H is factorizable if β → (β ⊗ Id)(RR') is a vector space isomorphism between H* and H.
- For *I* representation of *H*, we define $\stackrel{I}{T} \in \mathrm{M}_{\dim(I)}(H^*)$ by $\stackrel{I}{T}(h) = \stackrel{I}{h}$.
- Let $M = \sum_{i,j} E_j^i \otimes m_{ij} \in M_m(\mathbb{C}) \otimes A$, $N = \sum_{i,j} E_j^i \otimes n_{ij} \in M_n(\mathbb{C}) \otimes A$ where E_j^i are the elementary matrices. We define:

$$\begin{split} M_1 &= \sum_{i,j} E_j^i \otimes \mathrm{I}_n \otimes M_j^i \in \mathrm{M}_m(\mathbb{C}) \otimes \mathrm{M}_n(\mathbb{C}) \otimes A \\ N_2 &= \sum_{i,j} \mathrm{I}_m \otimes E_j^i \otimes N_j^i \in \mathrm{M}_m(\mathbb{C}) \otimes \mathrm{M}_n(\mathbb{C}) \otimes A. \end{split}$$

Let *H* be a finite-dimensional ribbon Hopf algebra, with universal *R*-matrix $R \in H \otimes H$ and ribbon element *v*.

- We say that H is factorizable if β → (β ⊗ Id)(RR') is a vector space isomorphism between H* and H.
- For *I* representation of *H*, we define $\stackrel{I}{T} \in M_{\dim(I)}(H^*)$ by $\stackrel{I}{T}(h) = \stackrel{I}{h}$.
- Let $M = \sum_{i,j} E_j^i \otimes m_{ij} \in M_m(\mathbb{C}) \otimes A$, $N = \sum_{i,j} E_j^i \otimes n_{ij} \in M_n(\mathbb{C}) \otimes A$ where E_j^i are the elementary matrices. We define:

$$\begin{split} M_1 &= \sum_{i,j} E_j^i \otimes \mathrm{I}_n \otimes M_j^i \in \mathrm{M}_m(\mathbb{C}) \otimes \mathrm{M}_n(\mathbb{C}) \otimes A \\ N_2 &= \sum_{i,j} \mathrm{I}_m \otimes E_j^i \otimes N_j^i \in \mathrm{M}_m(\mathbb{C}) \otimes \mathrm{M}_n(\mathbb{C}) \otimes A. \end{split}$$

• In the sequel, we assume everywhere that *H* is a finite-dimensional factorizable ribbon Hopf algebra.

Matthieu FAITG

Example: $H = \overline{U}_q(\mathfrak{sl}(2))$

Let q be a primitive 2p-th root of unity (p > 2). $\overline{U}_q = \overline{U}_q(\mathfrak{sl}(2))$ is the \mathbb{C} -algebra generated by E, F, K modulo

$$KE = q^2 EK, \quad KF = q^{-2} FK, \quad [E, F] = \frac{K - K^{-1}}{q - q^{-1}}$$

 $E^p = F^p = 0, \quad K^{2p} = 1.$

 \overline{U}_q is a Hopf algebra:

$$\begin{array}{ll} \Delta(E) = 1 \otimes E + E \otimes K, & \Delta(F) = F \otimes 1 + K^{-1} \otimes F, & \Delta(K) = K \otimes K \\ \varepsilon(E) = 0, & \varepsilon(F) = 0, & \varepsilon(K) = 1 \\ S(E) = -EK^{-1}, & S(F) = -KF, & S(K) = K^{-1} \end{array}$$

We have dim $(\overline{U}_q) = 2p^3$. There is a *R*-matrix (in an extension of \overline{U}_q), a ribbon element $v \in \overline{U}_q$, and \overline{U}_q is factorizable. \overline{U}_q is not semisimple.

The loop algebra $\mathcal{L}_{0,1}(H)$

Let $T(H^*)$ be the tensor algebra of H^* and let $j : H^* \to T(H^*)$ the canonical embedding. We denote $\stackrel{I}{M} = j(\stackrel{I}{T})$.

Definition

The loop algebra $\mathcal{L}_{0,1}(H)$ is the quotient of $T(H^*)$ by the following *fusion relations*

$$M_{12} = M_1(R')_{12} M_2(R'^{-1})_{12}$$

for all finite-dimensional H-modules I, J.

The loop algebra $\mathcal{L}_{0,1}(H)$

Let $T(H^*)$ be the tensor algebra of H^* and let $j : H^* \to T(H^*)$ the canonical embedding. We denote $\stackrel{I}{M} = j(\stackrel{I}{T})$.

Definition

The loop algebra $\mathcal{L}_{0,1}(H)$ is the quotient of $T(H^*)$ by the following *fusion* relations

$$\stackrel{\otimes J}{M}_{12} = \stackrel{I}{M}_{1} (\stackrel{IJ}{R'})_{12} \stackrel{J}{M}_{2} (\stackrel{IJ}{R'^{-1}})_{12}$$

for all finite-dimensional H-modules I, J.

Reflection equation

The following exchange relation holds:

$${}^{IJ}_{R_{12}}{}^{I}_{M_1}{}^{IJ}_{(R')}{}^{J}_{12}{}^{M}_{M_2} = {}^{J}_{M_2}{}^{IJ}_{R_{12}}{}^{I}_{M_1}{}^{IJ}_{(R')}{}^{IJ}_{12}.$$

Properties of $\mathcal{L}_{0,1}(H)$

• The following right action of H

$$\forall h \in H, \quad \stackrel{I}{M} \cdot h = \sum_{(h)} \stackrel{I}{h'MS(h'')}$$

endows $\mathcal{L}_{0,1}(H)$ with the structure of a *H*-module-algebra.

• The following right action of H

$$\forall h \in H, \quad \stackrel{I}{M} \cdot h = \sum_{(h)} \stackrel{I}{h'MS(h'')}$$

endows $\mathcal{L}_{0,1}(H)$ with the structure of a *H*-module-algebra.

• If we endow H with the right adjoint action, then

$$egin{array}{rcl} \Psi_{0,1}: & \mathcal{L}_{0,1}(H) &
ightarrow & H \ & & M &
ightarrow & (T\otimes \mathrm{Id})(RR') = (a_i'b_j)b_ia_j \end{array}$$

is an isomorphism of *H*-module-algebras.

• In particular, $\mathcal{L}_{0,1}^{\mathrm{inv}}(H) \cong \mathcal{Z}(H)$.

Let $\mathcal{X}^+(2)$ be the fundamental representation of \overline{U}_q , and let

$$R := \frac{\mathcal{X}^{+}(2), \mathcal{X}^{+}(2)}{R} = q^{-1/2} \begin{pmatrix} q & 0 & 0 & 0 \\ 0 & 1 & \hat{q} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & q \end{pmatrix}, \quad M := \frac{\mathcal{X}^{+}(2)}{M} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Then $\mathcal{L}_{0,1}(\overline{U}_q)$ admits the following presentation

$$\left\langle a, b, c, d \mid \begin{array}{c} R_{12}M_1R_{21}M_2 = M_2R_{12}M_1R_{21} \\ ad - q^2bc = 1, \quad b^p = c^p = 0, \quad d^{2p} = 1 \end{array}
ight
angle.$$

The monomials $b^i c^j d^k$ with $0 \le i, j \le p - 1$, $0 \le k \le 2p - 1$ form a basis.

Consider $\mathcal{L}_{0,1}(H) * \mathcal{L}_{0,1}(H)$ (free product of two copies of $\mathcal{L}_{0,1}(H)$), and let $j_1, j_2 : \mathcal{L}_{0,1}(H) \to \mathcal{L}_{0,1}(H) * \mathcal{L}_{0,1}(H)$ be the canonical embeddings. We denote $A = j_1(M)$ and $B = j_2(M)$.

Definition

The handle algebra $\mathcal{L}_{1,0}(H)$ is the quotient of $\mathcal{L}_{0,1}(H) * \mathcal{L}_{0,1}(H)$ by the following *exchange relations*:

$${}^{IJ}_{R_{12}}{}^{IJ}_{B_1}{}^{IJ}_{(R')}{}^{J}_{12}{}^{J}_{A_2} = {}^{J}_{A_2}{}^{IJ}_{R_{12}}{}^{I}_{B_1}{}^{IJ}_{(R^{-1})}{}^{I_{12}}$$

for all finite-dimensional H-modules I, J.

Properties of $\mathcal{L}_{1,0}(H)$

• The following right action of H

$$\forall h \in H, \quad \stackrel{I}{A} \cdot h = \sum_{(h)} \stackrel{I}{h'AS(h'')}, \quad \stackrel{I}{B} \cdot h = \sum_{(h)} \stackrel{I}{h'BS(h'')}$$

endows $\mathcal{L}_{1,0}(H)$ with the structure of a *H*-module-algebra.

Properties of $\mathcal{L}_{1,0}(H)$

• The following right action of H

$$\forall h \in H, \quad \stackrel{I}{A} \cdot h = \sum_{(h)} \stackrel{I}{h'AS(h'')}, \quad \stackrel{I}{B} \cdot h = \sum_{(h)} \stackrel{I}{h'BS(h'')}$$

endows $\mathcal{L}_{1,0}(H)$ with the structure of a *H*-module-algebra.

• There is an isomorphism of algebras:

$$\begin{array}{rcccc} \Psi_{1,0}: & \mathcal{L}_{1,0}(H) & \rightarrow & \mathcal{H}(H^*) \\ & I & & I \\ & A & \mapsto & (a_i b_j) b_i a_j \\ & I & & I \\ & B & \mapsto & (a_i) b_i \stackrel{I}{\mathsf{T}} (b_j) a_j. \end{array}$$

where $\mathcal{H}(H^*)$ is the Heisenberg double of H^* .

Properties of $\mathcal{L}_{1,0}(H)$

• The following right action of H

$$\forall h \in H, \quad \stackrel{I}{A} \cdot h = \sum_{(h)} \stackrel{I}{h'AS(h'')}, \quad \stackrel{I}{B} \cdot h = \sum_{(h)} \stackrel{I}{h'BS(h'')}$$

endows $\mathcal{L}_{1,0}(H)$ with the structure of a *H*-module-algebra.

• There is an isomorphism of algebras:

$$\begin{array}{rcccc} \Psi_{1,0}: & \mathcal{L}_{1,0}(H) & \rightarrow & \mathcal{H}(H^*) \\ & & I & & I \\ & & A & \mapsto & (a_ib_j)b_ia_j \\ & & I & I & I \\ & & B & \mapsto & (a_i)b_i \stackrel{I}{\mathsf{T}}(b_j)a_j \end{array}$$

where $\mathcal{H}(H^*)$ is the Heisenberg double of H^* . $\implies \mathcal{L}_{1,0}(H)$ has a faithful representation on H^* .

In particular $\mathcal{L}_{1,0}(H)$ is (isomorphic to) a matrix algebra.

Definition of $\mathcal{L}_{g,n}(H)$

Let $\operatorname{mod}_r(H)$ be the category of finite-dimensional right *H*-modules and $\widetilde{\otimes}$ be the braided tensor product in $\operatorname{mod}_r(H)$.

Definition

$$\mathcal{L}_{g,n}(H) = \mathcal{L}_{1,0}(H)^{\widetilde{\otimes}g} \widetilde{\otimes} \mathcal{L}_{0,1}(H)^{\widetilde{\otimes}n} \in \mathrm{mod}_r(H).$$

Definition of $\mathcal{L}_{g,n}(H)$

Let $\operatorname{mod}_r(H)$ be the category of finite-dimensional right *H*-modules and $\widetilde{\otimes}$ be the braided tensor product in $\operatorname{mod}_r(H)$.

Definition

$$\mathcal{L}_{g,n}(H) = \mathcal{L}_{1,0}(H)^{\widetilde{\otimes}g} \widetilde{\otimes} \mathcal{L}_{0,1}(H)^{\widetilde{\otimes}n} \in \mathrm{mod}_r(H).$$

Explicitly, with generators and relations:

$$\begin{cases} I \otimes J \\ U(i)_{12} = U(i)_1 R_{21} U(i)_2 R_{21}^{-1} & \text{for } 1 \le i \le g + n, \\ I \\ R_{12} U(i)_1 R_{12}^{-1} V(j)_2 = V(j)_2 R_{12} U(i)_1 R_{12}^{-1} & \text{for } 1 \le i < j \le g + n, \\ I \\ R_{12} B(i)_1 R_{21} A(i)_2 = A(i)_2 R_{12} B(i)_1 R_{12}^{-1} & \text{for } 1 \le i \le g, \end{cases}$$

where U(i), V(i) are A(i) or B(i) if $1 \le i \le g$ and are M(i) if $g+1 \le i \le g+n$.

Theorem

There is an explicit isomorphism of algebras

$$\alpha_{g,n}: \mathcal{L}_{g,n}(H) \to \mathcal{L}_{1,0}(H)^{\otimes g} \otimes \mathcal{L}_{0,1}(H)^{\otimes n}.$$

Composing with $\Psi_{1,0}^{\otimes g} \otimes \Psi_{0,1}^{\otimes n}$, we get an isomorphism

$$\Psi_{g,n}:\mathcal{L}_{g,n}(H)\to\mathcal{H}(H^*)^{\otimes g}\otimes H^{\otimes n}.$$

It follows that every indecomposable representation of $\mathcal{L}_{g,n}(H)$ is of the form

$$(H^*)^{\otimes g} \otimes I_1 \otimes \ldots \otimes I_n$$

where I_1, \ldots, I_n are indecomposable representations of H.

Characterization and representation of the invariants

Consider the matrices

$$\overset{\prime}{C}=\overset{\prime}{C}(1)\ldots \overset{\prime}{C}(g)\overset{\prime}{M}(g+1)\ldots \overset{\prime}{M}(g+n)$$

with $C(i) = v^2 B(i) A(i)^{-1} B(i)^{-1} A(i)$ for all finite-dim H-module I.

Theorem $x \in \mathcal{L}_{g,n}^{inv}(H) \iff \forall I, x \stackrel{I}{C} = \stackrel{I}{C} x.$

Characterization and representation of the invariants

Consider the matrices

$$\overset{\prime}{C} = \overset{\prime}{C}(1) \dots \overset{\prime}{C}(g) \overset{\prime}{M}(g+1) \dots \overset{\prime}{M}(g+n)$$

with $C(i) = v^2 B(i) A(i)^{-1} B(i)^{-1} A(i)$ for all finite-dim H-module I.

Theorem

$$x \in \mathcal{L}_{g,n}^{\mathrm{inv}}(H) \iff \forall I, \ x \stackrel{I}{C} = \stackrel{I}{C} x.$$

If (V, \triangleright) is a representation of $\mathcal{L}_{g,n}(H)$, define

$$\operatorname{Inv}(V) = \left\{ v \in V \mid \forall I, \ C \triangleright v = 1_{\dim(I)}v \right\}.$$

By definition, Inv(V) is stable under $\mathcal{L}_{g,n}^{inv}(H)$, and thus provides a representation.

Matthieu FAITG

Let:

- Σ_g be the compact orientable surface of genus g,
- $D \subset \Sigma_g$ be an imbedded open disk,
- $C = \partial(\Sigma_g \setminus D).$

Let:

- Σ_g be the compact orientable surface of genus g,
- $D \subset \Sigma_g$ be an imbedded open disk,
- $C = \partial(\Sigma_g \setminus D).$

Consider the simple closed curves e, b_i, x_i $(1 \le i \le g)$ drawn on the blackboard. It is known that the Dehn twists about these curves generate $MCG(\Sigma_g)$ and $MCG(\Sigma_g \setminus D)$ (the Humphries generators).

Moreover, there exists a presentation of $MCG(\Sigma_g)$ and $MCG(\Sigma_g \setminus D)$ with generators $\tau_e, \tau_{b_i}, \tau_{x_i}$ (Wajnryb's presentation).

Action on the fundamental group

Put a basepoint on C and let a_i, b_i be the generators of $\pi_1(\Sigma_g \setminus D)$ drawn on the blackboard, such that

$$C = b_1 a_1^{-1} b_1^{-1} a_1 \dots b_g a_g^{-1} b_g^{-1} a_g.$$

Action on the fundamental group

Put a basepoint on C and let a_i, b_i be the generators of $\pi_1(\Sigma_g \setminus D)$ drawn on the blackboard, such that

$$C = b_1 a_1^{-1} b_1^{-1} a_1 \dots b_g a_g^{-1} b_g^{-1} a_g.$$

Each Dehn twist τ_{γ} about a simple closed curve γ of $\Sigma_g \setminus D$ which does not intersect *C* induces an automorphism $\tau_{\gamma} = (\tau_{\gamma})_*$ of $\pi_1(\Sigma_g \setminus D)$.

Action on the fundamental group

Put a basepoint on C and let a_i, b_i be the generators of $\pi_1(\Sigma_g \setminus D)$ drawn on the blackboard, such that

$$C = b_1 a_1^{-1} b_1^{-1} a_1 \dots b_g a_g^{-1} b_g^{-1} a_g.$$

Each Dehn twist τ_{γ} about a simple closed curve γ of $\Sigma_g \setminus D$ which does not intersect C induces an automorphism $\tau_{\gamma} = (\tau_{\gamma})_*$ of $\pi_1(\Sigma_g \setminus D)$. For the Humphries generators, the non-trivial values are

$$\begin{aligned} \tau_e(a_1) &= e^{-1}a_1e, \ \tau_e(b_1) = e^{-1}b_1e, \ \tau_e(b_2) = e^{-1}b_2, \\ \tau_{b_i}(a_i) &= b_i^{-1}a_i, \\ \tau_{x_1}(b_1) &= b_1a_1, \\ \tau_{x_j}(a_{j-1}) &= x_j^{-1}a_{j-1}x_j, \ \tau_{x_j}(b_{j-1}) = b_{j-1}x_j, \ \tau_{x_j}(b_j) = x_j^{-1}b_j, \end{aligned}$$

for all $1 \le i \le g$ and $2 \le j \le g$, and with $e = b_1 a_1^{-1} b_1^{-1} a_1 b_2 a_2^{-1} b_2^{-1}$, $x_j = a_{j-1} b_j a_j^{-1} b_j^{-1}$.

Lift of Dehn twists to $\mathcal{L}_{g,0}(H)$

We "lift" the Dehn twists by replacing curves of $\pi_1(\Sigma_g \setminus D)$ by matrices with coefficients in $\mathcal{L}_{g,0}(H)$.

For the Humphries generators, the non-trivial values are

$$\begin{split} \widetilde{\tau}_{e} \begin{pmatrix} i \\ A(1) \end{pmatrix} &= \stackrel{i}{E} \stackrel{1}{-1} \stackrel{i}{A}(1) \stackrel{i}{E}, \quad \widetilde{\tau}_{e} \begin{pmatrix} i \\ B(1) \end{pmatrix} &= \stackrel{i}{E} \stackrel{1}{-1} \stackrel{i}{B}(1) \stackrel{i}{E}, \quad \widetilde{\tau}_{e} \begin{pmatrix} i \\ B(2) \end{pmatrix} &= \stackrel{i}{v} \stackrel{i}{E} \stackrel{1}{-1} \stackrel{i}{B}(2), \\ \widetilde{\tau}_{b_{i}} \begin{pmatrix} i \\ A(i) \end{pmatrix} &= \stackrel{i}{v} \stackrel{1}{-1} \stackrel{i}{B}(1) \stackrel{i}{A}(1), \\ \widetilde{\tau}_{x_{j}} \begin{pmatrix} i \\ A(j-1) \end{pmatrix} &= \stackrel{i}{x_{j}} \stackrel{1}{-1} \stackrel{i}{A}(j-1) \stackrel{i}{X}_{j}, \quad \widetilde{\tau}_{x_{j}} \begin{pmatrix} i \\ B(j-1) \end{pmatrix} &= \stackrel{i}{v} \stackrel{1}{-1} \stackrel{i}{B}(j-1) \stackrel{i}{X}_{j}, \\ \widetilde{\tau}_{x_{j}} \begin{pmatrix} i \\ B(j) \end{pmatrix} &= \stackrel{i}{v} \stackrel{i}{X}_{j} \stackrel{1}{-1} \stackrel{i}{B}(j), \end{split}$$

for all
$$1 \le i \le g$$
 and $2 \le j \le g$, and with
 $\stackrel{i}{E} = \stackrel{i}{v^4} \stackrel{i}{B}(1) \stackrel{i}{A}(1)^{-1} \stackrel{i}{B}(1)^{-1} \stackrel{i}{A}(1) \stackrel{i}{B}(2) \stackrel{i}{A}(2)^{-1} \stackrel{i}{B}(2)^{-1}$,
 $\stackrel{i}{X}_j = \stackrel{i}{v^2} \stackrel{i}{A}(j-1) \stackrel{i}{B}(j) \stackrel{i}{A}(j)^{-1} \stackrel{i}{B}(j)^{-1}$.

Elements associated to Dehn twist automorphisms

Since $\mathcal{L}_{g,0}(H)$ is a matrix algebra, the automorphisms lifting the Dehn twists are inner.

Elements associated to Dehn twist automorphisms

Since $\mathcal{L}_{g,0}(H)$ is a matrix algebra, the automorphisms lifting the Dehn twists are inner.

Theorem

Let γ be a simple closed curve in $\Sigma_g \setminus D$. Then for all $x \in \mathcal{L}_{g,0}(H)$,

$$\widetilde{ au}_{\gamma}(x) = v_{\widetilde{\gamma}}^{-1} \, x \, v_{\widetilde{\gamma}},$$

where $\widetilde{\gamma}$ is the lift of the curve γ in $\mathcal{L}_{g,n}(H)$ and $v_{\widetilde{\gamma}}$ is the ribbon element v over $\widetilde{\gamma}$.

Elements associated to Dehn twist automorphisms

Since $\mathcal{L}_{g,0}(H)$ is a matrix algebra, the automorphisms lifting the Dehn twists are inner.

Theorem

Let γ be a simple closed curve in $\Sigma_g \setminus D$. Then for all $x \in \mathcal{L}_{g,0}(H)$,

$$\widetilde{ au}_{\gamma}(x) = v_{\widetilde{\gamma}}^{-1} \, x \, v_{\widetilde{\gamma}},$$

where $\widetilde{\gamma}$ is the lift of the curve γ in $\mathcal{L}_{g,n}(H)$ and $v_{\widetilde{\gamma}}$ is the ribbon element v over $\widetilde{\gamma}$.

It can be shown that a suitably normalized lift of a simple closed curve satisfies the defining relation of $\mathcal{L}_{0,1}(H)$, thus there exists a morphism of module-algebras

$$j_{\widetilde{\gamma}}: \mathcal{L}_{0,1}(H) \to \mathcal{L}_{g,0}(H)$$
$$\stackrel{I}{M} \mapsto \stackrel{I}{\widetilde{\gamma}}.$$

Since $v \in \mathcal{Z}(H) \cong \mathcal{L}^{\mathrm{inv}}_{0,1}(H)$, we define $v_{\widetilde{\gamma}} = j_{\widetilde{\gamma}}(v) \in \mathcal{L}^{\mathrm{inv}}_{g,0}(H)$.

Projective representation of $MCG(\Sigma_g)$

Recall that we have a representation

- of $\mathcal{L}_{g,0}(H)$ on $V = (H^*)^{\otimes g}$, which we denote ρ
- and of $\mathcal{L}_{g,0}^{inv}(H)$ on Inv(V), which we denote ρ_{inv} .

Projective representation of $MCG(\Sigma_g)$

Recall that we have a representation

- of $\mathcal{L}_{g,0}(H)$ on $V=(H^*)^{\otimes g}$, which we denote ho
- and of $\mathcal{L}_{g,0}^{\mathrm{inv}}(H)$ on $\mathrm{Inv}(V)$, which we denote ρ_{inv} .

Theorem

1) The assignment

$$\begin{array}{rcl} \mathrm{MCG}(\boldsymbol{\Sigma}_g \setminus \boldsymbol{D}) & \to & \mathrm{GL}(\boldsymbol{V}) \\ \tau_{\gamma} & \mapsto & \rho(\boldsymbol{v}_{\widetilde{\gamma}}^{-1}) \end{array}$$

is a projective representation.

2) The assignment

$$\mathrm{MCG}(\Sigma_g) \rightarrow \mathrm{GL}(\mathrm{Inv}(V)) \ au_{\gamma} \mapsto
ho_{\mathrm{inv}}(v_{\widetilde{\gamma}}^{-1})$$

is a projective representation.

• The mapping class groups are

$$\begin{split} \mathrm{MCG}(\Sigma_1 \setminus D) &= B_3 = \left\langle \tau_a, \tau_b \left| \tau_a \tau_b \tau_a = \tau_b \tau_a \tau_b \right\rangle, \\ \mathrm{MCG}(\Sigma_1) &= \mathrm{SL}_2(\mathbb{Z}) = \left\langle \tau_a, \tau_b \left| \tau_a \tau_b \tau_a = \tau_b \tau_a \tau_b, \right. \left(\tau_a \tau_b \right)^6 = 1 \right\rangle. \end{split}$$

• The mapping class groups are

$$\begin{split} \mathrm{MCG}(\Sigma_1 \setminus D) &= B_3 = \left\langle \tau_a, \tau_b \left| \tau_a \tau_b \tau_a = \tau_b \tau_a \tau_b \right\rangle, \\ \mathrm{MCG}(\Sigma_1) &= \mathrm{SL}_2(\mathbb{Z}) = \left\langle \tau_a, \tau_b \left| \tau_a \tau_b \tau_a = \tau_b \tau_a \tau_b, \right. \left(\tau_a \tau_b \right)^6 = 1 \right\rangle. \end{split}$$

 \bullet The representation space of $\mathcal{L}_{1,0}^{\mathrm{inv}}(\mathcal{H})$ (and of $\mathrm{MCG}(\Sigma_1))$ is

$$\operatorname{Inv}(H^*) = \operatorname{SLF}(H) = \{\varphi \in H^* \mid \forall x, y \in H, \ \varphi(xy) = \varphi(yx)\}.$$

• The mapping class groups are

$$\begin{split} \mathrm{MCG}(\Sigma_1 \setminus D) &= B_3 = \left\langle \tau_a, \tau_b \left| \tau_a \tau_b \tau_a = \tau_b \tau_a \tau_b \right\rangle, \\ \mathrm{MCG}(\Sigma_1) &= \mathrm{SL}_2(\mathbb{Z}) = \left\langle \tau_a, \tau_b \left| \tau_a \tau_b \tau_a = \tau_b \tau_a \tau_b, \right. \left(\tau_a \tau_b \right)^6 = 1 \right\rangle. \end{split}$$

• The representation space of $\mathcal{L}_{1,0}^{inv}(H)$ (and of $MCG(\Sigma_1)$) is $Inv(H^*) = SLF(H) = \{\varphi \in H^* \mid \forall x, y \in H, \ \varphi(xy) = \varphi(yx)\}.$

• We can compute formulas for the action of v_A^{-1}, v_B^{-1} on H^* .

Example: the torus Σ_1

Theorem

• There is a representation of $\mathrm{SL}_2(\mathbb{Z})$ on $\mathrm{SLF}(H)$ given by:

$$au_{a} \mapsto
ho_{\mathrm{inv}} \left(\mathbf{v}_{A}^{-1}
ight), \quad au_{b} \mapsto
ho_{\mathrm{inv}} \left(\mathbf{v}_{B}^{-1}
ight).$$

- If S(φ) = φ for all φ ∈ SLF(H), then this is in fact a projective representation of PSL₂(ℤ).
- This representation is equivalent to the Lyubashenko-Majid representation.

Example: the torus Σ_1

Theorem

• There is a representation of $\mathrm{SL}_2(\mathbb{Z})$ on $\mathrm{SLF}(H)$ given by:

$$au_{a} \mapsto
ho_{\mathrm{inv}} \left(\mathbf{v}_{A}^{-1}
ight), \quad au_{b} \mapsto
ho_{\mathrm{inv}} \left(\mathbf{v}_{B}^{-1}
ight).$$

- If S(φ) = φ for all φ ∈ SLF(H), then this is in fact a projective representation of PSL₂(ℤ).
- This representation is equivalent to the Lyubashenko-Majid representation.

More precisely,

$$v_A^{-1} v_B^{-1} v_A^{-1} = v_B^{-1} v_A^{-1} v_B^{-1} \text{ in } \mathcal{L}_{1,0}(H),$$
$$\rho_{\text{inv}} (v_A^{-1} v_B^{-1})^3 = \frac{\mu'(v^{-1})}{\mu'(v)} S,$$

where S is the antipode on H^* $(S(\varphi) = \varphi \circ S)$ and μ^I is a left integral.

GTA basis of $SLF(\overline{U}_q)$

 \overline{U}_q is not semisimple. Let

- $\mathcal{X}^{\epsilon}(s)$ be the simple \overline{U}_q -module of dimension p with highest weight ϵq^{s-1} ($\epsilon \in \{\pm\}$, $1 \leq s \leq p$),
- $\mathcal{P}^{\varepsilon}(s)$ be the projective cover of $\mathcal{X}^{\varepsilon}(s)$ (usually called a PIM).

 \overline{U}_q is not semisimple. Let

- $\mathcal{X}^{\epsilon}(s)$ be the simple \overline{U}_q -module of dimension p with highest weight ϵq^{s-1} ($\epsilon \in \{\pm\}$, $1 \leq s \leq p$),
- $\mathcal{P}^{\varepsilon}(s)$ be the projective cover of $\mathcal{X}^{\varepsilon}(s)$ (usually called a PIM).

We have dim $(SLF(\overline{U}_q)) = dim(\mathcal{Z}(\overline{U}_q)) = 3p - 1$.

The GTA basis of $SLF(\overline{U}_q)$ contains two types of elements:

•
$$\chi_s^{\varepsilon} = \operatorname{tr}\begin{pmatrix} \mathcal{X}^{\varepsilon}(s) \\ T \end{pmatrix}$$
 is the character of $\mathcal{X}^{\varepsilon}(s)$ $(1 \le s \le p)$,
• $G_s = \operatorname{tr}(H_s^+) + \operatorname{tr}(H_{p-s}^-)$, where H_s^{ε} is a submatrix of $\stackrel{\mathcal{P}^{\varepsilon}(s)}{T}$
 $(1 \le s \le p - 1)$.

Key property: the multiplication rules in this basis are remarkably simple.

Projective representation of $SL_2(\mathbb{Z})$ on $SLF(\overline{U}_q)$

The action of $\tau_a, \tau_b \in SL_2(\mathbb{Z})$ on the GTA basis can be computed explicitly:

Theorem

$$\tau_{a}\chi_{s}^{\epsilon} = v_{\chi^{\epsilon}(s)}^{-1}\chi_{s}^{\epsilon}, \qquad \tau_{a}G_{s'} = v_{\chi^{+}(s')}^{-1}G_{s'} - v_{\chi^{+}(s')}^{-1}\hat{q}\left(\frac{p-s'}{[s']}\chi_{s'}^{+} - \frac{s'}{[s']}\chi_{p-s'}^{-}\right)$$

and

$$\tau_{b}\chi_{s}^{\epsilon} = \xi\epsilon(-\epsilon)^{p-1}sq^{-(s^{2}-1)} \left(\sum_{\ell=1}^{p-1}(-1)^{s}(-\epsilon)^{p-\ell} \left(q^{\ell s}+q^{-\ell s}\right) \left(\chi_{\ell}^{+}+\chi_{p-\ell}^{-}\right) + \chi_{p}^{+}+(-\epsilon)^{p}(-1)^{s}\chi_{p}^{-}\right) + \xi\epsilon(-1)^{s}q^{-(s^{2}-1)}\sum_{j=1}^{p-1}(-\epsilon)^{j+1}[j][js]G_{j},$$

$$\tau_{b}G_{s'} = \xi(-1)^{s'}q^{-(s'^{2}-1)}\frac{\hat{q}p}{[s']}\sum_{j=1}^{p-1}(-1)^{j+1}[j][js'] \left(2G_{j}-\hat{q}\frac{p-j}{[j]}\chi_{j}^{+}+\hat{q}\frac{j}{[j]}\chi_{p-j}^{-}\right).$$
with $\epsilon \in \{\pm\}, \ 0 \le s \le p, \ 1 \le s' \le p-1 \ \text{and} \ \xi \in \mathbb{C} \setminus \{0\}.$

The multiplication rules are used to compute the action of τ_b .

Matthieu FAITG

Decomposition of the representation

Let
$$\mathcal{V} = \operatorname{vect}(\chi_s^+ + \chi_{p-s}^-, \chi_p^\pm)_{1 \le s \le p-1}$$
, of dimension $p + 1$. Since:
• $\forall \psi \in \mathcal{V}, \ \forall z \in \mathcal{Z}(\overline{U}_q), \ \psi(z?) \in \mathcal{V}$,
• \mathcal{V} is an ideal $\operatorname{SLF}(\overline{U}_q)$,

we deduce that \mathcal{V} is stable under the action of $\mathrm{SL}_2(\mathbb{Z})$.

Decomposition of the representation

Let
$$\mathcal{V} = \operatorname{vect} \left(\chi_s^+ + \chi_{p-s}^-, \chi_p^\pm \right)_{1 \le s \le p-1}$$
, of dimension $p + 1$. Since:

•
$$\forall \psi \in \mathcal{V}, \ \forall z \in \mathcal{Z}(\overline{U}_q), \ \psi(z?) \in \mathcal{V},$$

• \mathcal{V} is an ideal $SLF(\overline{U}_q)$,

we deduce that ${\mathcal V}$ is stable under the action of ${\rm SL}_2({\mathbb Z}).$

Theorem

There exists a projective representation $\mathcal W$ of $\operatorname{SL}_2(\mathbb Z)$, of dimension p-1, such that

$$\operatorname{SLF}(\overline{U}_q) = \mathcal{V} \oplus (\mathbb{C}^2 \otimes \mathcal{W}).$$

 ${\mathcal W}$ admits a basis $({\it w}_s)_{1\leq s\leq p-1}$ such that the action is given by

$$\tau_a w_s = v_{\mathcal{X}^+(s)}^{-1} w_s, \quad \tau_b w_s = \xi(-1)^s q^{-(s^2-1)} \frac{\hat{q}p}{[s]} \sum_{j=1}^{p-1} (-1)^{j+1} [j] [js] w_j.$$

M. Faitg, A note on symmetric linear forms and traces on the restricted quantum group U
_q(sl(2)), arXiv:1801.07524.
 → Properties of the GTA basis.

- M. Faitg, A note on symmetric linear forms and traces on the restricted quantum group U
 _q(sl(2)), arXiv:1801.07524.
 → Properties of the GTA basis.
- M. Faitg, Modular group representations in combinatorial quantization with non-semisimple Hopf algebras, arXiv:1805.00924.
 → Case of the torus.

- M. Faitg, A note on symmetric linear forms and traces on the restricted quantum group U
 _q(sl(2)), arXiv:1801.07524.
 → Properties of the GTA basis.
- M. Faitg, Modular group representations in combinatorial quantization with non-semisimple Hopf algebras, arXiv:1805.00924.
 → Case of the torus.
- Higher genus surfaces: work in progress.

- M. Faitg, A note on symmetric linear forms and traces on the restricted quantum group U
 _q(sl(2)), arXiv:1801.07524.
 → Properties of the GTA basis.
- M. Faitg, Modular group representations in combinatorial quantization with non-semisimple Hopf algebras, arXiv:1805.00924.
 → Case of the torus.
- Higher genus surfaces: work in progress.

Thanks for listening!