Mapping class group representations in combinatorial quantization

Matthieu Faitg

Rencontre annuelle du GDR Topologie Algébrique

$$
25 / 10 / 2018
$$

Contents

- Origin of combinatorial quantization
- Definition and properties of $\mathcal{L}_{0,1}(H), \mathcal{L}_{1,0}(H)$ and $\mathcal{L}_{g, n}(H)$
- Representation of $\operatorname{MCG}\left(\Sigma_{g}\right)$ obtained via $\mathcal{L}_{g, 0}(H)$
- Example of the torus Σ_{1} with $H=\bar{U}_{q}(\mathfrak{s l}(2))$

Origin of combinatorial quantization

Let S be a compact orientable surface, G a Lie group and $\mathcal{A}_{f} / \mathcal{G}$ the set of flat G-connections up to gauge equivalence.

Origin of combinatorial quantization

Let S be a compact orientable surface, G a Lie group and $\mathcal{A}_{f} / \mathcal{G}$ the set of flat G-connections up to gauge equivalence.

- There exists a Poisson structure $\{\cdot, \cdot\}$ on $C^{\infty}\left(\mathcal{A}_{f} / \mathcal{G}\right)$.

Origin of combinatorial quantization

Let S be a compact orientable surface, G a Lie group and $\mathcal{A}_{f} / \mathcal{G}$ the set of flat G-connections up to gauge equivalence.

- There exists a Poisson structure $\{\cdot, \cdot\}$ on $C^{\infty}\left(\mathcal{A}_{f} / \mathcal{G}\right)$.
- Fock and Rosly found a combinatorial description $\left(\left(\mathcal{A}_{f} / \mathcal{G}\right)^{\mathrm{FR}}\right.$, $\left.\{\cdot, \cdot\}_{\mathrm{FR}}\right)$ of $\left(\mathcal{A}_{f} / \mathcal{G},\{\cdot, \cdot\}\right)$ based on a discretization of S by a fat graph.
\rightarrow notion of lattice gauge field theory based on a (Lie) group.

Origin of combinatorial quantization

Let S be a compact orientable surface, G a Lie group and $\mathcal{A}_{f} / \mathcal{G}$ the set of flat G-connections up to gauge equivalence.

- There exists a Poisson structure $\{\cdot, \cdot\}$ on $C^{\infty}\left(\mathcal{A}_{f} / \mathcal{G}\right)$.
- Fock and Rosly found a combinatorial description $\left(\left(\mathcal{A}_{f} / \mathcal{G}\right)^{\mathrm{FR}}\right.$, $\left.\{\cdot, \cdot\}_{\mathrm{FR}}\right)$ of $\left(\mathcal{A}_{f} / \mathcal{G},\{\cdot, \cdot\}\right)$ based on a discretization of S by a fat graph.
\rightarrow notion of lattice gauge field theory based on a (Lie) group.
- Alekseev-Grosse-Schomerus and Buffenoir-Roche introduced a quantization of $\left(\left(\mathcal{A}_{f} / \mathcal{G}\right)^{\mathrm{FR}},\{\cdot, \cdot\}_{\mathrm{FR}}\right)$, which is called combinatorial quantization.
\rightarrow notion of lattice gauge field theory based on a quantum group, or more generally on a Hopf algebra.

Preliminaries, notations

Let H be a finite-dimensional ribbon Hopf algebra, with universal R-matrix $R \in H \otimes H$ and ribbon element v.

- We say that H is factorizable if $\beta \mapsto(\beta \otimes \mathrm{Id})\left(R R^{\prime}\right)$ is a vector space isomorphism between H^{*} and H.

Preliminaries, notations

Let H be a finite-dimensional ribbon Hopf algebra, with universal R-matrix $R \in H \otimes H$ and ribbon element v.

- We say that H is factorizable if $\beta \mapsto(\beta \otimes \mathrm{Id})\left(R R^{\prime}\right)$ is a vector space isomorphism between H^{*} and H.
- For I representation of H, we define $\stackrel{I}{T} \in \mathrm{M}_{\mathrm{dim}(I)}\left(H^{*}\right)$ by $\frac{I}{T}(h)=\stackrel{l}{h}$.

Preliminaries, notations

Let H be a finite-dimensional ribbon Hopf algebra, with universal R-matrix $R \in H \otimes H$ and ribbon element v.

- We say that H is factorizable if $\beta \mapsto(\beta \otimes \mathrm{Id})\left(R R^{\prime}\right)$ is a vector space isomorphism between H^{*} and H.
- For I representation of H, we define $\stackrel{I}{T} \in \mathrm{M}_{\mathrm{dim}(I)}\left(H^{*}\right)$ by $\frac{I}{T}(h)=\stackrel{l}{h}$.
- Let $M=\sum_{i, j} E_{j}^{i} \otimes m_{i j} \in \mathrm{M}_{m}(\mathbb{C}) \otimes A, N=\sum_{i, j} E_{j}^{i} \otimes n_{i j} \in \mathrm{M}_{n}(\mathbb{C}) \otimes A$ where E_{j}^{i} are the elementary matrices. We define:

$$
\begin{aligned}
& M_{1}=\sum_{i, j} E_{j}^{i} \otimes \mathrm{I}_{n} \otimes M_{j}^{i} \in \mathrm{M}_{m}(\mathbb{C}) \otimes \mathrm{M}_{n}(\mathbb{C}) \otimes A \\
& N_{2}=\sum_{i, j} \mathrm{I}_{m} \otimes E_{j}^{i} \otimes N_{j}^{i} \in \mathrm{M}_{m}(\mathbb{C}) \otimes \mathrm{M}_{n}(\mathbb{C}) \otimes A
\end{aligned}
$$

Preliminaries, notations

Let H be a finite-dimensional ribbon Hopf algebra, with universal R-matrix $R \in H \otimes H$ and ribbon element v.

- We say that H is factorizable if $\beta \mapsto(\beta \otimes \mathrm{Id})\left(R R^{\prime}\right)$ is a vector space isomorphism between H^{*} and H.
- For I representation of H, we define $\stackrel{I}{T} \in \mathrm{M}_{\operatorname{dim}(I)}\left(H^{*}\right)$ by $\frac{I}{T}(h)=\stackrel{l}{h}$.
- Let $M=\sum_{i, j} E_{j}^{i} \otimes m_{i j} \in \mathrm{M}_{m}(\mathbb{C}) \otimes A, N=\sum_{i, j} E_{j}^{i} \otimes n_{i j} \in \mathrm{M}_{n}(\mathbb{C}) \otimes A$ where E_{j}^{i} are the elementary matrices. We define:

$$
\begin{aligned}
& M_{1}=\sum_{i, j} E_{j}^{i} \otimes \mathrm{I}_{n} \otimes M_{j}^{i} \in \mathrm{M}_{m}(\mathbb{C}) \otimes \mathrm{M}_{n}(\mathbb{C}) \otimes A \\
& N_{2}=\sum_{i, j} \mathrm{I}_{m} \otimes E_{j}^{i} \otimes N_{j}^{i} \in \mathrm{M}_{m}(\mathbb{C}) \otimes \mathrm{M}_{n}(\mathbb{C}) \otimes A
\end{aligned}
$$

- In the sequel, we assume everywhere that H is a finite-dimensional factorizable ribbon Hopf algebra.

Example: $H=\bar{U}_{q}(\mathfrak{s l}(2))$

Let q be a primitive $2 p$-th root of unity $(p>2)$.
$\bar{U}_{q}=\bar{U}_{q}(\mathfrak{s l}(2))$ is the \mathbb{C}-algebra generated by E, F, K modulo

$$
\begin{aligned}
& K E=q^{2} E K, \quad K F=q^{-2} F K, \quad[E, F]=\frac{K-K^{-1}}{q-q^{-1}} \\
& E^{p}=F^{p}=0, \quad K^{2 p}=1 .
\end{aligned}
$$

\bar{U}_{q} is a Hopf algebra:

$$
\begin{array}{lll}
\Delta(E)=1 \otimes E+E \otimes K, & \Delta(F)=F \otimes 1+K^{-1} \otimes F, & \Delta(K)=K \otimes K \\
\varepsilon(E)=0, & \varepsilon(F)=0, & \varepsilon(K)=1 \\
S(E)=-E K^{-1}, & S(F)=-K F, & S(K)=K^{-1}
\end{array}
$$

We have $\operatorname{dim}\left(\bar{U}_{q}\right)=2 p^{3}$. There is a R-matrix (in an extension of \bar{U}_{q}), a ribbon element $v \in \bar{U}_{q}$, and \bar{U}_{q} is factorizable.
\bar{U}_{q} is not semisimple.

The loop algebra $\mathcal{L}_{0,1}(H)$

Let $\mathrm{T}\left(H^{*}\right)$ be the tensor algebra of H^{*} and let $j: H^{*} \rightarrow \mathrm{~T}\left(H^{*}\right)$ the canonical embedding. We denote $M=j\left(\frac{1}{T}\right)$.

Definition

The loop algebra $\mathcal{L}_{0,1}(H)$ is the quotient of $\mathrm{T}\left(H^{*}\right)$ by the following fusion relations

$$
\left.\stackrel{I \otimes J}{M_{12}}=\stackrel{I}{M_{1}\left(I_{R}^{\prime}\right)} \stackrel{J}{M_{12}} \stackrel{I J}{\left(R^{\prime-1}\right.}\right)_{12}
$$

for all finite-dimensional H-modules I, J.

The loop algebra $\mathcal{L}_{0,1}(H)$

Let $\mathrm{T}\left(H^{*}\right)$ be the tensor algebra of H^{*} and let $j: H^{*} \rightarrow \mathrm{~T}\left(H^{*}\right)$ the canonical embedding. We denote $M=j(T)$.

Definition

The loop algebra $\mathcal{L}_{0,1}(H)$ is the quotient of $\mathrm{T}\left(H^{*}\right)$ by the following fusion relations

$$
\stackrel{I \otimes J}{M_{12}}=\stackrel{I}{M_{1}}\left(\stackrel{I J}{R^{\prime}}\right)_{12} \stackrel{J}{M_{2}}\left(R^{\prime-1}\right)_{12}
$$

for all finite-dimensional H-modules I, J.

Reflection equation

The following exchange relation holds:

$$
\stackrel{I J}{R}_{12} \stackrel{I}{M_{1}}\left(R^{\prime}\right)_{12} \stackrel{J}{M}{ }_{2}=\stackrel{J}{M_{2}} \stackrel{I J}{R_{12}} \stackrel{I}{M_{1}}\left(\stackrel{I J}{R}_{R^{\prime}}^{)_{12}}\right.
$$

Properties of $\mathcal{L}_{0,1}(H)$

- The following right action of H

$$
\forall h \in H, \stackrel{\prime}{M} \cdot h=\sum_{(h)} \stackrel{\prime}{h^{\prime}} \stackrel{\prime}{M} S\left(h^{\prime \prime}\right)
$$

endows $\mathcal{L}_{0,1}(H)$ with the structure of a H-module-algebra.

Properties of $\mathcal{L}_{0,1}(H)$

- The following right action of H

$$
\forall h \in H, \quad \stackrel{\prime}{M} \cdot h=\sum_{(h)} \stackrel{\prime}{h^{\prime}} \stackrel{\prime}{M} S\left({ }^{\prime} h^{\prime \prime}\right)
$$

endows $\mathcal{L}_{0,1}(H)$ with the structure of a H-module-algebra.

- If we endow H with the right adjoint action, then

$$
\begin{aligned}
\Psi_{0,1}: \mathcal{L}_{0,1}(H) & \rightarrow H \\
M & \\
M & \mapsto(T \otimes \operatorname{Id})\left(R R^{\prime}\right)=\left(a_{i} b_{j}\right) b_{i} a_{j}
\end{aligned}
$$

is an isomorphism of H -module-algebras.

- In particular, $\mathcal{L}_{0,1}^{\text {inv }}(H) \cong \mathcal{Z}(H)$.

Example: $\mathcal{L}_{0,1}\left(\bar{U}_{q}\right)$

Let $\mathcal{X}^{+}(2)$ be the fundamental representation of \bar{U}_{q}, and let

$$
R:=\stackrel{\mathcal{X}^{+}(2), \mathcal{X}^{+}(2)}{R}=q^{-1 / 2}\left(\begin{array}{llll}
q & 0 & 0 & 0 \\
0 & 1 & \hat{q} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & q
\end{array}\right), M:=\mathcal{X}^{+}(2)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Then $\mathcal{L}_{0,1}\left(\bar{U}_{q}\right)$ admits the following presentation
$\left\langle a, b, c, d \left\lvert\, \begin{array}{ccc}R_{12} M_{1} R_{21} M_{2}=M_{2} R_{12} M_{1} R_{21} & \\ a d-q^{2} b c=1, & b^{p}=c^{p}=0, & d^{2 p}=1\end{array}\right.\right\rangle$.
The monomials $b^{i} c^{j} d^{k}$ with $0 \leq i, j \leq p-1,0 \leq k \leq 2 p-1$ form a basis.

The handle algebra $\mathcal{L}_{1,0}(\mathrm{H})$

Consider $\mathcal{L}_{0,1}(H) * \mathcal{L}_{0,1}(H)$ (free product of two copies of $\mathcal{L}_{0,1}(H)$), and let $j_{1}, j_{2}: \mathcal{L}_{0,1}(H) \rightarrow \mathcal{L}_{0,1}(H) * \mathcal{L}_{0,1}(H)$ be the canonical embeddings. We denote $A=j_{1}(M)$ and $B=j_{2}(M)$.

Definition

The handle algebra $\mathcal{L}_{1,0}(H)$ is the quotient of $\mathcal{L}_{0,1}(H) * \mathcal{L}_{0,1}(H)$ by the following exchange relations:
for all finite-dimensional H-modules I, J.

Properties of $\mathcal{L}_{1,0}(H)$

- The following right action of H

$$
\forall h \in H, \quad \stackrel{\prime}{A} \cdot h=\sum_{(h)} \stackrel{\prime \prime \prime}{h^{\prime}} A S\left(h^{\prime \prime}\right), \stackrel{\prime}{B} \cdot h=\sum_{(h)} \stackrel{\prime}{\prime}^{\prime} B \stackrel{I}{B}^{\prime \prime}\left(h^{\prime \prime}\right)
$$

endows $\mathcal{L}_{1,0}(H)$ with the structure of a H-module-algebra.

Properties of $\mathcal{L}_{1,0}(H)$

- The following right action of H

$$
\forall h \in H, \quad \stackrel{\prime}{A} \cdot h=\sum_{(h)} \stackrel{\prime \prime \prime}{h^{\prime}} A S\left(h^{\prime \prime}\right), \stackrel{\prime}{B} \cdot h=\sum_{(h)} \stackrel{\prime}{\prime}^{\prime} B \stackrel{I}{B}^{\prime \prime}\left(h^{\prime \prime}\right)
$$

endows $\mathcal{L}_{1,0}(H)$ with the structure of a H-module-algebra.

- There is an isomorphism of algebras:

$$
\begin{aligned}
\Psi_{1,0}: \mathcal{L}_{1,0}(H) & \rightarrow \mathcal{H}\left(H^{*}\right) \\
1 & \\
A & \mapsto\left(a_{i} b_{j}\right) b_{i} a_{j} \\
1 & \\
B & \mapsto\left(a_{i}\right) b_{i} T\left(b_{j}\right) a_{j} .
\end{aligned}
$$

where $\mathcal{H}\left(H^{*}\right)$ is the Heisenberg double of H^{*}.

Properties of $\mathcal{L}_{1,0}(H)$

- The following right action of H

$$
\left.\forall h \in H, \quad \stackrel{\prime}{A} \cdot h=\sum_{(h)} \stackrel{\prime \prime \prime}{h^{\prime}} A S\left(h^{\prime \prime}\right), \stackrel{\prime}{B} \cdot h=\sum_{(h)} \stackrel{\prime}{h^{\prime}}{ }^{\prime} \stackrel{\prime}{h^{\prime \prime}}\right)
$$

endows $\mathcal{L}_{1,0}(H)$ with the structure of a H-module-algebra.

- There is an isomorphism of algebras:

$$
\begin{aligned}
\Psi_{1,0}: \mathcal{L}_{1,0}(H) & \rightarrow \mathcal{H}\left(H^{*}\right) \\
1 & \\
A & \mapsto\left(a_{i} b_{j}\right) b_{i} a_{j} \\
\prime & \\
B & \mapsto\left(a_{i}\right) b_{i} T\left(b_{j}\right) a_{j} .
\end{aligned}
$$

where $\mathcal{H}\left(H^{*}\right)$ is the Heisenberg double of H^{*}.
$\Longrightarrow \mathcal{L}_{1,0}(H)$ has a faithful representation on H^{*}.
In particular $\mathcal{L}_{1,0}(H)$ is (isomorphic to) a matrix algebra.

Definition of $\mathcal{L}_{g, n}(H)$

Let $\bmod _{r}(H)$ be the category of finite-dimensional right H-modules and $\widetilde{\otimes}$ be the braided tensor product in $\bmod _{r}(H)$.

Definition

$$
\mathcal{L}_{g, n}(H)=\mathcal{L}_{1,0}(H)^{\widetilde{\otimes} g} \widetilde{\otimes} \mathcal{L}_{0,1}(H)^{\widetilde{\otimes} n} \in \bmod _{r}(H)
$$

Definition of $\mathcal{L}_{g, n}(H)$

Let $\bmod _{r}(H)$ be the category of finite-dimensional right H-modules and $\widetilde{\otimes}$ be the braided tensor product in $\bmod _{r}(H)$.

Definition

$$
\mathcal{L}_{g, n}(H)=\mathcal{L}_{1,0}(H)^{\widetilde{\otimes} g} \widetilde{\otimes} \mathcal{L}_{0,1}(H)^{\widetilde{\otimes} n} \in \bmod _{r}(H)
$$

Explicitly, with generators and relations:

$$
\left\{\begin{array}{cl}
\stackrel{I \otimes J}{U}(i)_{12}=\stackrel{\prime}{U}(i)_{1} R_{21} \stackrel{J}{U}(i)_{2} R_{21}^{-1} & \text { for } 1 \leq i \leq g+n, \\
R_{12}{ }_{U}^{U}(i)_{1} R_{12}^{-1} \stackrel{J}{V}(j)_{2}=\stackrel{J}{V}(j)_{2} R_{12} \stackrel{\prime}{U}(i)_{1} R_{12}^{-1} & \text { for } 1 \leq i<j \leq g+n, \\
R_{12} \stackrel{J}{B}(i)_{1} R_{21} \stackrel{J}{A}(i)_{2}=\stackrel{J}{A}(i)_{2} R_{12}{ }^{\prime} B(i)_{1} R_{12}^{-1} & \text { for } 1 \leq i \leq g,
\end{array}\right.
$$

where $U(i), V(i)$ are $A(i)$ or $B(i)$ if $1 \leq i \leq g$ and are $M(i)$ if $g+1 \leq i \leq g+n$.

Alekseev isomorphism and representations of $\mathcal{L}_{g, n}(H)$

Theorem

There is an explicit isomorphism of algebras

$$
\alpha_{g, n}: \mathcal{L}_{g, n}(H) \rightarrow \mathcal{L}_{1,0}(H)^{\otimes g} \otimes \mathcal{L}_{0,1}(H)^{\otimes n}
$$

Composing with $\Psi_{1,0}^{\otimes g} \otimes \Psi_{0,1}^{\otimes n}$, we get an isomorphism

$$
\Psi_{g, n}: \mathcal{L}_{g, n}(H) \rightarrow \mathcal{H}\left(H^{*}\right)^{\otimes g} \otimes H^{\otimes n}
$$

It follows that every indecomposable representation of $\mathcal{L}_{g, n}(H)$ is of the form

$$
\left(H^{*}\right)^{\otimes g} \otimes I_{1} \otimes \ldots \otimes I_{n}
$$

where I_{1}, \ldots, I_{n} are indecomposable representations of H.

Characterization and representation of the invariants

Consider the matrices

$$
{ }^{\prime} C=\stackrel{I}{C}(1) \ldots{ }^{\prime}(g) \stackrel{I}{M}(g+1) \ldots{ }_{M}^{M}(g+n)
$$

with ${ }^{\prime} C(i)={ }^{\prime} v^{2} B(i){ }^{\prime} A(i)^{-1}{ }_{B}^{\prime}(i)^{-1}{ }^{\prime} A(i)$ for all finite-dim H-module I.

Theorem

$$
x \in \mathcal{L}_{g, n}^{\operatorname{inv}}(H) \Longleftrightarrow \forall I, x C^{\prime}={ }^{\prime} x x
$$

Characterization and representation of the invariants

Consider the matrices

$$
{ }_{C}^{\prime}=\stackrel{I}{C}(1) \ldots{ }^{\prime} C(g) \stackrel{I}{M}(g+1) \ldots \stackrel{I}{M}(g+n)
$$

with ${ }^{\prime} C(i)={ }^{\prime} v^{2} B(i){ }^{\prime} A(i)^{-1}{ }^{\prime} B(i)^{-1}{ }^{\prime} A(i)$ for all finite-dim H-module I.

Theorem

$$
x \in \mathcal{L}_{g, n}^{\operatorname{inv}}(H) \Longleftrightarrow \forall I, x C^{\prime}={ }^{\prime} C_{x}
$$

If (V, \triangleright) is a representation of $\mathcal{L}_{g, n}(H)$, define

$$
\operatorname{Inv}(V)=\left\{v \in V \mid \forall I, \stackrel{\prime}{C} \triangleright v=1_{\operatorname{dim}(I)} v\right\} .
$$

By definition, $\operatorname{Inv}(V)$ is stable under $\mathcal{L}_{g, n}^{\text {inv }}(H)$, and thus provides a representation.

Mapping class group of Σ_{g}

Let:

- Σ_{g} be the compact orientable surface of genus g,
- $D \subset \Sigma_{g}$ be an imbedded open disk,
- $C=\partial\left(\Sigma_{g} \backslash D\right)$.

Mapping class group of Σ_{g}

Let:

- Σ_{g} be the compact orientable surface of genus g,
- $D \subset \Sigma_{g}$ be an imbedded open disk,
- $C=\partial\left(\Sigma_{g} \backslash D\right)$.

Consider the simple closed curves $e, b_{i}, x_{i}(1 \leq i \leq g)$ drawn on the blackboard. It is known that the Dehn twists about these curves generate $\operatorname{MCG}\left(\Sigma_{g}\right)$ and $\operatorname{MCG}\left(\Sigma_{g} \backslash D\right)$ (the Humphries generators).

Moreover, there exists a presentation of $\operatorname{MCG}\left(\Sigma_{g}\right)$ and $\operatorname{MCG}\left(\Sigma_{g} \backslash D\right)$ with generators $\tau_{e}, \tau_{b_{i}}, \tau_{x_{i}}$ (Wajnryb's presentation).

Action on the fundamental group

Put a basepoint on C and let a_{i}, b_{i} be the generators of $\pi_{1}\left(\Sigma_{g} \backslash D\right)$ drawn on the blackboard, such that

$$
C=b_{1} a_{1}^{-1} b_{1}^{-1} a_{1} \ldots b_{g} a_{g}^{-1} b_{g}^{-1} a_{g}
$$

Action on the fundamental group

Put a basepoint on C and let a_{i}, b_{i} be the generators of $\pi_{1}\left(\Sigma_{g} \backslash D\right)$ drawn on the blackboard, such that

$$
C=b_{1} a_{1}^{-1} b_{1}^{-1} a_{1} \ldots b_{g} a_{g}^{-1} b_{g}^{-1} a_{g} .
$$

Each Dehn twist τ_{γ} about a simple closed curve γ of $\Sigma_{g} \backslash D$ which does not intersect C induces an automorphism $\tau_{\gamma}=\left(\tau_{\gamma}\right)_{*}$ of $\pi_{1}\left(\Sigma_{g} \backslash D\right)$.

Action on the fundamental group

Put a basepoint on C and let a_{i}, b_{i} be the generators of $\pi_{1}\left(\Sigma_{g} \backslash D\right)$ drawn on the blackboard, such that

$$
C=b_{1} a_{1}^{-1} b_{1}^{-1} a_{1} \ldots b_{g} a_{g}^{-1} b_{g}^{-1} a_{g} .
$$

Each Dehn twist τ_{γ} about a simple closed curve γ of $\Sigma_{g} \backslash D$ which does not intersect C induces an automorphism $\tau_{\gamma}=\left(\tau_{\gamma}\right)_{*}$ of $\pi_{1}\left(\Sigma_{g} \backslash D\right)$.
For the Humphries generators, the non-trivial values are

$$
\begin{aligned}
& \tau_{e}\left(a_{1}\right)=e^{-1} a_{1} e, \quad \tau_{e}\left(b_{1}\right)=e^{-1} b_{1} e, \quad \tau_{e}\left(b_{2}\right)=e^{-1} b_{2}, \\
& \tau_{b_{i}}\left(a_{i}\right)=b_{i}^{-1} a_{i}, \\
& \tau_{x_{1}}\left(b_{1}\right)=b_{1} a_{1}, \\
& \tau_{x_{j}}\left(a_{j-1}\right)=x_{j}^{-1} a_{j-1} x_{j}, \quad \tau_{x_{j}}\left(b_{j-1}\right)=b_{j-1} x_{j}, \quad \tau_{x_{j}}\left(b_{j}\right)=x_{j}^{-1} b_{j},
\end{aligned}
$$

for all $1 \leq i \leq g$ and $2 \leq j \leq g$, and with $e=b_{1} a_{1}^{-1} b_{1}^{-1} a_{1} b_{2} a_{2}^{-1} b_{2}^{-1}$, $x_{j}=a_{j-1} b_{j} a_{j}^{-1} b_{j}^{-1}$.

Lift of Dehn twists to $\mathcal{L}_{\mathrm{g}, 0}(H)$

We "lift" the Dehn twists by replacing curves of $\pi_{1}\left(\Sigma_{g} \backslash D\right)$ by matrices with coefficients in $\mathcal{L}_{g, 0}(H)$.
For the Humphries generators, the non-trivial values are

$$
\begin{aligned}
& \widetilde{\tau}_{b_{i}}\left({ }^{\prime}(i)\right)={ }^{\prime}{ }^{\prime} B(i)^{-1} A(i), \\
& \widetilde{\tau}_{x_{1}}(B(1))=v^{\prime-1}{ }^{\prime} B(1)^{\prime} A(1),
\end{aligned}
$$

$$
\begin{aligned}
& \widetilde{\tau}_{x_{j}}\left(\frac{l}{B}(j)\right)=l_{v}^{\prime} X_{j}^{-1}{ }^{\prime} B(j),
\end{aligned}
$$

for all $1 \leq i \leq g$ and $2 \leq j \leq g$, and with
${ }_{E}^{\prime}={ }^{\prime}{ }^{4} B(1){ }^{\prime} A(1)^{-1}{ }^{\prime} B(1)^{-1}{ }^{\prime} A(1){ }_{B}^{\prime}(2)^{\prime} A(2)^{-1}{ }_{B}^{\prime}(2)^{-1}$,
$\stackrel{\prime}{X}_{j}={ }^{\prime}{ }^{2}{ }^{2} A(j-1) \stackrel{\prime}{B}(j) \stackrel{\prime}{A}(j)^{-1}{ }_{B}^{\prime}(j)^{-1}$.

Elements associated to Dehn twist automorphisms

Since $\mathcal{L}_{g, 0}(H)$ is a matrix algebra, the automorphisms lifting the Dehn twists are inner.

Elements associated to Dehn twist automorphisms

Since $\mathcal{L}_{g, 0}(H)$ is a matrix algebra, the automorphisms lifting the Dehn twists are inner.

Theorem

Let γ be a simple closed curve in $\Sigma_{g} \backslash D$. Then for all $x \in \mathcal{L}_{g, 0}(H)$,

$$
\widetilde{\tau}_{\gamma}(x)=v_{\tilde{\gamma}}^{-1} x v_{\tilde{\gamma}},
$$

where $\widetilde{\gamma}$ is the lift of the curve γ in $\mathcal{L}_{g, n}(H)$ and $v_{\tilde{\gamma}}$ is the ribbon element v over $\widetilde{\gamma}$.

Elements associated to Dehn twist automorphisms

Since $\mathcal{L}_{g, 0}(H)$ is a matrix algebra, the automorphisms lifting the Dehn twists are inner.

Theorem

Let γ be a simple closed curve in $\Sigma_{g} \backslash D$. Then for all $x \in \mathcal{L}_{g, 0}(H)$,

$$
\widetilde{\tau}_{\gamma}(x)=v_{\widetilde{\gamma}}^{-1} x v_{\gamma}
$$

where $\widetilde{\gamma}$ is the lift of the curve γ in $\mathcal{L}_{g, n}(H)$ and $v_{\tilde{\gamma}}$ is the ribbon element v over $\widetilde{\gamma}$.

It can be shown that a suitably normalized lift of a simple closed curve satisfies the defining relation of $\mathcal{L}_{0,1}(H)$, thus there exists a morphism of module-algebras

$$
\begin{aligned}
j_{\tilde{\gamma}}: \quad \mathcal{L}_{0,1}(H) & \rightarrow \mathcal{L}_{g, 0}(H) \\
\stackrel{1}{M} & \mapsto \stackrel{1}{\gamma} .
\end{aligned}
$$

Since $v \in \mathcal{Z}(H) \cong \mathcal{L}_{0,1}^{\operatorname{inv}}(H)$, we define $v_{\tilde{\gamma}}=\dot{\tilde{\gamma}}_{\tilde{\gamma}}(v) \in \mathcal{L}_{g, 0}^{\text {inv }}(H)$.

Projective representation of $\operatorname{MCG}\left(\Sigma_{g}\right)$

Recall that we have a representation

- of $\mathcal{L}_{g, 0}(H)$ on $V=\left(H^{*}\right)^{\otimes g}$, which we denote ρ
- and of $\mathcal{L}_{g, 0}^{\mathrm{inv}}(H)$ on $\operatorname{Inv}(V)$, which we denote ρ_{inv}.

Projective representation of $\operatorname{MCG}\left(\Sigma_{g}\right)$

Recall that we have a representation

- of $\mathcal{L}_{g, 0}(H)$ on $V=\left(H^{*}\right)^{\otimes g}$, which we denote ρ
- and of $\mathcal{L}_{g, 0}^{\mathrm{inv}}(H)$ on $\operatorname{Inv}(V)$, which we denote $\rho_{\text {inv }}$.

Theorem

1) The assignment

$$
\begin{aligned}
\operatorname{MCG}\left(\Sigma_{g} \backslash D\right) & \rightarrow \mathrm{GL}(V) \\
\tau_{\gamma} & \mapsto \rho\left(v_{\widetilde{\gamma}}^{-1}\right)
\end{aligned}
$$

is a projective representation.
2) The assignment

$$
\begin{aligned}
\operatorname{MCG}\left(\Sigma_{g}\right) & \rightarrow \operatorname{GL}(\operatorname{Inv}(V)) \\
\tau_{\gamma} & \mapsto \rho_{\mathrm{inv}}\left(v_{\widetilde{\gamma}}^{-1}\right)
\end{aligned}
$$

is a projective representation.

Example: the torus Σ_{1}

- The mapping class groups are

$$
\begin{aligned}
& \operatorname{MCG}\left(\Sigma_{1} \backslash D\right)=B_{3}=\left\langle\tau_{a}, \tau_{b} \mid \tau_{a} \tau_{b} \tau_{a}=\tau_{b} \tau_{a} \tau_{b}\right\rangle \\
& \operatorname{MCG}\left(\Sigma_{1}\right)=\operatorname{SL}_{2}(\mathbb{Z})=\left\langle\tau_{a}, \tau_{b} \mid \tau_{a} \tau_{b} \tau_{a}=\tau_{b} \tau_{a} \tau_{b},\left(\tau_{a} \tau_{b}\right)^{6}=1\right\rangle
\end{aligned}
$$

Example: the torus Σ_{1}

- The mapping class groups are

$$
\begin{aligned}
& \operatorname{MCG}\left(\Sigma_{1} \backslash D\right)=B_{3}=\left\langle\tau_{a}, \tau_{b} \mid \tau_{a} \tau_{b} \tau_{a}=\tau_{b} \tau_{a} \tau_{b}\right\rangle \\
& \operatorname{MCG}\left(\Sigma_{1}\right)=\operatorname{SL}_{2}(\mathbb{Z})=\left\langle\tau_{a}, \tau_{b} \mid \tau_{a} \tau_{b} \tau_{a}=\tau_{b} \tau_{a} \tau_{b},\left(\tau_{a} \tau_{b}\right)^{6}=1\right\rangle
\end{aligned}
$$

- The representation space of $\mathcal{L}_{1,0}^{\mathrm{inv}}(H)$ (and of $\operatorname{MCG}\left(\Sigma_{1}\right)$) is

$$
\operatorname{Inv}\left(H^{*}\right)=\operatorname{SLF}(H)=\left\{\varphi \in H^{*} \mid \forall x, y \in H, \varphi(x y)=\varphi(y x)\right\}
$$

Example: the torus Σ_{1}

- The mapping class groups are

$$
\begin{aligned}
& \operatorname{MCG}\left(\Sigma_{1} \backslash D\right)=B_{3}=\left\langle\tau_{a}, \tau_{b} \mid \tau_{a} \tau_{b} \tau_{a}=\tau_{b} \tau_{a} \tau_{b}\right\rangle \\
& \operatorname{MCG}\left(\Sigma_{1}\right)=\operatorname{SL}_{2}(\mathbb{Z})=\left\langle\tau_{a}, \tau_{b} \mid \tau_{a} \tau_{b} \tau_{a}=\tau_{b} \tau_{a} \tau_{b},\left(\tau_{a} \tau_{b}\right)^{6}=1\right\rangle
\end{aligned}
$$

- The representation space of $\mathcal{L}_{1,0}^{\mathrm{inv}}(H)$ (and of $\operatorname{MCG}\left(\Sigma_{1}\right)$) is

$$
\operatorname{Inv}\left(H^{*}\right)=\operatorname{SLF}(H)=\left\{\varphi \in H^{*} \mid \forall x, y \in H, \varphi(x y)=\varphi(y x)\right\}
$$

- We can compute formulas for the action of v_{A}^{-1}, v_{B}^{-1} on H^{*}.

Example: the torus Σ_{1}

Theorem

- There is a representation of $\mathrm{SL}_{2}(\mathbb{Z})$ on $\operatorname{SLF}(H)$ given by:

$$
\tau_{a} \mapsto \rho_{\mathrm{inv}}\left(v_{A}^{-1}\right), \quad \tau_{b} \mapsto \rho_{\mathrm{inv}}\left(v_{B}^{-1}\right)
$$

- If $S(\varphi)=\varphi$ for all $\varphi \in \operatorname{SLF}(H)$, then this is in fact a projective representation of $\mathrm{PSL}_{2}(\mathbb{Z})$.
- This representation is equivalent to the Lyubashenko-Majid representation.

Example: the torus Σ_{1}

Theorem

- There is a representation of $\mathrm{SL}_{2}(\mathbb{Z})$ on $\operatorname{SLF}(H)$ given by:

$$
\tau_{a} \mapsto \rho_{\mathrm{inv}}\left(v_{A}^{-1}\right), \quad \tau_{b} \mapsto \rho_{\mathrm{inv}}\left(v_{B}^{-1}\right) .
$$

- If $S(\varphi)=\varphi$ for all $\varphi \in \operatorname{SLF}(H)$, then this is in fact a projective representation of $\mathrm{PSL}_{2}(\mathbb{Z})$.
- This representation is equivalent to the Lyubashenko-Majid representation.

More precisely,

$$
\begin{gathered}
v_{A}^{-1} v_{B}^{-1} v_{A}^{-1}=v_{B}^{-1} v_{A}^{-1} v_{B}^{-1} \text { in } \mathcal{L}_{1,0}(H), \\
\rho_{\mathrm{inv}}\left(v_{A}^{-1} v_{B}^{-1}\right)^{3}=\frac{\mu^{\prime}\left(v^{-1}\right)}{\mu^{\prime}(v)} S
\end{gathered}
$$

where S is the antipode on $H^{*}(S(\varphi)=\varphi \circ S)$ and μ^{l} is a left integral.

GTA basis of $\operatorname{SLF}\left(\bar{U}_{q}\right)$

\bar{U}_{q} is not semisimple. Let

- $\mathcal{X}^{\epsilon}(s)$ be the simple \bar{U}_{q}-module of dimension p with highest weight $\varepsilon q^{s-1}(\varepsilon \in\{ \pm\}, 1 \leq s \leq p)$,
- $\mathcal{P}^{\varepsilon}(s)$ be the projective cover of $\mathcal{X}^{\varepsilon}(s)$ (usually called a PIM).

GTA basis of $\operatorname{SLF}\left(\bar{U}_{q}\right)$

\bar{U}_{q} is not semisimple. Let

- $\mathcal{X}^{\epsilon}(s)$ be the simple \bar{U}_{q}-module of dimension p with highest weight $\varepsilon q^{s-1}(\varepsilon \in\{ \pm\}, 1 \leq s \leq p)$,
- $\mathcal{P}^{\varepsilon}(s)$ be the projective cover of $\mathcal{X}^{\varepsilon}(s)$ (usually called a PIM).

We have $\operatorname{dim}\left(\operatorname{SLF}\left(\bar{U}_{q}\right)\right)=\operatorname{dim}\left(\mathcal{Z}\left(\bar{U}_{q}\right)\right)=3 p-1$.
The GTA basis of $\operatorname{SLF}\left(\bar{U}_{q}\right)$ contains two types of elements:

- $\chi_{s}^{\varepsilon}=\operatorname{tr}\left(\mathcal{X}^{\varepsilon}(s)\right)$ is the character of $\mathcal{X}^{\varepsilon}(s)(1 \leq s \leq p)$,
- $G_{s}=\operatorname{tr}\left(H_{s}^{+}\right)+\operatorname{tr}\left(H_{p-s}^{-}\right)$, where H_{s}^{ε} is a submatrix of $\frac{\mathcal{P}^{\varepsilon}(s)}{T}$ $(1 \leq s \leq p-1)$.

Key property: the multiplication rules in this basis are remarkably simple.

Projective representation of $\mathrm{SL}_{2}(\mathbb{Z})$ on $\operatorname{SLF}\left(\bar{U}_{q}\right)$

The action of $\tau_{a}, \tau_{b} \in \mathrm{SL}_{2}(\mathbb{Z})$ on the GTA basis can be computed explicitly:

Theorem

$$
\tau_{a} \chi_{s}^{\epsilon}=v_{\mathcal{X}(s)}^{-1} \chi_{s}^{\epsilon}, \quad \tau_{a} G_{s^{\prime}}=v_{\mathcal{X}+\left(s^{\prime}\right)}^{-1} G_{s^{\prime}}-v_{\mathcal{X}^{+}\left(s^{\prime}\right)}^{-1} \hat{q}\left(\frac{p-s^{\prime}}{\left[s^{\prime}\right]} \chi_{s^{\prime}}^{+}-\frac{s^{\prime}}{\left[s^{\prime}\right]} \chi_{p-s^{\prime}}^{-}\right)
$$

and

$$
\begin{aligned}
\tau_{b} \chi_{s}^{\epsilon}= & \xi \epsilon(-\epsilon)^{p-1} s q^{-\left(s^{2}-1\right)}\left(\sum_{\ell=1}^{p-1}(-1)^{s}(-\epsilon)^{p-\ell}\left(q^{\ell s}+q^{-\ell s}\right)\left(\chi_{\ell}^{+}+\chi_{p-\ell}^{-}\right)\right. \\
& \left.+\chi_{p}^{+}+(-\epsilon)^{p}(-1)^{s} \chi_{p}^{-}\right)+\xi \epsilon(-1)^{s} q^{-\left(s^{2}-1\right)} \sum_{j=1}^{p-1}(-\epsilon)^{j+1}[j][j s] G_{j} \\
\tau_{b} G_{s^{\prime}}= & \xi(-1)^{s^{\prime}} q^{-\left(s^{\prime 2}-1\right)} \frac{\hat{q} p}{\left[s^{\prime}\right]} \sum_{j=1}^{p-1}(-1)^{j+1}[j]\left[j s^{\prime}\right]\left(2 G_{j}-\hat{q}^{p-j} \frac{p-j}{[j]} \chi_{j}^{+}+\hat{q} \frac{j}{[j]} \chi_{p-j}^{-}\right) .
\end{aligned}
$$

with $\epsilon \in\{ \pm\}, 0 \leq s \leq p, 1 \leq s^{\prime} \leq p-1$ and $\xi \in \mathbb{C} \backslash\{0\}$.
The multiplication rules are used to compute the action of τ_{b}.

Decomposition of the representation

Let $\mathcal{V}=\operatorname{vect}\left(\chi_{s}^{+}+\chi_{p-s}^{-}, \chi_{p}^{ \pm}\right)_{1 \leq s \leq p-1}$, of dimension $p+1$. Since:

- $\forall \psi \in \mathcal{V}, \forall z \in \mathcal{Z}\left(\bar{U}_{q}\right), \psi(z ?) \in \mathcal{V}$,
- \mathcal{V} is an ideal $\operatorname{SLF}\left(\bar{U}_{q}\right)$,
we deduce that \mathcal{V} is stable under the action of $\mathrm{SL}_{2}(\mathbb{Z})$.

Decomposition of the representation

Let $\mathcal{V}=\operatorname{vect}\left(\chi_{s}^{+}+\chi_{p-s}^{-}, \chi_{p}^{ \pm}\right)_{1 \leq s \leq p-1}$, of dimension $p+1$. Since:

- $\forall \psi \in \mathcal{V}, \forall z \in \mathcal{Z}\left(\bar{U}_{q}\right), \psi(z ?) \in \mathcal{V}$,
- \mathcal{V} is an ideal $\operatorname{SLF}\left(\bar{U}_{q}\right)$,
we deduce that \mathcal{V} is stable under the action of $\mathrm{SL}_{2}(\mathbb{Z})$.

Theorem

There exists a projective representation \mathcal{W} of $\mathrm{SL}_{2}(\mathbb{Z})$, of dimension $p-1$, such that

$$
\operatorname{SLF}\left(\bar{U}_{q}\right)=\mathcal{V} \oplus\left(\mathbb{C}^{2} \otimes \mathcal{W}\right)
$$

\mathcal{W} admits a basis $\left(w_{s}\right)_{1 \leq s \leq p-1}$ such that the action is given by

$$
\tau_{a} w_{s}=v_{\mathcal{X}+(s)}^{-1} w_{s}, \quad \tau_{b} w_{s}=\xi(-1)^{s} q^{-\left(s^{2}-1\right)} \frac{\hat{q} p}{[s]} \sum_{j=1}^{p-1}(-1)^{j+1}[j][j s] w_{j}
$$

- M. Faitg, A note on symmetric linear forms and traces on the restricted quantum group $\bar{U}_{q}(\mathfrak{s l}(2))$, arXiv:1801.07524. \rightarrow Properties of the GTA basis.
- M. Faitg, A note on symmetric linear forms and traces on the restricted quantum group $\bar{U}_{q}(\mathfrak{s l}(2))$, arXiv:1801.07524. \rightarrow Properties of the GTA basis.
- M. Faitg, Modular group representations in combinatorial quantization with non-semisimple Hopf algebras, arXiv:1805.00924. \rightarrow Case of the torus.
- M. Faitg, A note on symmetric linear forms and traces on the restricted quantum group $\bar{U}_{q}(\mathfrak{s l}(2))$, arXiv:1801.07524. \rightarrow Properties of the GTA basis.
- M. Faitg, Modular group representations in combinatorial quantization with non-semisimple Hopf algebras, arXiv:1805.00924. \rightarrow Case of the torus.
- Higher genus surfaces: work in progress.
- M. Faitg, A note on symmetric linear forms and traces on the restricted quantum group $\bar{U}_{q}(\mathfrak{s l}(2))$, arXiv:1801.07524. \rightarrow Properties of the GTA basis.
- M. Faitg, Modular group representations in combinatorial quantization with non-semisimple Hopf algebras, arXiv:1805.00924. \rightarrow Case of the torus.
- Higher genus surfaces: work in progress.

Thanks for listening!

