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Origin of combinatorial quantization

Let S be a compact orientable surface, G a Lie group and A¢/G the set of
flat G-connections up to gauge equivalence.
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Origin of combinatorial quantization

Let S be a compact orientable surface, G a Lie group and A¢/G the set of
flat G-connections up to gauge equivalence.

@ There exists a Poisson structure {-,-} on C>®(Af/G).

e Fock and Rosly found a combinatorial description ((Ar/G)*R,
{-,-}rr) of (Ar/G,{-,-}) based on a discretization of S by a fat
graph.

— notion of lattice gauge field theory based on a (Lie) group.
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Origin of combinatorial quantization

Let S be a compact orientable surface, G a Lie group and A¢/G the set of
flat G-connections up to gauge equivalence.

@ There exists a Poisson structure {-,-} on C>®(Af/G).

e Fock and Rosly found a combinatorial description ((Ar/G)*R,
{-,-}rr) of (Ar/G,{-,-}) based on a discretization of S by a fat
graph.

— notion of lattice gauge field theory based on a (Lie) group.

o Alekseev-Grosse-Schomerus and Buffenoir-Roche introduced a
quantization of ((Ar/G)™®, {-,-}rr), which is called combinatorial
quantization.

— notion of lattice gauge field theory based on a quantum group, or
more generally on a Hopf algebra.
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Preliminaries, notations

Let H be a finite-dimensional ribbon Hopf algebra, with universal R-matrix
R € H® H and ribbon element v.

e We say that H is factorizable if 8 — (8 ® Id)(RR’) is a vector space
isomorphism between H* and H.
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Preliminaries, notations

Let H be a finite-dimensional ribbon Hopf algebra, with universal R-matrix
R € H® H and ribbon element v.

e We say that H is factorizable if 8 — (8 ® Id)(RR’) is a vector space
isomorphism between H* and H.

I I I
o For / representation of H, we define T € Myim(;y(H*) by T(h) = h.
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Preliminaries, notations

Let H be a finite-dimensional ribbon Hopf algebra, with universal R-matrix
R € H® H and ribbon element v.

e We say that H is factorizable if 8 — (8 ® Id)(RR’) is a vector space
isomorphism between H* and H.
/ I
o For / representation of H, we define T € Myimy(H*) by T(h) =

I
o Let M = Zi’jEj"@)m,-j € M, (C)® A, N:ZiJIEJi®nU eEM,(C)® A
where Ej are the elementary matrices. We define:

My =Y E ®I, &M € Mp(C) ® May(C) ® A
ij

Np =Y 1, ® E ® Nj € Mpy(C) ® My(C) @ A.
iJj
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Preliminaries, notations

Let H be a finite-dimensional ribbon Hopf algebra, with universal R-matrix
R € H® H and ribbon element v.

e We say that H is factorizable if 8 — (8 ® Id)(RR’) is a vector space
isomorphism between H* and H.
/ I
o For / representation of H, we define T € Myimy(H*) by T(h) =

I
o Let M = Zi’jEj"@)m,-j € M, (C)® A, N:ZiJIEJi®nU eEM,(C)® A
where Ej are the elementary matrices. We define:

My =Y E ®I, &M € Mp(C) ® May(C) ® A
iJ
Np =Y 1, ® E ® Nj € Mpy(C) ® My(C) @ A.
i
@ In the sequel, we assume everywhere that H is a finite-dimensional
factorizable ribbon Hopf algebra.
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Example: H = U,(sl(2))

Let g be a primitive 2p-th root of unity (p > 2).
Ug = Uy(s1(2)) is the C-algebra generated by E, F, K modulo

KE = PEK, KF = q 2FK, [E,F]=%=K]
EP=FP=0, K¥=1.

Uy is a Hopf algebra:

A(E)=10E+E0K, A(F)=FR1+K'oF, AK)=KeK
E) =0, e(F)=0, e(K)=1
S(E) = —EK%, S(F) = —KF, S(K) =K

We have dim(U;) :3p3. There is a R-matrix (in an extension of U,), a
ribbon element v € Uy, and U is factorizable.
Uy is not semisimple.
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The loop algebra Ly 1(H)

Let T(H*) be the tensor algebra of H* and let j : H* — T(H*) the
/ /
canonical embedding. We denote M = j(T).

Definition

The loop algebra Lo 1(H) is the quotient of T(H*) by the following fusion

relations
I19J Py M
M1z = M1(R")1,M2(R™ )15

for all finite-dimensional H-modules /, J.
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The loop algebra Ly 1(H)

Let T(H*) be the tensor algebra of H* and let j : H* — T(H*) the
/ /
canonical embedding. We denote M = j(T).

Definition

The loop algebra Lo 1(H) is the quotient of T(H*) by the following fusion

relations
I19J Py M
M1z = M1(R")1,M2(R™ )15

for all finite-dimensional H-modules /, J.

Reflection equation

The following exchange relation holds:

T IJI J J o U,
R12M1(R )12M2 = M2R12M1(R )12'
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Properties of Ly 1(H)

@ The following right action of H

| I )
VheH, M-h=> HMS(H)
(h)

endows Lo 1(H) with the structure of a H-module-algebra.
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Properties of Ly 1(H)

@ The following right action of H

| I )
VheH, M-h=> HMS(H)
(h)
endows Lo 1(H) with the structure of a H-module-algebra.
o If we endow H with the right adjoint action, then
\onl . ,Co’l(H) — H
/ I I
M — (T ®Id)(RR’) = (a,-bj)b,-aj
is an isomorphism of H-module-algebras.
@ In particular, ng‘l’(H) = Z(H).
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Example: Lo1(U,)

Let X7 (2) be the fundamental representation of U, and let

X+ (2)
M= M :<a b)
c d

Then Lo1(U,) admits the following presentation

X+(2),x*
R VOXK@

O O OoOQ
O O = O
o O O
Q O O O

abcd RioM1Ro1 My = Mo Ryo My Roy
T ad — ¢®bc =1, bP =cP =0, d*r =1

The monomials b'c/d¥ with 0 < i,j<p—1,0<k<2p—1form a basis.
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The handle algebra £14(H)

Consider Lo 1(H) * Lo,1(H) (free product of two copies of Lo 1(H)), and

let j1,j2 1 Lo1(H) — Lo, 1(H) * L’o 1(H) be the canonical embeddings. We

I /
denote A = j3(M) and B —_]2(/\/’)

Definition

The handle algebra £1o(H) is the quotient of Lo 1(H) % Lo,1(H) by the
following exchange relations:

oMoy Ju oM
RlzBl(R )12A2 A2R1281(R )

for all finite-dimensional H-modules /, J.
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Properties of £ o(H)

@ The following right action of H

! Iy /
VheH, A-h=> HAS(H'), B-h=> HBS(H")
(h) (h)

endows L1 o(H) with the structure of a H-module-algebra.
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Properties of £ o(H)

@ The following right action of H

! Iy /
VheH, A-h=> HAS(H'), B-h=> HBS(H")
(h) (h)
endows L1 o(H) with the structure of a H-module-algebra.
@ There is an isomorphism of algebras:
Vio: Lio(H) — H(H)
I !
A = (a,-bj)b,-aj
I I [
B — (a,-)b,- T (bj)aj.

where H(H*) is the Heisenberg double of H*.
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Properties of £ o(H)

@ The following right action of H

! Iy /
VheH, A-h=> HAS(H'), B-h=> HBS(H")
(h) (h)
endows L1 o(H) with the structure of a H-module-algebra.
@ There is an isomorphism of algebras:
Vio: Lio(H) — H(H)
I I
A = (a,-bj)b,-aj
I I
B — (a,-)b,- T (bj)aj.
where H(H*) is the Heisenberg double of H*.
= L1,0(H) has a faithful representation on H*.

In particular £1,9(H) is (isomorphic to) a matrix algebra.
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Definition of L, ,(H)

Let mod,(H) be the category of finite-dimensional right H-modules and &
be the braided tensor product in mod,(H).

Definition

Len(H) = L1o(H)®E & Lo1(H)®" € mod,(H).
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Definition of L, ,(H)

Let mod,(H) be the category of finite-dimensional right H-modules and &
be the braided tensor product in mod,(H).

Definition

Len(H) = L1o(H)®E & Lo1(H)®" € mod,(H).

Explicitly, with generators and relations:

1®J ) J
U ()12 = U(i)1 Ra1 U(i)2 Ryt for1<i<g+n,

i J J i

Riz U(i)1 Ry V()2 = V(j)2 Rz U(i)1 Ry forl<i<j<g-+n,
l} J J |

R12 B(I)l R21 A(I)2 :A(I)2 R12 B(I)l Rl_zl for 1 S ISg,

where U(i), V(i) are A(i) or B(i) if 1 <i < g and are M(i) if
g+1<i<g+n
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Alekseev isomorphism and representations of L, ,(H)

There is an explicit isomorphism of algebras

Qg.n ' Lgn(H) = Elyo(H)@)g b2y Eo’l(H)®n.

Composing with \Il%g ® Wg%’, we get an isomorphism
Ve LonlH) = H(H)E @ HOM.

It follows that every indecomposable representation of Lz ,(H) is of the
form
(HY* 2 h®...®l,

where I1,..., I, are indecomposable representations of H.
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Characterization and representation of the invariants

Consider the matrices

/ / / / /
with C(i) = \I/2B(i)A(i)*1B(i)*1A(i) for all finite-dim H-module /.

: I
x € L (H) <= VI, xC=Cx.

Matthieu FAITG MCG and combinatorial quantization 25/10/2018



Characterization and representation of the invariants

Consider the matrices

/ / / / /
with C(i) = \I/2B(i)A(i)*1B(i)*1A(i) for all finite-dim H-module /.

: I
x € L (H) <= VI, xC=Cx.

If (V,>) is a representation of Lz ,(H), define
/
Inv(V) = {v ev ‘VI, Cov= 1dim(l)v}'

By definition, Inv(V) is stable under Cgﬁ‘,’,(H), and thus provides a
representation.
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Mapping class group of >,

Let:

@ >, be the compact orientable surface of genus g,
@ D C ¥z be an imbedded open disk,
o C=0(x,\D).
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Mapping class group of >,

Let:

@ >, be the compact orientable surface of genus g,
@ D C ¥z be an imbedded open disk,
o C=0(x,\D).

Consider the simple closed curves e, b;, x; (1 < i < g) drawn on the
blackboard. It is known that the Dehn twists about these curves generate
MCG(Xg) and MCG(X; \ D) (the Humphries generators).

Moreover, there exists a presentation of MCG(X,) and MCG(X; \ D)
with generators e, 7p,,, 75, (Wajnryb's presentation).
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Action on the fundamental group

Put a basepoint on C and let a;, b; be the generators of m1(Xz \ D) drawn
on the blackboard, such that

_ —1,-1 —1,-1
C = bia; "b; al...bgag bg ag.
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Action on the fundamental group

Put a basepoint on C and let a;, b; be the generators of m1(Xz \ D) drawn
on the blackboard, such that

_ —1,-1 —1,-1
C = bia; "b; al...bgag bg ag.

Each Dehn twist 7, about a simple closed curve v of ¥z \ D which does
not intersect C induces an automorphism 7, = (7). of m1(Xz \ D).
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Action on the fundamental group

Put a basepoint on C and let a;, b; be the generators of m1(Xz \ D) drawn
on the blackboard, such that

_ —1,-1 —1,-1
C = bia; "b; al...bgag bg ag.

Each Dehn twist 7, about a simple closed curve v of ¥z \ D which does
not intersect C induces an automorphism 7, = (7). of m1(Xz \ D).
For the Humphries generators, the non-trivial values are

Te(a1) = e tate, Te(b1) = e thie, Te(b2) =e by,

-1
Th: a,-) = bi aj,

i

(
T (b1) = bra1,
(

3j-1) =X "aj-1%), Tg(bj-1) = bj-1x, T(b)) =x"b;

forall1<i<gand2<,<g, and with e = bya; ' b; ‘a1 bpa; ' by !,
Xj = aj,lbjaj_lbj_l.
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Lift of Dehn twists to Lz o(H)

We "lift" the Dehn twists by replacing curves of m1(X, \ D) by matrices
with coefficients in Lz o(H).

For the Humphries generators, the non-trivial values are

I I ]
Tg(B()) = vX;'B()),

forall 1 <i<gand2<j<g, and with

é = \’/4é(1),14(1)_1é(l)_l/IA(l)é(2),i\(2)—1EI§(2)_1,

X; = VAG — 1BGIAG) BU)
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Elements associated to Dehn twist automorphisms

Since Lgo(H) is a matrix algebra, the automorphisms lifting the Dehn
twists are inner.
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Elements associated to Dehn twist automorphisms

Since Lgo(H) is a matrix algebra, the automorphisms lifting the Dehn
twists are inner.

Theorem

Let v be a simple closed curve in ¥, \ D. Then for all x € L, o(H),

Tl = v,~y_1 X Vg,

where 7 is the lift of the curve v in Lz ,(H) and v5 is the ribbon element

Vv over 7.
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Elements associated to Dehn twist automorphisms

Since Lgo(H) is a matrix algebra, the automorphisms lifting the Dehn
twists are inner.

Theorem

Let v be a simple closed curve in ¥, \ D. Then for all x € L, o(H),

Tl = v,~y_1 X Vg,

where 7 is the lift of the curve v in L; ,(H) and v is the ribbon element

Vv over 7.

It can be shown that a suitably normalized lift of a simple closed curve
satisfies the defining relation of Lo 1(H), thus there exists a morphism of
module-algebras
J5: Loa(H) — Lgo(H)
I I
M — 7~

Since v € Z(H) = L§(H), we define v5 = j5(v) € LI (H).

Matthieu FAITG MCG and combinatorial quantization 25/10/2018 17 / 24



Projective representation of MCG(%,)

Recall that we have a representation
e of Lgo(H) on V = (H*)®8, which we denote p
@ and of EEB(H) on Inv(V), which we denote pipy.
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Projective representation of MCG(%,)

Recall that we have a representation
e of Lgo(H) on V = (H*)®8, which we denote p
@ and of Eigrt‘(’)(H) on Inv(V), which we denote pipy.

Theorem

1) The assignment
MCG(Xg\ D) — GL(V)
Ty p(vgl)
is a projective representation.
2) The assignment
MCG(X,) — GL(Inv(V))

Ty = piHV(Vgl)

is a projective representation.
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Example: the torus > ;

@ The mapping class groups are

MCG(X1\ D) = B3 = (Ta, Tp |TaTbTa = ThTaTh) ,
MCG(X1) = SLy(Z) = <Ta,7'b |TaTbTa = TpTaTh, (TaTp)® = 1> .
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Example: the torus > ;

@ The mapping class groups are

MCG(X1\ D) = B3 = (Ta, Tp |TaTbTa = ThTaTh) ,
MCG(X1) = SLy(Z) = <Ta,7'b |7'a7'b7'a = TpTaTh, (TaTp)® = 1> .

@ The representation space of lln(‘)’(H) (and of MCG(X1)) is

Inv(H*) = SLF(H) = {p € H" |Vx,y € H, o(xy) = ¢(yx) } .
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Example: the torus > ;

@ The mapping class groups are

MCG(X1\ D) = B3 = (Ta, Tp |TaTbTa = ThTaTh) ,
MCG(X1) = SLy(Z) = <Ta,7'b |7'a7'b7'a = TpTaTh, (TaTp)® = 1> .

@ The representation space of lln(‘)’(H) (and of MCG(X1)) is

Inv(H*) = SLF(H) = {p € H" |Vx,y € H, o(xy) = ¢(yx) } .

@ We can compute formulas for the action of v;l, vgl on H*.
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Example: the torus > ;

@ There is a representation of SLy(Z) on SLF(H) given by:

Ta — pinv(Vgl) y  Thr> pinv(Vgl) .
o If S(p) = ¢ for all ¢ € SLF(H), then this is in fact a projective
representation of PSLy(Z).

@ This representation is equivalent to the Lyubashenko-Majid
representation.
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Example: the torus > ;

@ There is a representation of SLy(Z) on SLF(H) given by:

Ta b= pinv<V;1) y  Th pinV(‘/EI) :

o If S(p) = ¢ for all ¢ € SLF(H), then this is in fact a projective
representation of PSLy(Z).

@ This representation is equivalent to the Lyubashenko-Majid
representation.

More precisely,

pv) ™
where S is the antipode on H* (S(p) = ¢ 0 S) and ' is a left integral.
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GTA basis of SLF(U,)

Uy is not semisimple. Let

e X<(s) be the simple U,-module of dimension p with highest weight
el (e {£},1<s<p),
@ P=(s) be the projective cover of X°(s) (usually called a PIM).
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GTA basis of SLF(U,)

Uy is not semisimple. Let
e X<(s) be the simple U,-module of dimension p with highest weight

el (e {£},1<s<p),
@ P¢(s) be the projective cover of X%(s) (usually called a PIM).
We have dim(SLF(U,)) = dim(Z(U;,)) = 3p — 1.
The GTA basis of SLF(U,) contains two types of elements:

xe(s)
e x:=tr( T ) isthe character of X°(s) (1 <s < p),
Pe(s)

tr(HS") + tr(H,_,), where H; is a submatrix of T

e G,
(1<s<p-1)
Key property: the multiplication rules in this basis are remarkably simple

IA |
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Projective representation of SLy(Z) on SLF(U,)

The action of 7,, 7 € SLy(Z) on the GTA basis can be computed
explicitly:

Theorem

! !
-1 -1 ~[(P—S S
TaXs = VaigXe:  TaGor =Vl Go = Vakiy >q< [s'] X Gk )

and
2 Pt
T = Ee(—e)Hsq ™Y (Z(—l)S(—e)"-‘ (o + q-“) O +x5-0)
£=1

+x$+(—6)”(—1)s><,?> +e(~1)°g~ Y Z( ey L1l G,

Jj=1

75Go = 5(_1)5 —(s"?-1) Zf] Z ( 1)J+1D]DS] ( — gL L’] X, alx (?/ﬁ ) .

withee {£}, 0<s<p, 1<s <p-—1and¢eC\{0}

The multiplication rules are used to compute the action of 7.
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Decomposition of the representation

Let ¥V = vect (xi + Xp—s> ant)lgsgp—l'

o VeV, Vze Z(ly), v(z?) eV,

e Vis an ideal SLF(Uy),
we deduce that V is stable under the action of SLy(Z).

of dimension p + 1. Since:
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Decomposition of the representation

Let V = vect (x;L + Xp_s: X;’t)lgsgp—l' of dimension p + 1. Since:

e VeV, Vze Z(Uy,), ¥(2?) €V,
e Vis an ideal SLF(U,),
we deduce that V is stable under the action of SLy(Z).

There exists a projective representation W of SLy(Z), of dimension p — 1,
such that

SLF(U) =V e (CCoW).

W admits a basis (ws)1<s<p—1 such that the action is given by

TaWs = V;;Jlr(s) ws, Tpws=E(—1)° —(s —Hs qp Z )J+1L/][/S]WJ
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e M. Faitg, A note on symmetric linear forms and traces on the
restricted quantum group Uy(s((2)), arXiv:1801.07524.
— Properties of the GTA basis.
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e M. Faitg, A note on symmetric linear forms and traces on the
restricted quantum group Uy(s((2)), arXiv:1801.07524.
— Properties of the GTA basis.

o M. Faitg, Modular group representations in combinatorial
quantization with non-semisimple Hopf algebras, arXiv:1805.00924.
— Case of the torus.
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e M. Faitg, A note on symmetric linear forms and traces on the
restricted quantum group Uy(s((2)), arXiv:1801.07524.
— Properties of the GTA basis.

o M. Faitg, Modular group representations in combinatorial
quantization with non-semisimple Hopf algebras, arXiv:1805.00924.

— Case of the torus.

@ Higher genus surfaces: work in progress.
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e M. Faitg, A note on symmetric linear forms and traces on the
restricted quantum group Uy(s((2)), arXiv:1801.07524.
— Properties of the GTA basis.

o M. Faitg, Modular group representations in combinatorial
quantization with non-semisimple Hopf algebras, arXiv:1805.00924
— Case of the torus.

@ Higher genus surfaces: work in progress.

Thanks for listening!
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