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Origin of combinatorial quantization

Let S be a compact orientable surface, G a Lie group and Af /G the set of
flat G -connections up to gauge equivalence.

There exists a Poisson structure {·, ·} on C∞(Af /G).

Fock and Rosly found a combinatorial description
(
(Af /G)FR,

{·, ·}FR
)

of (Af /G, {·, ·}) based on a discretization of S by a fat
graph.
→ notion of lattice gauge field theory based on a (Lie) group.

Alekseev-Grosse-Schomerus and Buffenoir-Roche introduced a
quantization of

(
(Af /G)FR, {·, ·}FR

)
, which is called combinatorial

quantization.
→ notion of lattice gauge field theory based on a quantum group, or

more generally on a Hopf algebra.
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Preliminaries, notations

Let H be a finite-dimensional ribbon Hopf algebra, with universal R-matrix
R ∈ H ⊗ H and ribbon element v .

We say that H is factorizable if β 7→ (β ⊗ Id)(RR ′) is a vector space
isomorphism between H∗ and H.

For I representation of H, we define
I
T ∈ Mdim(I )(H

∗) by
I
T (h) =

I
h.

Let M =
∑

i ,j E
i
j ⊗mij ∈ Mm(C)⊗A, N =

∑
i ,j E

i
j ⊗ nij ∈ Mn(C)⊗A

where E i
j are the elementary matrices. We define:

M1 =
∑
i ,j

E i
j ⊗ In ⊗M i

j ∈ Mm(C)⊗Mn(C)⊗ A

N2 =
∑
i ,j

Im ⊗ E i
j ⊗ N i

j ∈ Mm(C)⊗Mn(C)⊗ A.

In the sequel, we assume everywhere that H is a finite-dimensional
factorizable ribbon Hopf algebra.
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Example: H = Uq(sl(2))

Let q be a primitive 2p-th root of unity (p > 2).
Uq = Uq(sl(2)) is the C-algebra generated by E ,F ,K modulo

KE = q2EK , KF = q−2FK , [E ,F ] = K−K−1

q−q−1

Ep = F p = 0, K 2p = 1.

Uq is a Hopf algebra:

∆(E ) = 1⊗ E + E ⊗ K , ∆(F ) = F ⊗ 1 + K−1 ⊗ F , ∆(K ) = K ⊗ K
ε(E ) = 0, ε(F ) = 0, ε(K ) = 1
S(E ) = −EK−1, S(F ) = −KF , S(K ) = K−1

We have dim(Uq) = 2p3. There is a R-matrix (in an extension of Uq), a
ribbon element v ∈ Uq, and Uq is factorizable.
Uq is not semisimple.
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The loop algebra L0,1(H)

Let T(H∗) be the tensor algebra of H∗ and let j : H∗ → T(H∗) the

canonical embedding. We denote
I
M = j(

I
T ).

Definition

The loop algebra L0,1(H) is the quotient of T(H∗) by the following fusion
relations

I⊗J
M12 =

I
M1

IJ

(R ′)12
J
M2

IJ

(R ′−1)12

for all finite-dimensional H-modules I , J.

Reflection equation

The following exchange relation holds:

IJ
R12

I
M1

IJ

(R ′)12
J
M2 =

J
M2

IJ
R12

I
M1

IJ

(R ′)12.
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Properties of L0,1(H)

The following right action of H

∀ h ∈ H,
I
M · h =

∑
(h)

I

h′
I
M

I

S(h′′)

endows L0,1(H) with the structure of a H-module-algebra.

If we endow H with the right adjoint action, then

Ψ0,1 : L0,1(H) → H
I
M 7→ (

I
T ⊗ Id)(RR ′) =

I

(aibj)biaj

is an isomorphism of H-module-algebras.

In particular, Linv0,1(H) ∼= Z(H).
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Example: L0,1(Uq)

Let X+(2) be the fundamental representation of Uq, and let

R :=
X+(2),X+(2)

R = q−1/2


q 0 0 0
0 1 q̂ 0
0 0 1 0
0 0 0 q

 , M :=
X+(2)

M =

(
a b
c d

)

Then L0,1(Uq) admits the following presentation〈
a, b, c , d

∣∣∣∣ R12M1R21M2 = M2R12M1R21

ad − q2bc = 1, bp = cp = 0, d2p = 1

〉
.

The monomials bic jdk with 0 ≤ i , j ≤ p − 1, 0 ≤ k ≤ 2p − 1 form a basis.

Matthieu Faitg MCG and combinatorial quantization 25/10/2018 8 / 24



The handle algebra L1,0(H)

Consider L0,1(H) ∗ L0,1(H) (free product of two copies of L0,1(H)), and
let j1, j2 : L0,1(H)→ L0,1(H) ∗ L0,1(H) be the canonical embeddings. We

denote
I
A = j1(

I
M) and

I
B = j2(

I
M).

Definition

The handle algebra L1,0(H) is the quotient of L0,1(H) ∗ L0,1(H) by the
following exchange relations:

IJ
R12

I
B1

IJ

(R ′)12
J
A2 =

J
A2

IJ
R12

I
B1

IJ

(R−1)12

for all finite-dimensional H-modules I , J.
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Properties of L1,0(H)

The following right action of H

∀ h ∈ H,
I
A · h =

∑
(h)

I

h′
I
A

I

S(h′′),
I
B · h =

∑
(h)

I

h′
I
B

I

S(h′′)

endows L1,0(H) with the structure of a H-module-algebra.

There is an isomorphism of algebras:

Ψ1,0 : L1,0(H) → H(H∗)
I
A 7→

I

(aibj)biaj
I
B 7→

I

(ai )bi
I
T

I

(bj)aj .

where H(H∗) is the Heisenberg double of H∗.
=⇒ L1,0(H) has a faithful representation on H∗.

In particular L1,0(H) is (isomorphic to) a matrix algebra.
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Definition of Lg ,n(H)

Let modr (H) be the category of finite-dimensional right H-modules and ⊗̃
be the braided tensor product in modr (H).

Definition

Lg ,n(H) = L1,0(H)⊗̃g ⊗̃ L0,1(H)⊗̃n ∈ modr (H).

Explicitly, with generators and relations:

I⊗J
U (i)12 =

I
U(i)1 R21

J
U(i)2 R

−1
21 for 1 ≤ i ≤ g + n,

R12

I
U(i)1 R

−1
12

J
V (j)2 =

J
V (j)2 R12

I
U(i)1 R

−1
12 for 1 ≤ i < j ≤ g + n,

R12

I
B(i)1 R21

J
A(i)2 =

J
A(i)2 R12

I
B(i)1 R

−1
12 for 1 ≤ i ≤ g ,

where U(i),V (i) are A(i) or B(i) if 1 ≤ i ≤ g and are M(i) if
g + 1 ≤ i ≤ g + n.
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Alekseev isomorphism and representations of Lg ,n(H)

Theorem

There is an explicit isomorphism of algebras

αg ,n : Lg ,n(H)→ L1,0(H)⊗g ⊗ L0,1(H)⊗n.

Composing with Ψ⊗g1,0 ⊗Ψ⊗n0,1, we get an isomorphism

Ψg ,n : Lg ,n(H)→ H(H∗)⊗g ⊗ H⊗n.

It follows that every indecomposable representation of Lg ,n(H) is of the
form

(H∗)⊗g ⊗ I1 ⊗ . . .⊗ In

where I1, . . . , In are indecomposable representations of H.

Matthieu Faitg MCG and combinatorial quantization 25/10/2018 12 / 24



Characterization and representation of the invariants

Consider the matrices

I
C =

I
C (1) . . .

I
C (g)

I
M(g + 1) . . .

I
M(g + n)

with
I
C (i) =

I
v2

I
B(i)

I
A(i)−1

I
B(i)−1

I
A(i) for all finite-dim H-module I .

Theorem

x ∈ Linvg ,n(H) ⇐⇒ ∀ I , x
I
C =

I
Cx .

If (V , .) is a representation of Lg ,n(H), define

Inv(V ) =

{
v ∈ V

∣∣∣∣ ∀ I , I
C . v = 1dim(I )v

}
.

By definition, Inv(V ) is stable under Linvg ,n(H), and thus provides a
representation.
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Mapping class group of Σg

Let:

Σg be the compact orientable surface of genus g ,

D ⊂ Σg be an imbedded open disk,

C = ∂(Σg \ D).

Consider the simple closed curves e, bi , xi (1 ≤ i ≤ g) drawn on the
blackboard. It is known that the Dehn twists about these curves generate
MCG(Σg ) and MCG(Σg \ D) (the Humphries generators).

Moreover, there exists a presentation of MCG(Σg ) and MCG(Σg \ D)
with generators τe , τbi , τxi (Wajnryb’s presentation).
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Action on the fundamental group

Put a basepoint on C and let ai , bi be the generators of π1(Σg \D) drawn
on the blackboard, such that

C = b1a
−1
1 b−11 a1 . . . bga

−1
g b−1g ag .

Each Dehn twist τγ about a simple closed curve γ of Σg \ D which does
not intersect C induces an automorphism τγ = (τγ)∗ of π1(Σg \ D).
For the Humphries generators, the non-trivial values are

τe(a1) = e−1a1e, τe(b1) = e−1b1e, τe(b2) = e−1b2,

τbi (ai ) = b−1i ai ,

τx1(b1) = b1a1,

τxj (aj−1) = x−1j aj−1xj , τxj (bj−1) = bj−1xj , τxj (bj) = x−1j bj ,

for all 1 ≤ i ≤ g and 2 ≤ j ≤ g , and with e = b1a
−1
1 b−11 a1b2a

−1
2 b−12 ,

xj = aj−1bja
−1
j b−1j .

Matthieu Faitg MCG and combinatorial quantization 25/10/2018 15 / 24



Action on the fundamental group

Put a basepoint on C and let ai , bi be the generators of π1(Σg \D) drawn
on the blackboard, such that

C = b1a
−1
1 b−11 a1 . . . bga

−1
g b−1g ag .

Each Dehn twist τγ about a simple closed curve γ of Σg \ D which does
not intersect C induces an automorphism τγ = (τγ)∗ of π1(Σg \ D).

For the Humphries generators, the non-trivial values are

τe(a1) = e−1a1e, τe(b1) = e−1b1e, τe(b2) = e−1b2,

τbi (ai ) = b−1i ai ,

τx1(b1) = b1a1,

τxj (aj−1) = x−1j aj−1xj , τxj (bj−1) = bj−1xj , τxj (bj) = x−1j bj ,

for all 1 ≤ i ≤ g and 2 ≤ j ≤ g , and with e = b1a
−1
1 b−11 a1b2a

−1
2 b−12 ,

xj = aj−1bja
−1
j b−1j .

Matthieu Faitg MCG and combinatorial quantization 25/10/2018 15 / 24



Action on the fundamental group

Put a basepoint on C and let ai , bi be the generators of π1(Σg \D) drawn
on the blackboard, such that

C = b1a
−1
1 b−11 a1 . . . bga

−1
g b−1g ag .

Each Dehn twist τγ about a simple closed curve γ of Σg \ D which does
not intersect C induces an automorphism τγ = (τγ)∗ of π1(Σg \ D).
For the Humphries generators, the non-trivial values are

τe(a1) = e−1a1e, τe(b1) = e−1b1e, τe(b2) = e−1b2,

τbi (ai ) = b−1i ai ,

τx1(b1) = b1a1,

τxj (aj−1) = x−1j aj−1xj , τxj (bj−1) = bj−1xj , τxj (bj) = x−1j bj ,

for all 1 ≤ i ≤ g and 2 ≤ j ≤ g , and with e = b1a
−1
1 b−11 a1b2a

−1
2 b−12 ,

xj = aj−1bja
−1
j b−1j .

Matthieu Faitg MCG and combinatorial quantization 25/10/2018 15 / 24



Lift of Dehn twists to Lg ,0(H)

We “lift” the Dehn twists by replacing curves of π1(Σg \ D) by matrices
with coefficients in Lg ,0(H).
For the Humphries generators, the non-trivial values are

τ̃e(
I
A(1)) =

I
E−1

I
A(1)

I
E , τ̃e(

I
B(1)) =

I
E−1

I
B(1)

I
E , τ̃e(

I
B(2)) =

I
v

I
E−1

I
B(2),

τ̃bi (
I
A(i)) =

I
v

I
B(i)−1

I
A(i),

τ̃x1(
I
B(1)) =

I
v−1

I
B(1)

I
A(1),

τ̃xj (
I
A(j − 1)) =

I
X j
−1 I

A(j − 1)
I
X j , τ̃xj (

I
B(j − 1)) =

I
v−1

I
B(j − 1)

I
X j ,

τ̃xj (
I
B(j)) =

I
v

I
X j
−1 I

B(j),

for all 1 ≤ i ≤ g and 2 ≤ j ≤ g , and with
I
E =

I
v4

I
B(1)

I
A(1)−1

I
B(1)−1

I
A(1)

I
B(2)

I
A(2)−1

I
B(2)−1,

I
X j =

I
v2

I
A(j − 1)

I
B(j)

I
A(j)−1

I
B(j)−1.
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Elements associated to Dehn twist automorphisms

Since Lg ,0(H) is a matrix algebra, the automorphisms lifting the Dehn
twists are inner.

Theorem

Let γ be a simple closed curve in Σg \ D. Then for all x ∈ Lg ,0(H),

τ̃γ(x) = v−1γ̃ x vγ̃ ,

where γ̃ is the lift of the curve γ in Lg ,n(H) and vγ̃ is the ribbon element
v over γ̃.

It can be shown that a suitably normalized lift of a simple closed curve
satisfies the defining relation of L0,1(H), thus there exists a morphism of
module-algebras

j γ̃ : L0,1(H) → Lg ,0(H)
I
M 7→

I
γ̃.

Since v ∈ Z(H) ∼= Linv0,1(H), we define vγ̃ = jγ̃(v) ∈ Linvg ,0(H).
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Projective representation of MCG(Σg)

Recall that we have a representation

of Lg ,0(H) on V = (H∗)⊗g , which we denote ρ

and of Linvg ,0(H) on Inv(V ), which we denote ρinv.

Theorem

1) The assignment

MCG(Σg \ D) → GL(V )

τγ 7→ ρ(v−1γ̃ )

is a projective representation.
2) The assignment

MCG(Σg ) → GL(Inv(V ))

τγ 7→ ρinv(v−1γ̃ )

is a projective representation.
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Example: the torus Σ1

The mapping class groups are

MCG(Σ1 \ D) = B3 = 〈τa, τb |τaτbτa = τbτaτb 〉 ,
MCG(Σ1) = SL2(Z) =

〈
τa, τb

∣∣τaτbτa = τbτaτb, (τaτb)6 = 1
〉
.

The representation space of Linv1,0(H) (and of MCG(Σ1)) is

Inv(H∗) = SLF(H) = {ϕ ∈ H∗ | ∀ x , y ∈ H, ϕ(xy) = ϕ(yx)} .

We can compute formulas for the action of v−1A , v−1B on H∗.
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Example: the torus Σ1

Theorem

There is a representation of SL2(Z) on SLF(H) given by:

τa 7→ ρinv
(
v−1A

)
, τb 7→ ρinv

(
v−1B

)
.

If S(ϕ) = ϕ for all ϕ ∈ SLF(H), then this is in fact a projective
representation of PSL2(Z).

This representation is equivalent to the Lyubashenko-Majid
representation.

More precisely,

v−1A v−1B v−1A = v−1B v−1A v−1B in L1,0(H),

ρinv
(
v−1A v−1B

)3
=
µl(v−1)

µl(v)
S ,

where S is the antipode on H∗ (S(ϕ) = ϕ ◦ S) and µl is a left integral.
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GTA basis of SLF(Uq)

Uq is not semisimple. Let

X ε(s) be the simple Uq-module of dimension p with highest weight
εqs−1 (ε ∈ {±}, 1 ≤ s ≤ p),

Pε(s) be the projective cover of X ε(s) (usually called a PIM).

We have dim(SLF(Uq)) = dim(Z(Uq)) = 3p − 1.

The GTA basis of SLF(Uq) contains two types of elements:

χεs = tr(
X ε(s)
T ) is the character of X ε(s) (1 ≤ s ≤ p),

Gs = tr(H+
s ) + tr(H−p−s), where Hε

s is a submatrix of
Pε(s)
T

(1 ≤ s ≤ p − 1).

Key property: the multiplication rules in this basis are remarkably simple.
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Projective representation of SL2(Z) on SLF(Uq)

The action of τa, τb ∈ SL2(Z) on the GTA basis can be computed
explicitly:

Theorem

τaχ
ε
s = v−1

Xε(s)χ
ε
s , τaGs′ = v−1

X+(s′)Gs′ − v−1
X+(s′)q̂

(
p − s ′

[s ′]
χ+
s′ −

s ′

[s ′]
χ−p−s′

)
and

τbχ
ε
s = ξε(−ε)p−1sq−(s2−1)

(
p−1∑
`=1

(−1)s(−ε)p−`
(
q`s + q−`s

) (
χ+
` + χ−p−`

)
+χ+

p + (−ε)p(−1)sχ−p

)
+ ξε(−1)sq−(s2−1)

p−1∑
j=1

(−ε)j+1[j ][js]Gj ,

τbGs′ = ξ(−1)s
′
q−(s′2−1) q̂p

[s′]

∑p−1
j=1 (−1)

j+1[j ][js ′]
(
2Gj − q̂ p−j

[j]
χ+
j + q̂ j

[j]
χ−p−j

)
.

with ε ∈ {±}, 0 ≤ s ≤ p, 1 ≤ s ′ ≤ p − 1 and ξ ∈ C\{0}.

The multiplication rules are used to compute the action of τb.
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Decomposition of the representation

Let V = vect
(
χ+
s + χ−p−s , χ

±
p

)
1≤s≤p−1, of dimension p + 1. Since:

∀ψ ∈ V, ∀ z ∈ Z(Uq), ψ(z?) ∈ V,

V is an ideal SLF(Uq),

we deduce that V is stable under the action of SL2(Z).

Theorem

There exists a projective representation W of SL2(Z), of dimension p − 1,
such that

SLF(Uq) = V ⊕
(
C2 ⊗W

)
.

W admits a basis (ws)1≤s≤p−1 such that the action is given by

τa ws = v−1X+(s)ws , τb ws = ξ(−1)sq−(s
2−1) q̂p

[s]

p−1∑
j=1

(−1)j+1[j ][js]wj .
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M. Faitg, A note on symmetric linear forms and traces on the
restricted quantum group Uq(sl(2)), arXiv:1801.07524.
→ Properties of the GTA basis.

M. Faitg, Modular group representations in combinatorial
quantization with non-semisimple Hopf algebras, arXiv:1805.00924.
→ Case of the torus.

Higher genus surfaces: work in progress.

Thanks for listening!
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