\circ \circ \circ

Homology of the hypertree poset

Bérénice Delcroix-Oger

Journées du GDR Topologie Algébrique October 2018

Motivation : $P\Sigma_n$

- F_n generated by $(x_i)_{i=1}^n$
- $P\Sigma_n$, pure symmetric automorphism group of the free group
 - group of automorphisms of F_n which send each x_i to a conjugate of itself,
 - group of motions of a collection of *n* coloured unknotted, unlinked circles in 3-space, where the components return to their original positions.

 $A_{i,j}$: pull the *i*th circle through the *j*th circle

 $\begin{array}{c} \leftrightarrow \\ \alpha_{i,j} : x_i \mapsto x_j x_i x_j^{-1} \\ x_k \mapsto x_k, k \neq i \end{array}$

[Goldsmith, 1981]

\circ \circ \circ

Historical background

1996 McCullough and Miller, *Symmetric automorphisms of free* products

 \rightarrow Definition of a contractible complex on which $P\Sigma_n$ (and $OP\Sigma_n$) acts

- 2001 Brady, McCammond, Meier and Miller, *The pure symmetric automorphisms of a free group form a duality group* → Description of the fundamental domain of this complex as the geometric realisation of the Whitehead (hypertree) poset
- 2004 McCammond and Meier, The hypertree poset and the l^2 -Betti numbers of the motion group of the trivial link \rightarrow Compute of the Euler characteristic of the hypertree poset to explicitly describe the l^2 -Betti numbers of $P\Sigma_n$, following a theorem of Davis, Januszkiewicz and Leary

Historical background

- 2006 Jensen, McCammond and Meier, *The integral cohomology of the group of loops*
- 2007 Jensen, McCammond and Meier, *The Euler characteristic of* the Whitehead automorphism group of a free product
- 2007 Chapoton, *Hyperarbres, arbres enracinés et partitions pointés* → Conjectures the link between homology of the hypertree poset and pre-Lie operad

Summary

Posets and hypertrees

- Homology of a poset
- Hypertrees
- Hypertree poset

Computation of the homology of the hypertree poset

- Species
- Counting strict chains using large chains
- Pointed and hollow hypertrees
- Relations between chains of hypertrees
- Dimension of the homology

From the hypertree poset to rooted trees

- PreLie species
- Character for the action of the symmetric group on the homology of the poset

Posets and hypertrees

$\bigcirc \circ \circ$

Homology of a poset

Let us consider a finite poset P.

Definition

A strict k-chain in a poset P on I is a k + 1-tuple (a_0, a_1, \ldots, a_k) , where a_i are elements of P different from the minimum $\hat{0}$ or the maximum $\hat{1}$ (if there are some) and $a_i \prec a_{i+1}$. We denote by C_k^s the vector space of strict k + 1-chains.

To every poset P, one can associate a simplicial complex (nerve of the poset seen as a category) whose k-faces are the k-chains of P.

Definition

The homology of a poset is the homology of its associated simplicial complex, named order complex.

We consider in this talk only pure poset:

Definition

A poset is pure if all its maximal chains (i.e. not strictly contained in another chain) have the same length.

Definition

A pure poset is Cohen-Macaulay if its (reduced) homology is concentrated in top degree.

We consider in this talk only pure poset:

Definition

A poset is **pure** if all its maximal chains (i.e. not strictly contained in another chain) have the same length.

Definition

A pure poset is Cohen-Macaulay if its (reduced) homology is concentrated in top degree.

If a poset is Cohen-Macaulay and admits an action of a group G on its elements, the character for the action of G on the unique non trivial homology group of the poset is given by:

Proposition (Hopf trace formula)

$$\chi_{\tilde{H}_n} = \sum_{k=0}^n (-1)^{n-k} \chi_{C_k^s}, \text{ with } \dim C_0^s = 1.$$

Hypergraphs and hypertrees

Definition (Berge)

- A hypergraph (on a set V) is an ordered pair (V, E) where:
 - V is a finite set (vertices)
 - E is a collection of subsets of cardinality at least two of elements of V (edges).

Example of a hypergraph on [1; 7]

Walk on a hypergraph

Definition

Let H = (V, E) be a hypergraph.

A walk from a vertex v_b to a vertex v_e in H is an alternating sequence of vertices and edges beginning by v_b and ending by v_e :

 $(v_b,\ldots,e_i,v_i,e_{i+1},\ldots,v_e)$

where for all *i*, $v_i \in V$, $e_i \in E$ and $\{v_i, v_{i+1}\} \subseteq e_i$. The length of a walk is the number of edges and vertices in the walk.

Hypertrees

Definition

A hypertree is a non-empty hypergraph H such that, given any distinct vertices v and w in H,

- there exists a walk from v to w in H with distinct edges e_i, (H is connected),
- and this walk is unique, (H has no cycles).

Example of a hypertree

$\bigcirc \circ \circ$

The hypertree poset

Definition

Let I be a finite set of cardinality n, S and T be two hypertrees on I.

 $S \preceq T \iff$ Each edge of S is the union of edges of T

We write $S \prec T$ if $S \preceq T$ but $S \neq T$.

 $\bigcirc \circ \circ$

○ ○ ○

- Graded poset by the number of edges [McCullough and Miller 1996],
- There is a unique minimum Ô,
- HT(I) = hypertree poset on I,
- $HT_n = hypertree poset on$ *n*vertices.
- HT_n is Cohen-Macaulay [McCammond and Meier 2004]
- Euler characteristic : $(n-1)^{n-2}$ [McCammond and Meier 2004]

Goal:

- New computation of the homology dimension
- Computation of the action of the symmetric group on the homology (Conjecture of Chapoton 2007)

Computation of the homology of the hypertree poset

Posets and hypertrees

Computation of the homology of the hypertree poset

- Species
- Counting strict chains using large chains
- Pointed and hollow hypertrees
- Relations between chains of hypertrees
- Dimension of the homology

3 From the hypertree poset to rooted trees

• 🗁 •

What are species?

Definition

A species F is a functor from the category of finite sets and bijections to itself. To a finite set I, the species F associates a finite set F(I) independent from the nature of I.

• 🗁 •

What are species?

Definition

A species F is a functor from the category of finite sets and bijections to itself. To a finite set I, the species F associates a finite set F(I) independent from the nature of I.

Counterexamples

The following sets are not obtained using species:

- $\{(1, 3, 2), (2, 1, 3), (2, 3, 1)(3, 1, 2)\}$ (set of permutations of $\{1, 2, 3\}$ with exactly 1 descent)
- (graph of divisibility of $\{1, 2, 3, 4, 5, 6\}$)

o 🔁 o

Examples of species

rooted trees PreLie)

- {(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1)} (Species of lists Assoc on {1,2,3})
- $\{\{1,2,3\}\}$ (Species of non-empty sets Comm)
- $\{\{1\}, \{2\}, \{3\}\}$ (Species of pointed sets Perm)

(Species of

(Species of cycles)

3

These sets are the image by species of the set $\{1, 2, 3\}$.

Examples of species

- {(\heartsuit , \bigstar , \clubsuit), (\heartsuit , \bigstar , \bigstar), (\bigstar , \heartsuit , \bigstar), (\bigstar , \clubsuit , \heartsuit), (\bigstar , \heartsuit , \bigstar), (\clubsuit , \bigstar , \heartsuit)} (Species of lists Assoc on { \clubsuit , \heartsuit , \diamondsuit })
- $\{\{\heartsuit, \clubsuit, \clubsuit\}\}\$ (Species of non-empty sets Comm)
- $\{\{\heartsuit\}, \{\clubsuit\}, \{\clubsuit\}\}\$ (Species of pointed sets Perm)

Proposition

Let F and G be two species. The following operations can be defined on them:

• $F'(I) = F(I \sqcup \{\bullet\})$, (derivative)

Proposition

Let F and G be two species. The following operations can be defined on them:

•
$$F'(I) = F(I \sqcup \{\bullet\})$$
, (derivative)

Example: Derivative of the species of cycles on $I = \{\heartsuit, \clubsuit, \clubsuit\}$

Proposition

Let ${\cal F}$ and ${\cal G}$ be two species. The following operations can be defined on them:

•
$$F'(I) = F(I \sqcup \{\bullet\})$$
, (derivative)

•
$$(F + G)(I) = F(I) \sqcup G(I)$$
, (addition)

Proposition

Let ${\cal F}$ and ${\cal G}$ be two species. The following operations can be defined on them:

•
$$F'(I) = F(I \sqcup \{\bullet\})$$
, (derivative)

•
$$(F + G)(I) = F(I) \sqcup G(I)$$
, (addition)

•
$$(F \cdot G)(I) = \bigsqcup_{I_1 \sqcup I_2 = I} F(I_1) \times G(I_2)$$
, (product)

Proposition

Let F and G be two species. The following operations can be defined on them:

- $F'(I) = F(I \sqcup \{\bullet\})$, (derivative)
- $(F+G)(I) = F(I) \sqcup G(I)$, (addition)
- $(F \cdot G)(I) = \bigsqcup_{I_1 \sqcup I_2 = I} F(I_1) \times G(I_2)$, (product)
- $(F \circ G)(I) = \bigsqcup_{\pi \in \mathcal{P}(I)} F(\pi) \times \prod_{J \in \pi} G(J)$, (substitution) where $\mathcal{P}(I)$ runs on the set of partitions of I.

Proposition

Let F and G be two species. The following operations can be defined on them:

• $F'(I) = F(I \sqcup \{\bullet\})$, (derivative)

•
$$(F+G)(I) = F(I) \sqcup G(I)$$
, (addition)

•
$$(F \cdot G)(I) = \sum_{I_1 \sqcup I_2 = I} F(I_1) \times G(I_2)$$
, (product)

• $(F \circ G)(I) = \bigsqcup_{\pi \in \mathcal{P}(I)} F(\pi) \times \prod_{J \in \pi} G(J)$, (substitution) where $\mathcal{P}(I)$ runs on the set of partitions of I.

Definition

To a species F, we associate its generating series:

$$C_F(x) = \sum_{n\geq 0} \#F(\{1,\ldots,n\})\frac{x^n}{n!}.$$

Examples of generating series:

- The generating series of the species of lists is $C_{\text{Assoc}} = \frac{1}{1-x}$.
- The generating series of the species of non-empty sets is $C_{\text{Comm}} = \exp(x) 1$.
- The generating series of the species of pointed sets is $C_{\text{Perm}} = x \cdot \exp(x)$.
- The generating series of the species of rooted trees is $C_{\text{PreLie}} = \sum_{n \ge 0} n^{n-1} \frac{x^n}{n!}.$
- The generating series of the species of cycles is $C_{Cycles} = -\ln(1-x)$.

Definition

The cycle index series of a species F is the formal power series in an infinite number of variables $\mathfrak{p} = (p_1, p_2, p_3, ...)$ defined by:

$$Z_F(\mathfrak{p}) = \sum_{n\geq 0} \frac{1}{n!} \left(\sum_{\sigma\in\mathfrak{S}_n} F^{\sigma} p_1^{\sigma_1} p_2^{\sigma_2} p_3^{\sigma_3} \dots \right),$$

• with F^{σ} , is the set of F-structures fixed under the action of σ ,

 and σ_i, the number of cycles of length i in the decomposition of σ into disjoint cycles.

Examples

- The cycle index series of the species of lists is $Z_{Assoc} = \frac{1}{1-p_1}$.
- The cycle index series of the species of non empty sets is $Z_{\text{Comm}} = \exp(\sum_{k \ge 1} \frac{p_k}{k}) 1.$

Operations on cycle index series

Operations on species give operations on their cycle index series:

Proposition

Let F and G be two species. Their cycle index series satisfy:

$$\begin{array}{lll} Z_{F+G} &= Z_F + Z_G, & Z_{F \cdot G} &= Z_F \times Z_G, \\ Z_{F \circ G} &= Z_F \circ Z_G, & Z_{F'} &= \frac{\partial Z_F}{\partial p_1}. \end{array}$$

Definition

The suspension Σ of a cycle index series $f(p_1, p_2, p_3, ...)$ is defined by:

$$\Sigma f = -f(-p_1, -p_2, -p_3, \ldots).$$

Counting strict chains using large chains

Let P be a pure finite poset, with an action of a group G on its elements.

Definition

A large k-chain of P_n is a k + 1-tuple (a_0, a_1, \ldots, a_k) , where a_i are (possibly maximal or minimal) elements of P_n and $a_i \leq a_{i+1}$.

Denoting by χ'_k (resp. χ^s_k) the character for the action of G on large (resp. strict) k-chains, we have:

Counting strict chains using large chains

Let P be a pure finite poset, with an action of a group G on its elements.

Definition

A large k-chain of P_n is a k + 1-tuple (a_0, a_1, \ldots, a_k) , where a_i are (possibly maximal or minimal) elements of P_n and $a_i \leq a_{i+1}$.

Denoting by χ'_k (resp. χ^s_k) the character for the action of G on large (resp. strict) k-chains, we have:

Proposition (BDO,16)

$$\begin{aligned} & \text{if } \hat{0}, \hat{1} \in P, \\ & \chi'_{k} = \sum_{i \ge 0} \binom{k+2}{i+1} \chi^{s}_{i-1}, \end{aligned} \begin{vmatrix} & \text{if } \hat{0} \in P, \ \hat{1} \notin P, \\ & \text{if } \hat{1} \in P, \ \hat{0} \notin P, \\ & \chi'_{k} = \sum_{i \ge 0} \binom{k+1}{i} \chi^{s}_{i-1}, \end{aligned} \end{vmatrix} \begin{aligned} & \text{if } \hat{0}, \hat{1} \notin P \\ & \chi'_{k} = \sum_{i \ge 0} \binom{k+1}{i} \chi^{s}_{i-1}, \end{aligned}$$

• 🔁 •

The Euler characteristic μ_{χ} for the action of G on the pure finite poset P is then given by:

 Proposition (BDO,16)

 $if \hat{0}, \hat{1} \in P,$
 $\mu_{\chi} = \chi_{-3}^{l}$
 $\mu_{\chi} = -\chi_{-2}^{l}$
 $if \hat{0}, \hat{1} \notin P,$
 $\mu_{\chi} = \chi_{-1}^{l} - 1.$

Conclusion :

It is enough to compute the character for the action of the symmetric group on n-chains.

Theorem (McCammond, Meier, 04)

The poset $\widehat{HT_n}$ is Cohen-Macaulay, i.e. its reduced homology is concentrated in higher degree.

Corollary

$$\chi_{\tilde{H}_{n-3}} = (-1)^n \chi_{-2}^l$$

The hypertrees will now be on *n* vertices.

Pointed hypertrees

Definition

Let H be a hypertree on I. H is:

• rooted in a vertex s if the vertex s of H is distinguished,

Pointed hypertrees

Definition

Let H be a hypertree on I. H is:

• rooted in a vertex s if the vertex s of H is distinguished,

Example of pointed hypertrees

0

Pointed hypertrees

Definition

Let H be a hypertree on I. H is:

- rooted in a vertex s if the vertex s of H is distinguished,
- hollow (#I ≥ 2) if H is a hypertree on the set {#,1,...,n}, such that the vertex labelled by #, called the gap, belongs to one and only one edge.

• 🗁 •

Pointed hypertrees

Definition

Let H be a hypertree on I. H is:

- rooted in a vertex s if the vertex s of H is distinguished,
- hollow (#I ≥ 2) if H is a hypertree on the set {#,1,...,n}, such that the vertex labelled by #, called the gap, belongs to one and only one edge.

Relations between species of hypertrees

Theorem (BDO 13)

The species \mathcal{H}_k , \mathcal{H}_k^p and \mathcal{H}_k^c satisfy:

$$\mathcal{H}_k^p = X \cdot \mathcal{H}_k' \tag{1}$$

$$\mathcal{H}_{k}^{p} = X \cdot \operatorname{Comm} \circ \mathcal{H}_{k}^{c} + X, \qquad (2)$$

$$\mathcal{H}_{k}^{c} = \operatorname{Comm} \circ \mathcal{H}_{k-1}^{c} \circ \mathcal{H}_{k}^{p}, \tag{3}$$

$$\left(\mathcal{H}_{k-1}^{p}-x\right)\circ\mathcal{H}_{k}^{p}+\mathcal{H}_{k}=\left(\mathcal{H}_{k-1}-x\right)\circ\mathcal{H}_{k}^{p}+\mathcal{H}_{k}^{p},$$
(4)

Relations between species of hypertrees

1

Theorem (BDO 13)

The species \mathcal{H}_k , \mathcal{H}_k^p and \mathcal{H}_k^c satisfy:

$$\mathcal{H}_k^p = X \cdot \mathcal{H}_k' \tag{1}$$

$$\mathcal{H}_{k}^{p} = X \cdot \operatorname{Comm} \circ \mathcal{H}_{k}^{c} + X, \qquad (2)$$

$$\mathcal{H}_{k}^{c} = \operatorname{Comm} \circ \mathcal{H}_{k-1}^{c} \circ \mathcal{H}_{k}^{p}, \tag{3}$$

$$\left(\mathcal{H}_{k-1}^{p}-x\right)\circ\mathcal{H}_{k}^{p}+\mathcal{H}_{k}=\left(\mathcal{H}_{k-1}-x\right)\circ\mathcal{H}_{k}^{p}+\mathcal{H}_{k}^{p},$$
(4)

Proof.

 Rooting a species F is the same as multiplying the singleton species X by the derivative of F,

Second part of the proof.

We separate the root and every edge containing it, putting gaps where the root was,

 $\mathcal{H}_k^p = X \cdot \operatorname{Comm} \circ \mathcal{H}_k^c + X,$

Dimension of the homology

Proposition

The generating series of the species \mathcal{H}_k , \mathcal{H}_k^p and \mathcal{H}_k^c satisfy:

$$C_k^p = x \cdot \exp\left(\frac{C_{k-1}^p \circ C_k^p}{C_k^p} - 1\right),\tag{5}$$

$$(\mathcal{C}_{k-1}^{p} - x)(\mathcal{C}_{k}^{p}) + \mathcal{C}_{k} = (\mathcal{C}_{k-1} - x)(\mathcal{C}_{k}^{p}) + \mathcal{C}_{k}^{p},$$
(6)
$$x \cdot \mathcal{C}_{k}' = \mathcal{C}_{k}^{p},$$
(7)

o 🔁 o

Lemma

The generating series of \mathcal{H}_0^p is given by:

$$\mathcal{C}_0^p = x \exp(e^{C_0^p} - 1)$$

Hence, we have $C_{-1}^p = xe^x$ and $C_{-1} = e^x$.

o 🔁 o

Lemma

The generating series of \mathcal{H}_0^p is given by:

$$\mathcal{C}_0^p = x \exp(e^{C_0^p} - 1)$$

Hence, we have $C_{-1}^p = xe^x$ and $C_{-1} = e^x$. This implies with the previous theorem:

Theorem (McCammond-Meier, 04)

The dimension of the top homology group of the hypertree poset is $(n-1)^{n-2}$.

This dimension is the dimension of the vector space PreLie(n-1) whose basis is the set of rooted trees on n-1 vertices.

From the hypertree poset to rooted trees

Posets and hypertrees

2 Computation of the homology of the hypertree poset

3 From the hypertree poset to rooted trees

- PreLie species
- Character for the action of the symmetric group on the homology of the poset

From the hypertree poset to rooted trees

- This dimension is the dimension of the vector space PreLie(n-1) whose basis is the set of rooted trees on n − 1 vertices. The operad (species S with a natural transformation S ∘ S → S) whose vector space are PreLie(n) is PreLie.
- **2** This operad is anticyclic (Chapoton, 07): There is an action of the symmetric group \mathfrak{S}_n on $\operatorname{PreLie}(n-1)$ which extends the one of \mathfrak{S}_{n-1} .
- Moreover, there is an action of S_n on the homology of the poset of hypertrees on n vertices.

Question

Is the action of \mathfrak{S}_n on PreLie(n-1) the same as the action on the homology of the poset of hypertrees on *n* vertices?

Character for the action of the symmetric group on the homology of the poset

Using relations on species established previously, we obtain:

Proposition

The series Z_k , Z_k^p , Z_k^a and Z_k^{pa} satisfy the following relations:

$$Z_{k} + Z_{k-1}^{p} \circ Z_{k}^{p} = Z_{k}^{p} + Z_{k-1} \circ Z_{k}^{p},$$
(8)

$$Z_{k}^{p} = p_{1} + p_{1} \times \operatorname{Comm} \circ \left(\frac{Z_{k-1}^{p} \circ Z_{k}^{p} - Z_{k}^{p}}{Z_{k}^{p}} \right), \qquad (9)$$
$$p_{1} \frac{\partial Z_{k}}{\partial p_{1}} = Z_{k}^{p}. \qquad (10)$$

• • 🗁

Theorem (BDO 13, conjecture of Chapoton)

The cycle index series Z_{-1} , which gives the character for the action of \mathfrak{S}_n on \tilde{H}_{n-3} , is linked with the cycle index series M associated with the anticyclic structure of PreLie by:

$$Z_{-1} = p_1 - \Sigma M = \operatorname{Comm} \circ \Sigma \operatorname{PreLie} + p_1 (\Sigma \operatorname{PreLie} + 1).$$
(11)

The cycle index series Z_{-1}^p is given by:

$$Z_{-1}^{p} = p_1 (\Sigma \operatorname{PreLie} + 1).$$
 (12)

Other works and Open questions

- Same method applied to semi-pointed partition posets [BDO 16]
- Hypertree posets in type B

Pointed partition poset [Chapoton-Vallette 06, Vallette 07]

Set partitions whose parts are pointed, ordered by refinment:

$$\{(p_1, F_1), \dots, (p_k, F_k)\} \le \{(q_1, G_1), \dots, (q_l, G_l)\}$$
(13)

$$\mathsf{if} \; \forall j, \; G_j = \sqcup_{m=1}^{n_j} \mathcal{F}_{i_m} \; \mathsf{and} \; q_j \in \{p_{i_1}, \dots, p_{i_{n_j}}\}$$

Proposition (Chapoton-Vallette 06)

The character for the action of the symmetric group on the homology of the pointed partition poset is given by Σ PreLie.

Other works and Open questions

- Same method applied to semi-pointed partition posets [BDO 16]
- Hypertree posets in type B
- Study of the structure on chains in the hypertree poset ?

Why?

Get new tools to study properties of operads by looking at decorated hypertree poset !

- \rightarrow Vallette 07 : link Koszulness and Cohen-Macaulayness
- \rightarrow Bellier-Millès BDO Hoffbeck 18+ : link PBW and CL-shellability

Thank you for your attention !

[Oge13] Bérénice Oger Action of the symmetric groups on the homology of the hypertree posets. Journal of Algebraic Combinatorics, february 2013.