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Motivation : PΣn

Fn generated by (xi )
n
i=1

PΣn, pure symmetric automorphism group of the free group

I group of automorphisms of Fn which send each xi to a conjugate of
itself,

I group of motions of a collection of n coloured unknotted, unlinked
circles in 3-space, where the components return to their original
positions.

Ai ,j : pull the ith circle through the jth circle

↔
αi ,j :xi 7→ xjxix

−1
j

xk 7→ xk , k 6= i

[Goldsmith, 1981]



Historical background

1996 McCullough and Miller, Symmetric automorphisms of free
products
→ Definition of a contractible complex on which PΣn (and
OPΣn) acts

2001 Brady, McCammond, Meier and Miller, The pure symmetric
automorphisms of a free group form a duality group
→ Description of the fundamental domain of this complex as
the geometric realisation of the Whitehead (hypertree) poset

2004 McCammond and Meier, The hypertree poset and the
l2-Betti numbers of the motion group of the trivial link
→ Compute of the Euler characteristic of the hypertree
poset to explicitly describe the l2-Betti numbers of PΣn,
following a theorem of Davis, Januszkiewicz and Leary



Historical background

2006 Jensen, McCammond and Meier, The integral cohomology of
the group of loops

2007 Jensen, McCammond and Meier, The Euler characteristic of
the Whitehead automorphism group of a free product

2007 Chapoton, Hyperarbres, arbres enracinés et partitions pointés
→ Conjectures the link between homology of the hypertree
poset and pre-Lie operad
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Posets and hypertrees



Homology of a poset

Let us consider a finite poset P.

Definition

A strict k-chain in a poset P on I is a k + 1-tuple (a0, a1, . . . , ak), where
ai are elements of P different from the minimum 0̂ or the maximum 1̂ (if
there are some) and ai ≺ ai+1. We denote by C s

k the vector space of strict
k + 1-chains.

To every poset P, one can associate a simplicial complex (nerve of the
poset seen as a category) whose k-faces are the k-chains of P.

Definition

The homology of a poset is the homology of its associated simplicial
complex, named order complex.



We consider in this talk only pure poset:

Definition

A poset is pure if all its maximal chains (i.e. not strictly contained in
another chain) have the same length.

Definition

A pure poset is Cohen-Macaulay if its (reduced) homology is concentrated
in top degree.

If a poset is Cohen-Macaulay and admits an action of a group G on its
elements, the character for the action of G on the unique non trivial
homology group of the poset is given by:

Proposition (Hopf trace formula)

χH̃n
=

n∑
k=0

(−1)n−kχC s
k
, with dim C s

0 = 1.
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Hypergraphs and hypertrees

Definition (Berge)

A hypergraph (on a set V ) is an ordered pair (V ,E ) where:

V is a finite set (vertices)

E is a collection of subsets of cardinality at least two of elements of
V (edges).

Example of a hypergraph on [1; 7]
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Walk on a hypergraph

Definition

Let H = (V ,E ) be a hypergraph.
A walk from a vertex vb to a vertex ve in H is an alternating sequence of
vertices and edges beginning by vb and ending by ve :

(vb, . . . , ei , vi , ei+1, . . . , ve)

where for all i , vi ∈ V , ei ∈ E and {vi , vi+1} ⊆ ei .
The length of a walk is the number of edges and vertices in the walk.

Examples of walks
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Hypertrees

Definition

A hypertree is a non-empty hypergraph H such that, given any distinct
vertices v and w in H,

there exists a walk from v to w in H with distinct edges ei , (H is
connected),

and this walk is unique, (H has no cycles).

Example of a hypertree

4

1 2

3 5

6 7



The hypertree poset

Definition

Let I be a finite set of cardinality n, S and T be two hypertrees on I .

S � T ⇐⇒ Each edge of S is the union of edges of T

We write S ≺ T if S � T but S 6= T .

Example with hypertrees on four vertices

♠

♦ ♥

♣
�

♠

♦ ♥

♣ ♠

♦ ♥

♣ ♠

♦ ♥

♣ but not ♠

♦ ♥

♣ .
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Graded poset by the number of edges [McCullough and Miller 1996],

There is a unique minimum 0̂,

HT(I) = hypertree poset on I ,

HTn = hypertree poset on n vertices.

HTn is Cohen-Macaulay [McCammond and Meier 2004]

Euler characteristic : (n − 1)n−2 [McCammond and Meier 2004]

Goal:

New computation of the homology dimension

Computation of the action of the symmetric group on the homology
(Conjecture of Chapoton 2007)



Computation of the homology of the hypertree
poset
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What are species?

Definition

A species F is a functor from the category of finite sets and bijections to
itself. To a finite set I , the species F associates a finite set F(I )
independent from the nature of I .

Counterexamples

The following sets are not obtained using species:

{(1, 3, 2), (2, 1, 3), (2, 3, 1)(3, 1, 2)}(set of permutations of {1, 2, 3}
with exactly 1 descent)

(graph of divisibility of {1, 2, 3, 4, 5, 6})

1

2

3

4

5 6
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Examples of species

{(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)} (Species of lists
Assoc on {1, 2, 3})
{{1, 2, 3}} (Species of non-empty sets Comm)

{{1}, {2}, {3}} (Species of pointed sets Perm)

{
1

2 3

, 1

2

3

, 1

3

2

, 2

1 3

, 2

1

3

, 2

3

1

, 3

1 2

, 3

1

2

, 3

2

1 }
(Species of

rooted trees PreLie){
1 2

3

, 1 3

2 }
(Species of cycles)

These sets are the image by species of the set {1, 2, 3}.



Examples of species

{(♥,♠,♣), (♥,♣,♠), (♠,♥,♣), (♠,♣,♥), (♣,♥,♠), (♣,♠,♥)}
(Species of lists Assoc on {♣,♥,♠})
{{♥,♠,♣}} (Species of non-empty sets Comm)

{{♥}, {♠}, {♣}} (Species of pointed sets Perm)

{
♥

♠ ♣
, ♥
♠
♣

, ♥
♣
♠

, ♠
♥ ♣

, ♠
♥
♣

, ♠
♣
♥

, ♣
♥ ♠

, ♣
♥
♠

, ♣
♠
♥ }

(Species of
rooted trees PreLie){
♥ ♠

♣

, ♥ ♣

♠ }
(Species of cycles)

These sets are the image by species of the set {♣,♥,♠}.



Operations on species and associated series

Proposition

Let F and G be two species. The following operations can be defined on
them:

F ′(I ) = F (I t {•}), (derivative)

(F + G )(I ) = F (I ) t G (I ), (addition)

(F · G )(I ) =
⊔

I1tI2=I F (I1)× G (I2), (product)

(F ◦ G )(I ) =
⊔
π∈P(I ) F (π)×

∏
J∈π G (J), (substitution) where P(I )

runs on the set of partitions of I .
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�
♥ ♠

♣ •
' ♥♠ ♣

,

�
♥

♠ ♣

•
' ♥ ♠♣
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Operations on species and associated series

Proposition

Let F and G be two species. The following operations can be defined on
them:

F ′(I ) = F (I t {•}), (derivative)

(F + G )(I ) = F (I ) t G (I ), (addition)
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∑
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runs on the set of partitions of I .

Example of substitution: Rooted trees of lists on I = {1, 2, 3, 4}

(1)

(2, 4, 3)

,
(1)

(4, 3, 2)

,
(4, 2, 3)

(1)

,
(1, 2)

(3, 4)

,
(4, 1)

(2)(3)

, . . .



Definition

To a species F , we associate its generating series:

CF (x) =
∑
n≥0

#F ({1, . . . , n})xn

n!
.

Examples of generating series:

The generating series of the species of lists is CAssoc = 1
1−x .

The generating series of the species of non-empty sets is
CComm = exp(x)− 1.

The generating series of the species of pointed sets is
CPerm = x · exp(x).

The generating series of the species of rooted trees is
CPreLie =

∑
n≥0 nn−1 xn

n! .

The generating series of the species of cycles is CCycles = − ln(1− x).



Definition

The cycle index series of a species F is the formal power series in an
infinite number of variables p = (p1, p2, p3, . . .) defined by:

ZF (p) =
∑
n≥0

1

n!

∑
σ∈Sn

Fσpσ11 pσ22 pσ33 . . .

 ,
with Fσ, is the set of F -structures fixed under the action of σ,

and σi , the number of cycles of length i in the decomposition of σ
into disjoint cycles.

Examples

The cycle index series of the species of lists is ZAssoc = 1
1−p1 .

The cycle index series of the species of non empty sets is
ZComm = exp(

∑
k≥1

pk
k )− 1.



Operations on cycle index series

Operations on species give operations on their cycle index series:

Proposition

Let F and G be two species. Their cycle index series satisfy:

ZF+G = ZF + ZG , ZF ·G = ZF × ZG ,

ZF◦G = ZF ◦ ZG , ZF ′ = ∂ZF
∂p1

.

Definition

The suspension Σ of a cycle index series f (p1, p2, p3, . . .) is defined by:

Σf = −f (−p1,−p2,−p3, . . .).



Counting strict chains using large chains

Let P be a pure finite poset, with an action of a group G on its elements.

Definition

A large k-chain of Pn is a k + 1-tuple (a0, a1, . . . , ak), where ai are
(possibly maximal or minimal) elements of Pn and ai � ai+1.

Denoting by χl
k (resp. χs

k) the character for the action of G on large
(resp. strict) k-chains, we have:

Proposition (BDO,16)

if 0̂, 1̂ ∈ P,

χl
k =

∑
i≥0

(
k + 2

i + 1

)
χs
i−1,

if 0̂ ∈ P, 1̂ /∈ P,
if 1̂ ∈ P, 0̂ /∈ P,

χl
k =

∑
i≥0

(
k + 1

i

)
χs
i−1,

if 0̂, 1̂ /∈ P

χl
k =

∑
i≥0

(
k

i

)
χs
i .
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The Euler characteristic µχ for the action of G on the pure finite poset P
is then given by:

Proposition (BDO,16)

if 0̂, 1̂ ∈ P,

µχ = χl
−3

if 0̂ ∈ P, 1̂ /∈ P,
if 1̂ ∈ P, 0̂ /∈ P,

µχ = −χl
−2

if 0̂, 1̂ /∈ P

µχ = χl
−1 − 1.

Conclusion :

It is enough to compute the character for the action of the symmetric
group on n-chains.



Back to hypertrees

Theorem (McCammond, Meier, 04)

The poset ĤTn is Cohen-Macaulay, i.e. its reduced homology is
concentrated in higher degree.

Corollary

χH̃n−3
= (−1)nχl

−2

The hypertrees will now be on n vertices.



Pointed hypertrees

Definition

Let H be a hypertree on I . H is:

rooted in a vertex s if the vertex s of H is distinguished,

hollow (#I ≥ 2) if H is a hypertree on the set {#, 1, . . . , n}, such
that the vertex labelled by #, called the gap, belongs to one and only
one edge.

Example of pointed hypertrees
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Relations between species of hypertrees

Theorem (BDO 13)

The species Hk , Hp
k and Hc

k satisfy:

Hp
k = X · H′k (1)

Hp
k = X · Comm ◦Hc

k + X , (2)

Hc
k = Comm ◦Hc

k−1 ◦ H
p
k , (3)(

Hp
k−1 − x

)
◦ Hp

k +Hk = (Hk−1 − x) ◦ Hp
k +Hp

k , (4)

Proof.
1 Rooting a species F is the same as multiplying the singleton species X

by the derivative of F,
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Second part of the proof.

We separate the root and every edge containing it, putting gaps where the
root was,

Hp
k = X · Comm ◦Hc

k + X ,

9

8 2

1

3

4

6

5

7

9
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6 7
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#
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#
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4
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6 7



Dimension of the homology

Proposition

The generating series of the species Hk , Hp
k and Hc

k satisfy:

Cpk = x · exp

(
Cpk−1 ◦ C

p
k

Cpk
− 1

)
, (5)

(Cpk−1 − x)(Cpk ) + Ck = (Ck−1 − x)(Cpk ) + Cpk , (6)

x · C′k = Cpk , (7)



Lemma

The generating series of Hp
0 is given by:

Cp0 = x exp(eC
p
0 − 1)

Hence, we have Cp−1 = xex and C−1 = ex .

This implies with the previous
theorem:

Theorem (McCammond-Meier, 04)

The dimension of the top homology group of the hypertree poset is
(n − 1)n−2.

This dimension is the dimension of the vector space PreLie(n-1) whose
basis is the set of rooted trees on n − 1 vertices.
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From the hypertree poset to rooted trees

1 This dimension is the dimension of the vector space PreLie(n-1)
whose basis is the set of rooted trees on n − 1 vertices.
The operad (species S with a natural transformation S ◦ S → S)
whose vector space are PreLie(n) is PreLie.

2 This operad is anticyclic (Chapoton, 07): There is an action of the
symmetric group Sn on PreLie(n− 1) which extends the one of Sn−1.

3 Moreover, there is an action of Sn on the homology of the poset of
hypertrees on n vertices.

Question

Is the action of Sn on PreLie(n-1) the same as the action on the
homology of the poset of hypertrees on n vertices?



Character for the action of the symmetric group on the
homology of the poset

Using relations on species established previously, we obtain:

Proposition

The series Zk , Zp
k , Z a

k and Zpa
k satisfy the following relations:

Zk + Zp
k−1 ◦ Zp

k = Zp
k + Zk−1 ◦ Zp

k , (8)

Zp
k = p1 + p1 × Comm ◦

(
Zp
k−1 ◦ Zp

k − Zp
k

Zp
k

)
, (9)

p1
∂Zk

∂p1
= Zp

k . (10)



Theorem (BDO 13, conjecture of Chapoton)

The cycle index series Z−1, which gives the character for the action of Sn

on H̃n−3, is linked with the cycle index series M associated with the
anticyclic structure of PreLie by:

Z−1 = p1 − ΣM = Comm ◦Σ PreLie +p1 (Σ PreLie +1) . (11)

The cycle index series Zp
−1 is given by:

Zp
−1 = p1 (Σ PreLie +1) . (12)



Other works and Open questions

Same method applied to semi-pointed partition posets [BDO 16]

Hypertree posets in type B



Pointed partition poset [Chapoton-Vallette 06, Vallette 07]

Set partitions whose parts are pointed,
ordered by refinment:

{(p1,F1), . . . , (pk ,Fk)} ≤ {(q1,G1), . . . , (ql ,Gl)} (13)

if ∀j , Gj = tnjm=1Fim and qj ∈ {pi1 , . . . , pinj }

Proposition (Chapoton-Vallette 06)

The character for the action of the symmetric group on the homology of
the pointed partition poset is given by ΣPreLie.



Other works and Open questions

Same method applied to semi-pointed partition posets [BDO 16]

Hypertree posets in type B

Study of the structure on chains in the hypertree poset ?

Why?

Get new tools to study properties of operads by looking at decorated
hypertree poset !

→ Vallette 07 : link Koszulness and Cohen-Macaulayness

→ Bellier-Millès - BDO - Hoffbeck 18+ : link PBW and
CL-shellability



Thank you for your attention !

[Oge13] Bérénice Oger Action of the symmetric groups on the homology
of the hypertree posets. Journal of Algebraic Combinatorics, february
2013.
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