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Introduction

This work was inspired by a sequence of recent papers by Matui ([M12],
[M15], [M16]) on certain algebraic invariants associated to ample groupoids:
the homology and the topological full group.
In [M12] Matui proved that if Γ is the groupoid associated to an action of Z
on the Cantor set which is both minimal and topologically free or if Γ is the
groupoid associated to an irreducible shift of finite type then:

(*) K0(C∗r (Γ)) ∼=
∞⊕

n=0

H2n(Γ) and K1(C∗r (Γ)) ∼=
∞⊕

n=0

H2n+1(Γ),

where H∗(Γ) is the Crainic-Moerdijk homology of Γ (see [CM]).
An étale groupoid Γ is said to be effective (or essentially principal) if
(Iso Γ)0 = Γ(0). We define an ample groupoid to be an étale groupoid with a
basis of compact open sets.
In [M16] Matui conjectured that (*) holds if Γ is ample, minimal and
effective such that Γ(0) is a compact (the HK conjecture).
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Matui proved that if Γ1, Γ2 are ample groupooids such that for i = 1, 2,
Γ

(0)
i Cantor; Γi satisfies (*); and C∗r (Γi) is nuclear and in the UCT class, then

Γ1 × Γ2 also satisfies (*).
We observed that isomorphism (*) holds for many ample groupoids which
do not satisfy Matui’s hypotheses.
Let M denote the class of ample groupoids for which (*) holds.
There are examples in M which are not minimal, not effective and for which
Γ(0) is not compact.
M includes many discrete groups but not Zn for n > 1.
We proved that M is closed under equivalence of ample groupoids.
After completing our work, we learned that a counterexample to Matui’s
conjecture was found by Scarparo (see [S]).
The question we consider here is whether path groupoids of higher rank
graphs or more generally higher rank Renault-Deaconu groupoids with zero
dimensional unit space belong to M.
We know of no natural map Hi(Γ)→ Ki(C∗r (Γ)) for i > 0.
We say X is zero dimensional if it has a basis of compact open sets.
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Ample groupoid homology d’après Crainic & Moerdijk

Let ψ : Y → X be a local homeomorphism where X, Y are zero-dimensional
spaces and let A be an abelian group. Define ψ∗ : Cc(Y,A)→ Cc(X,A) by

ψ∗(f )(x) =
∑

x=ψ(y)

f (y).

Let Γ be an ample groupoid and for n ≥ 1 set

Γ(n) := {(γ1, . . . , γn) : s(γi) = r(γi+1)}.

For n > 1 and 0 ≤ i ≤ n define di = dn
i : Γ(n) → Γ(n−1) by

dn
i (γ1, . . . , γn) :=


(γ2, . . . , γn) if i = 0,
(γ1, . . . , γiγi+1, . . . , γn) if 0 < i < n,
(γ1, . . . , γn−1) if i = n.

Define ∂n : Cc(Γ
(n),A)→ Cc(Γ

(n−1),A) by ∂n :=
∑

(−1)n(dn
i )∗ for n > 1

and ∂1 = s∗ − r∗ and for n = 1. One checks that ∂n−1∂n = 0 and we denote
the homology of the complex by H∗(Γ,A) and write H∗(Γ) := H∗(Γ,Z).
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Properties of the homology

Let Γ and Σ be ample groupoids and let ψ : Γ→ Σ be an étale
groupoid morphism. Then ψ∗ induces a homomorphism

ψ∗ : H∗(Γ)→ H∗(Σ).

A groupoid equivalence Γ ∼ Σ where Γ and Σ are ample groupoids
induces an isomorphism H∗(Γ) ∼= H∗(Σ).
If an ample groupoid Γ can be expressed as increasing union of a
sequence of clopen subgroupoids {Γn} such that Γ(0) ⊂ Γn for each n,
then

H∗(Γ) ∼= lim(in)∗(Γn)

where in : Γn → Γ denotes the inclusion map.
If Γ is an AF groupoid then

Hn(Γ) ∼=

{
K0(C∗(Γ)) if n = 0,
0 otherwise.

Let Λ be a row-finite higher rank graph with no sources. Then there is a
natural map H∗(Λ)→ H∗(GΛ).
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Higher rank Renault-Deaconu groupoids

Let X be a locally compact Hausdorff space and let k > 0. A map
σ : Nk × X → X is called an action of Nk on X by local homeomorphisms if

1 For each n ∈ Nk, the map σn := σ(n, ·) is a local homeomorphism.
2 For m, n ∈ Nk, σm+n = σm ◦ σn and σ0 = idX .

The Renault-Deaconu groupoid associated to the action is given by

Γ(X, σ) := {(x,m− n, y) : σm(x) = σn(y)}.

Identifying X with Γ(X, σ)(0) via x 7→ (x, 0, x); we have

r(x, n, y) = x, s(x, n, y) = y and
(x, n, y)(y,m, z) = (x,m + n, z).

Suppose that if X is zero dimensional. Then Γ = Γ(X, σ) is ample and the
skew product Γ×c Zk is an AF groupoid.
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Skew product

The canonical cocycle c : G(X, σ)→ Zk is given by c(x, n, y) := n. We form
the skew-product groupoid G ×c Zk with structure maps:

r((x, n, y), p) = (x, p), s((x, n, y), p) = (y, p + n) and
((x, n, y), p)((y,m, z), p + n) = ((x,m + n, z), p).

There is an action σ̃ of Nk on X̃ = X × Zk by local homeomorphisms given
by σ̃q(x, p) = (σq(x), p + q) and an isomorphism G ×c Zk ∼= G(X̃, σ̃) given
by

((x,m, y), p) 7→ ((x, p),m, (y, p + m)).

There is also a natural action of Zk on Γ×c Zk such that (Γ×c Zk) o Zk is
equivalent to Γ; hence, we have

H∗(Γ) ∼= H∗((Γ×c Zk) o Zk).

Moreover, C∗(Γ) is strong Morita equivalent to C∗((Γ×c Zk) o Zk) and

K∗(C∗(Γ)) ∼= K∗(C∗((Γ×c Zk) o Zk)).
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There is a natural action of Zk on

K0(C∗(Γ×c Zk)) ∼= H0(Γ×c Zk) ∼= lim(Cc(X,Z), σn
∗).

Theorem

Hn(Γ) ∼= Hn(Zk,H0(Γ×c Zk)) for all n. (So Hn(Γ) = 0 for n > k.)

An application of Kasparov’s spectral sequence yields the following:

Theorem

There is a spectral sequence that converges to the K-theory of C∗(Γ):

Hp(Zk,Kq(C∗(Γ×c Zk))) =⇒ Kp+q(C∗(Γ)).

Note Hp(Zk,Kq(C∗(Γ×c Zk))) = 0 if p > k or q is odd.
The differentials are of the form dr

p,q : Er
p,q → Er

p−r,q−r+1.

Corollary

If k = 1, 2, then Γ is in the class M. So if Λ is a k-graph for k = 1, 2, then
GΛ is in M.
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Merci!
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Higher rank graphs

Let k ∈ N := {0, 1, 2, . . . }.

Definition (see [KP00])

Let Λ be a countable small category and let d : Λ→ Nk be a functor.
Then (Λ, d) is a k-graph if it satisfies the factorization property:
For every λ ∈ Λ and m, n ∈ Nk such that

d(λ) = m + n

there exist unique µ, ν ∈ Λ such that λ = µν, d(µ) = m and d(ν) = n.

Set Λn := d−1(n) and identify Λ0 = Obj (Λ), the set of vertices.
An element λ ∈ Λei is called an edge.

We assume throughout that Λ is row-finite and source-free; that is,
for all v ∈ Λ0, n ∈ Nk, vΛn := r−1(v) ∩ Λn is finite and nonempty.
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The path groupoid

The infinite path space Λ∞ is the set of k-graph morphisms x : Ωk → Λ.
Shift map: for q ∈ Nk define the local homeomorphism σq : Λ∞ → Λ∞ by

σq(x)(m, n) = x(m + q, n + q) for (m, n) ∈ Ωk.

We define the path groupoid GΛ ⊂ Λ∞ × Zk × Λ∞ by

GΛ := {(x,m− n, y) : σm(x) = σn(y) for some m, n ∈ Nk}.

The unit space is identified with Λ∞ via the map x 7→ (x, 0, x).

Λ is cofinal if for every v ∈ Λ0 and x ∈ Λ∞, there are λ ∈ Λ and n ∈ Nk

such that s(λ) = x(n, n) and r(λ) = v. If Λ is cofinal, GΛ is minimal.

For v ∈ Λ0 the local periodicity group at v, denoted PΛ(v), is the set of all
m− n ∈ Zk such that m, n ∈ Nk and σm(x) = σn(x) for all x ∈ vΛ∞.

Λ is aperiodic if PΛ(v) = 0 for all v ∈ Λ0. If Λ is aperiodic, GΛ is
topologically principal, that is, points with trivial isotropy are dense.
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