A Groupoid Approach to Fourier Integral Operators

Groupoids and Operator algebras Orléans

Joint works with J.M. Lescure and D. Manchon (UCA)
May 22, 2019

Some examples of Lie groupoids

- Spaces $X \rightrightarrows X$ and Lie groups $G \rightrightarrows\{e\}$.

Some examples of Lie groupoids

- Spaces $X \rightrightarrows X$ and Lie groups $G \rightrightarrows\{e\}$.
- Pair groupoids: $X \times X \rightrightarrows X$ and fibred pair groupoids : $X \underset{B}{\times} X \rightrightarrows X$.

Some examples of Lie groupoids

- Spaces $X \rightrightarrows X$ and Lie groups $G \rightrightarrows\{e\}$.
- Pair groupoids: $X \times X \rightrightarrows X$ and fibred pair groupoids : $X \underset{B}{ } X \rightrightarrows X$.
- Vector bundles $E \rightrightarrows X$.

Some examples of Lie groupoids

- Spaces $X \rightrightarrows X$ and Lie groups $G \rightrightarrows\{e\}$.
- Pair groupoids: $X \times X \rightrightarrows X$ and fibred pair groupoids : $X \underset{B}{\times} X \rightrightarrows X$.
- Vector bundles $E \rightrightarrows X$.
- Transformation groupoids: $G \times X \rightrightarrows X$:

$$
s(g, x)=x, r(g, x)=g \cdot x,(g, h x) \cdot(h, x)=(g h, x), \iota(g, x)=\left(g^{-1}, g x\right)
$$

Some examples of Lie groupoids

- Spaces $X \rightrightarrows X$ and Lie groups $G \rightrightarrows\{e\}$.
- Pair groupoids: $X \times X \rightrightarrows X$ and fibred pair groupoids : $X \underset{B}{\times} X \rightrightarrows X$.
- Vector bundles $E \rightrightarrows X$.
- Transformation groupoids: $G \times X \rightrightarrows X$:

$$
s(g, x)=x, r(g, x)=g \cdot x,(g, h x) \cdot(h, x)=(g h, x), \iota(g, x)=\left(g^{-1}, g x\right)
$$

- The tangent groupoid of a manifold:

$$
\mathcal{T} M=(T M \times\{0\}) \sqcup(0,1] \times M \times M \rightrightarrows[0,1] \times M .
$$

Some examples of Lie groupoids

- Spaces $X \rightrightarrows X$ and Lie groups $G \rightrightarrows\{e\}$.
- Pair groupoids: $X \times X \rightrightarrows X$ and fibred pair groupoids : $X \underset{B}{\times} X \rightrightarrows X$.
- Vector bundles $E \rightrightarrows X$.
- Transformation groupoids: $G \times X \rightrightarrows X$:

$$
s(g, x)=x, r(g, x)=g \cdot x,(g, h x) \cdot(h, x)=(g h, x), \iota(g, x)=\left(g^{-1}, g x\right)
$$

- The tangent groupoid of a manifold:

$$
\mathcal{T} M=(T M \times\{0\}) \sqcup(0,1] \times M \times M \rightrightarrows[0,1] \times M
$$

- The b-groupoid of a manifold with boundary:

$$
(M \backslash \partial M) \times(M \backslash \partial M) \cup \partial M \times \partial M \times \mathbb{R} \rightrightarrows M
$$

Some examples of Lie groupoids

- Spaces $X \rightrightarrows X$ and Lie groups $G \rightrightarrows\{e\}$.
- Pair groupoids: $X \times X \rightrightarrows X$ and fibred pair groupoids : $X \underset{B}{\times} X \rightrightarrows X$.
- Vector bundles $E \rightrightarrows X$.
- Transformation groupoids: $G \times X \rightrightarrows X$:

$$
s(g, x)=x, r(g, x)=g \cdot x,(g, h x) \cdot(h, x)=(g h, x), \iota(g, x)=\left(g^{-1}, g x\right)
$$

- The tangent groupoid of a manifold:

$$
\mathcal{T} M=(T M \times\{0\}) \sqcup(0,1] \times M \times M \rightrightarrows[0,1] \times M
$$

- The b-groupoid of a manifold with boundary:

$$
(M \backslash \partial M) \times(M \backslash \partial M) \cup \partial M \times \partial M \times \mathbb{R} \rightrightarrows M
$$

- Analogous groupoids for stratified spaces and (singular) foliations...

G-PDOs : Examples

G	G-PDOs
Lie groups	Right invariant PDOs
$X \times X \rightrightarrows X$	PDOs on X
$X \times{ }_{B} X \rightrightarrows X$	Families $\left(P_{b}\right)_{b \in B}$ of PDOs in the fibers
Vector bundles	Families of translation invariant PDOs
$\mathcal{T} M \rightrightarrows[0,1] \times M$	Asymptotic PDOs
b-groupoid	b-PDOs (+ support conditions)
Stratified spaces	PDOs on manifolds with fibred corners

- Can we find a notion of G-FIOs yielding a similar table ?

FIOs are useful in the theory of linear PDE on compact manifolds: strictly hyperbolic problems, asymptotics of spectra, singularities of $\operatorname{Tr}\left(e^{-i t P}\right) \in \mathcal{D}^{\prime}(\mathbb{R})$, Egorov theorem ...
(1) Lie groups: Nielsen-Stetkær (1974).

FIOs are useful in the theory of linear PDE on compact manifolds: strictly hyperbolic problems, asymptotics of spectra, singularities of $\operatorname{Tr}\left(e^{-i t P}\right) \in \mathcal{D}^{\prime}(\mathbb{R})$, Egorov theorem ...
© Lie groups: Nielsen-Stetkær (1974).
(2) Mfds with boundary, b-geometry framework: Melrose (1981).

FIOs are useful in the theory of linear PDE on compact manifolds: strictly hyperbolic problems, asymptotics of spectra, singularities of $\operatorname{Tr}\left(e^{-i t P}\right) \in \mathcal{D}^{\prime}(\mathbb{R})$, Egorov theorem ...
© Lie groups: Nielsen-Stetkær (1974).
(2) Mfds with boundary, b-geometry framework: Melrose (1981).
(3) Foliations: Y. Kordyukov (1994).

FIOs are useful in the theory of linear PDE on compact manifolds: strictly hyperbolic problems, asymptotics of spectra, singularities of $\operatorname{Tr}\left(e^{-i t P}\right) \in \mathcal{D}^{\prime}(\mathbb{R})$, Egorov theorem ...

- Lie groups: Nielsen-Stetkær (1974).
(2) Mfds with boundary, b-geometry framework: Melrose (1981).
(3) Foliations: Y. Kordyukov (1994).
(9) Mfds with conical sing.: Nazaikinskii-Schulze-Sternin (2001), Nazaikinskii-Savin-Schulze-Sternin (2005).

FIOs are useful in the theory of linear PDE on compact manifolds: strictly hyperbolic problems, asymptotics of spectra, singularities of $\operatorname{Tr}\left(e^{-i t P}\right) \in \mathcal{D}^{\prime}(\mathbb{R})$, Egorov theorem ...
© Lie groups: Nielsen-Stetkær (1974).
(2) Mfds with boundary, b-geometry framework: Melrose (1981).
(3) Foliations: Y. Kordyukov (1994).
(9) Mfds with conical sing.: Nazaikinskii-Schulze-Sternin (2001), Nazaikinskii-Savin-Schulze-Sternin (2005).
(6) Mfds with boundary, Boutet de Monvel's framework:

Battisti-Coriasco-Schrohe (2014,2015); Bohlen (2015).

Lagrangian distributions (Hörmander)

Let X be a C^{∞} manifold of dimension n and $\Lambda \subset T^{*} X \backslash 0$ a conic lagrangian sub-mfd.
The set $I^{m}(X, \Lambda), m \in \mathbb{R}$, consists of distributions $u \in \mathcal{D}^{\prime}(X)$ of the form:

$$
u=\sum_{j \in J} \int e^{i \phi_{j}\left(x, \theta_{j}\right)} a_{j}\left(x, \theta_{j}\right) d \theta_{j} \quad \bmod C^{\infty}(X)
$$

where

- $\left(x, \theta_{j}\right) \in \mathcal{V}_{j} \subset U_{j} \times \mathbb{R}^{N_{j}}$ with U_{j} a coord. patch, \mathcal{V}_{j} open and homogeneous;
- $\phi_{j}: \mathcal{V}_{j} \rightarrow \mathbb{R}$ is a non-degenerate phase parametrizing Λ;
- $a_{j}\left(x, \theta_{j}\right) \in S^{m+\left(n_{x}-2 N_{j}\right) / 4}\left(U_{j} \times \mathbb{R}^{N_{j}}\right)$ and $\operatorname{supp}\left(a_{j}\right) \subset \mathcal{V}_{j} \backslash 0$. $I^{m}(X, \Lambda)=$ Lagrangian distributions on X subordinated to Λ.

Convolution and G-ops

Convolution in $C_{c}^{\infty}(G)$

$$
f * g(\gamma)=\int_{\gamma_{1} \gamma_{2}=\gamma} f\left(\gamma_{1}\right) g\left(\gamma_{2}\right)=m_{*}\left(\left.f \otimes g\right|_{G^{(2)}}\right), \quad f, g \in C_{c}^{\infty}(G)
$$

G-operators

Continuous linear maps $P: C_{c}^{\infty}(G) \rightarrow C^{\infty}(G)$ such that

$$
P(f * g)=P(f) * g \quad \text { for any } f, g \in C_{c}^{\infty}(G),
$$

Equivalently, $P=\left(P_{x}\right)_{x \in M}$ with $P_{x}: C_{c}^{\infty}\left(G_{x}\right) \rightarrow C^{\infty}\left(G_{x}\right)$,
$P_{r(\gamma)} R_{\gamma}=R_{\gamma} P_{s(\gamma)}$ and

$$
\left.(P f)\right|_{G_{x}}=P_{x}\left(\left.f\right|_{G_{x}}\right), \quad f \in C_{c}^{\infty}(G) .
$$

(Notations: $\left.G_{x}=s^{-1}(x), G^{x}=r^{-1}(x)\right)$.
G-PDOs $=G$-Ops P with P_{x} a pseudodifferential operator on G_{x} for any x. Actually:

$$
G-\mathrm{PDOs}=I(G, M)
$$

Convolution of distributions

FIOs are lagrangian distributions. To get a satisfactory approach on groupoids (calculus, continuity, Egorov, evolution equations...), we need:

- to understand the convolution of distributions;
- to select a suitable set of Lagrangian submanifolds.

There are two ways of extending convolution product of functions to distributions:

Schwartz kernel theorem and transversal distributions

Let $G \rightrightarrows M$ be a Lie groupoid.

- For any $u \in \mathcal{D}^{\prime}(G)$ and $f \in C_{c}^{\infty}(G)$, define $s_{*}(u f) \in \mathcal{D}^{\prime}(M)$ by:

$$
g \in C^{\infty}(M), \quad\left\langle s_{*}(u f), g\right\rangle=\left\langle u, f \cdot s^{*} g\right\rangle .
$$

This provides an isomorphism:

$$
\begin{equation*}
s_{*}: \mathcal{D}^{\prime}(G) \xrightarrow{\simeq} \mathcal{L}_{C^{\infty}(M)}\left(C_{c}^{\infty}(G), \mathcal{D}^{\prime}(M)\right) . \tag{1}
\end{equation*}
$$

- Consider the subspace of s-transversal distributions on G :

$$
\begin{equation*}
\mathcal{D}_{s}^{\prime}(G)=\left\{u \in \mathcal{D}^{\prime}(G) ; \operatorname{Im}\left(s_{*}(u)\right) \subset C^{\infty}(M)\right\} \tag{2}
\end{equation*}
$$

Then

$$
\begin{equation*}
s_{*}: \mathcal{D}_{s}^{\prime}(G) \xrightarrow{\simeq} \mathcal{L}_{C^{\infty}(M)}\left(C_{c}^{\infty}(G), C^{\infty}(M)\right) . \tag{3}
\end{equation*}
$$

appropriate densities are understood, similar statements hold with r instead of s.

Convolution in \mathcal{D}^{\prime}

Theorem (LMV)

Convolution of functions extends (separately) continuously to:

- $\mathcal{D}_{s}^{\prime}(G) \times \mathcal{E}^{\prime}(G) \xrightarrow{*} \mathcal{D}^{\prime}(G)$,
- $\mathcal{D}_{s}^{\prime}(G) \times \mathcal{E}_{s}^{\prime}(G) \xrightarrow{*} \mathcal{D}_{s}^{\prime}(G)$
- $\mathcal{D}_{r}^{\prime}(G) \times C_{c}^{\infty}(G) \xrightarrow{*} C^{\infty}(G)$,
- ...

Corollary

- $\mathcal{E}_{s}^{\prime}(G), \mathcal{E}_{r}^{\prime}(G)$ are unital algebras.
- $\mathcal{E}_{r, s}^{\prime}(G)=\mathcal{E}_{s}^{\prime}(G) \cap \mathcal{E}_{r}^{\prime}(G)$ is a unital involutive algebra.
unit: $\langle\delta, f\rangle=\int_{M} f$, involution: $u^{\star}=\overline{\iota^{*}(u)}$.

G-operators are transversal distributions

This also proves that G-ops are operators given by convolution with distributions.
The map

$$
\mathcal{D}_{r}^{\prime}(G) \longrightarrow \mathrm{Op}_{G}, u \longmapsto(f \mapsto u * f)
$$

is well defined and gives:

$$
\begin{aligned}
\mathcal{D}_{r}^{\prime}(G) & \simeq \mathrm{Op}_{G} \\
\mathcal{D}_{r, s}^{\prime}(G) & \simeq \mathrm{Op}_{G}^{*}
\end{aligned}
$$

Coste-Dazord-Weinstein groupoid $T^{*} G$

Let $G \rightrightarrows M$ be a Lie groupoid.
Understanding under which conditions on the wave front sets of $u, v \in \mathcal{D}^{\prime}(G)$, the convolution product $u * v$ is defined leads to the algebraic structure of the cotangent space $T^{*} G$.

There exists a natural symplectic Lie groupoid structure on $T^{*} G$ with unit space $A^{*} G=N^{*} M$.

$$
\Gamma=\left(T^{*} G \rightrightarrows A^{*} G=N^{*} M\right)
$$

A groupoid $\Gamma \rightrightarrows \Gamma^{(0)}$ is sympletic if Γ is a symplectic manifold and if the graph of the multiplication map is lagrangian in $(-\Gamma) \times \Gamma \times \Gamma$

CDW groupoid: $\Gamma=T^{*} G \rightrightarrows A^{*} G$.

The product $\left(\gamma_{1}, \xi_{1}\right) \cdot\left(\gamma_{2}, \xi_{2}\right)=(\gamma, \xi)$ is defined by

$$
\gamma=\gamma_{1} \gamma_{2}
$$

and the equality

$$
\xi(t)=\xi_{1}\left(t_{1}\right)+\xi_{2}\left(t_{2}\right)
$$

for any $t \in T_{\gamma} G$ and $\left(t_{1}, t_{2}\right) \in T_{\left(\gamma_{1}, \gamma_{2}\right)} G^{(2)}$ such that

$$
t=d m\left(t_{1}, t_{2}\right)
$$

Well defined iff it does not depend on the choice of such t_{1}, t_{2}.

CDW groupoid: $\Gamma=T^{*} G \rightrightarrows A^{*} G$.

The product $\left(\gamma_{1}, \xi_{1}\right) \cdot\left(\gamma_{2}, \xi_{2}\right)=(\gamma, \xi)$ is defined by

$$
\gamma=\gamma_{1} \gamma_{2}
$$

and the equality

$$
\xi(t)=\xi_{1}\left(t_{1}\right)+\xi_{2}\left(t_{2}\right)
$$

for any $t \in T_{\gamma} G$ and $\left(t_{1}, t_{2}\right) \in T_{\left(\gamma_{1}, \gamma_{2}\right)} G^{(2)}$ such that

$$
t=d m\left(t_{1}, t_{2}\right)
$$

Well defined iff it does not depend on the choice of such t_{1}, t_{2}.

$$
\begin{array}{ll}
\text { (Source) } & s_{\Gamma}(\gamma, \xi)=\left(s(\gamma), L_{\gamma}^{*}(\xi)\right) \in A_{s(\gamma)}^{*} G \\
\text { (Range) } & r_{\Gamma}(\gamma, \xi)=\left(r(\gamma), R_{\gamma}^{*}(\xi)\right) \in A_{r(\gamma)}^{*} G
\end{array}
$$

$s_{\Gamma}(\gamma, \xi)$ is obtained by applying the codifferential of $L_{\gamma}: G^{x} \rightarrow G^{r(\gamma)}$ to the restriction $\xi: T_{\gamma} G^{r(\gamma)} \rightarrow \mathbb{R}$. The result is a linear form on $T_{x} G$ vanishing on $T_{x} G^{(0)}$, thus an element of $A_{x}^{*} G$.

CDW groupoid: $\Gamma=T^{*} G \rightrightarrows A^{*} G$.

The product $\left(\gamma_{1}, \xi_{1}\right) \cdot\left(\gamma_{2}, \xi_{2}\right)=(\gamma, \xi)$ is defined by

$$
\gamma=\gamma_{1} \gamma_{2}
$$

and the equality

$$
\xi(t)=\xi_{1}\left(t_{1}\right)+\xi_{2}\left(t_{2}\right)
$$

for any $t \in T_{\gamma} G$ and $\left(t_{1}, t_{2}\right) \in T_{\left(\gamma_{1}, \gamma_{2}\right)} G^{(2)}$ such that

$$
t=d m\left(t_{1}, t_{2}\right)
$$

Well defined iff it does not depend on the choice of such t_{1}, t_{2}.

$$
\begin{array}{ll}
\text { (Source) } & s_{\Gamma}(\gamma, \xi)=\left(s(\gamma), L_{\gamma}^{*}(\xi)\right) \in A_{s(\gamma)}^{*} G \\
\text { (Range) } & r_{\Gamma}(\gamma, \xi)=\left(r(\gamma), R_{\gamma}^{*}(\xi)\right) \in A_{r(\gamma)}^{*} G
\end{array}
$$

$s_{\Gamma}(\gamma, \xi)$ is obtained by applying the codifferential of $L_{\gamma}: G^{x} \rightarrow G^{r(\gamma)}$ to the restriction $\xi: T_{\gamma} G^{r(\gamma)} \rightarrow \mathbb{R}$. The result is a linear form on $T_{x} G$ vanishing on $T_{x} G^{(0)}$, thus an element of $A_{x}^{*} G$.

$$
\text { (Inversion) } \quad(\gamma, \xi)^{-1}=\left(\gamma^{-1},-{ }^{t}\left(d \iota_{\gamma}\right)(\xi)\right)
$$

Wave front and convolution

Let $W_{1}, W_{2} \subset T^{*} G \backslash 0$ be closed, conic subsets such that

$$
\left(W_{1} \times W_{2}\right) \cap \operatorname{ker} m_{\Gamma}=\emptyset .
$$

Then convolution extends continuously to

$$
\begin{equation*}
\mathcal{E}_{W_{1}}^{\prime}(G) \times \mathcal{E}_{W_{2}}^{\prime}(G) \longrightarrow \mathcal{E}_{W}^{\prime}(G) \tag{4}
\end{equation*}
$$

where W is the product of the sets $W_{1} \cup 0$ and $W_{2} \cup 0$ in $T^{*} G$.

Distributions and G-ops

Set :
$\mathcal{E}_{a}^{\prime}(G):=\left\{u \in \mathcal{E}^{\prime}(G) ; \operatorname{WF}(u) \cap \operatorname{ker} s_{\Gamma}=\emptyset\right.$ and $\left.\operatorname{WF}(u) \cap \operatorname{ker} r_{\Gamma}=\emptyset\right\}$.

- $\left(\mathcal{E}_{a}^{\prime}(G), *\right)$ is a unital involutive algebra,

Distributions and G-ops

Set :
$\mathcal{E}_{a}^{\prime}(G):=\left\{u \in \mathcal{E}^{\prime}(G) ; \operatorname{WF}(u) \cap \operatorname{ker} s_{\Gamma}=\emptyset\right.$ and $\left.\operatorname{WF}(u) \cap \operatorname{ker} r_{\Gamma}=\emptyset\right\}$.

- $\left(\mathcal{E}_{a}^{\prime}(G), *\right)$ is a unital involutive algebra,
- \{ compactly supported G-PDOs $\} \subset \mathcal{E}_{a}^{\prime}(G) \subset \mathcal{E}_{r, s}^{\prime}(G)$;

Distributions and G-ops

Set :
$\mathcal{E}_{a}^{\prime}(G):=\left\{u \in \mathcal{E}^{\prime}(G) ; \operatorname{WF}(u) \cap \operatorname{ker} s_{\Gamma}=\emptyset\right.$ and $\left.\operatorname{WF}(u) \cap \operatorname{ker} r_{\Gamma}=\emptyset\right\}$.

- $\left(\mathcal{E}_{a}^{\prime}(G), *\right)$ is a unital involutive algebra,
- \{ compactly supported G-PDOs $\} \subset \mathcal{E}_{a}^{\prime}(G) \subset \mathcal{E}_{r, s}^{\prime}(G)$;
- for any $u_{1}, u_{2} \in \mathcal{E}_{a}^{\prime}(G)$ we have

$$
\mathrm{WF}\left(u_{1} * u_{2}\right) \subset \mathrm{WF}\left(u_{1}\right) \cdot \mathrm{WF}\left(u_{2}\right) \subset T^{*} G \backslash\left(\operatorname{ker} r_{\Gamma} \cup \operatorname{ker} s_{\Gamma}\right)
$$

Distributions and G-ops

Set :
$\mathcal{E}_{a}^{\prime}(G):=\left\{u \in \mathcal{E}^{\prime}(G) ; \operatorname{WF}(u) \cap \operatorname{ker} s_{\Gamma}=\emptyset\right.$ and $\left.\operatorname{WF}(u) \cap \operatorname{ker} r_{\Gamma}=\emptyset\right\}$.

- $\left(\mathcal{E}_{a}^{\prime}(G), *\right)$ is a unital involutive algebra,
- \{ compactly supported G-PDOs $\} \subset \mathcal{E}_{a}^{\prime}(G) \subset \mathcal{E}_{r, s}^{\prime}(G)$;
- for any $u_{1}, u_{2} \in \mathcal{E}_{a}^{\prime}(G)$ we have

$$
\mathrm{WF}\left(u_{1} * u_{2}\right) \subset \mathrm{WF}\left(u_{1}\right) \cdot \mathrm{WF}\left(u_{2}\right) \subset T^{*} G \backslash\left(\operatorname{ker} r_{\Gamma} \cup \operatorname{ker} s_{\Gamma}\right) .
$$

- Elements of $\mathcal{E}_{a}^{\prime}(G)$ and even $\mathcal{D}_{a}^{\prime}(G)$ provide G-operators :

$$
u \in \mathcal{D}_{a}^{\prime}(G), \quad\left(\begin{array}{clc}
C_{c}^{\infty}(G) & \longrightarrow & C^{\infty}(G) \\
f & \longmapsto & u * f
\end{array}\right) \in \mathrm{Op}_{G} .
$$

Examples of the rule for convolution

Let X be a manifold and $X \rightrightarrows X$ be the trivial groupoid.

- Convolution = pointwise multiplication;

Examples of the rule for convolution

Let X be a manifold and $X \rightrightarrows X$ be the trivial groupoid.

- Convolution = pointwise multiplication;
- $\Gamma=T^{*} X \rightrightarrows N^{*} X=X$ is the ordinary vector bundle structure;

Examples of the rule for convolution

Let X be a manifold and $X \rightrightarrows X$ be the trivial groupoid.

- Convolution = pointwise multiplication;
- $\Gamma=T^{*} X \rightrightarrows N^{*} X=X$ is the ordinary vector bundle structure;
- If $\mathrm{WF}\left(u_{1}\right) \times \mathrm{WF}\left(u_{2}\right) \cap\{(x, \xi, x,-\xi)\}=\emptyset$ then $u_{1} u_{2}$ is well defined and

$$
\mathrm{WF}\left(u_{1} u_{2}\right) \subset\left(\mathrm{WF}\left(u_{1}\right)+\mathrm{WF}\left(u_{2}\right)\right) \cup \mathrm{WF}\left(u_{1}\right) \cup \mathrm{WF}\left(u_{2}\right) .
$$

Examples of the rule for convolution

Let $G=X \times X \rightrightarrows X$ be the pair groupoid. Then

- Convolution = composition of integral kernels;

Examples of the rule for convolution

Let $G=X \times X \rightrightarrows X$ be the pair groupoid. Then

- Convolution = composition of integral kernels;
- $\Gamma=T^{*} X \times T^{*} X \rightrightarrows N^{*} \Delta_{X} \simeq T^{*} X$ is the pair' groupoid:

$$
(x, \xi, y, \eta) \circ^{\prime}(y,-\eta, z, \zeta)=(x, \xi, z, \zeta)
$$

Examples of the rule for convolution

Let $G=X \times X \rightrightarrows X$ be the pair groupoid. Then

- Convolution = composition of integral kernels;
- $\Gamma=T^{*} X \times T^{*} X \rightrightarrows N^{*} \Delta_{X} \simeq T^{*} X$ is the pair' groupoid:

$$
(x, \xi, y, \eta) \circ^{\prime}(y,-\eta, z, \zeta)=(x, \xi, z, \zeta)
$$

- If $\mathrm{WF}\left(u_{1}\right) \times \mathrm{WF}\left(u_{2}\right) \cap\{(x, 0, y, \eta, y,-\eta, z, 0)\}=\emptyset$ then $u_{1} \circ u_{2} \in \mathcal{D}^{\prime}(X \times X)$ is well defined and

$$
\mathrm{WF}\left(u_{1} \circ u_{2}\right) \subset\left(\mathrm{WF}\left(u_{1}\right) \cup 0\right) \circ^{\prime}\left(\mathrm{WF}\left(u_{2}\right) \cup 0\right) .
$$

Examples of the rule for convolution

Let $G \rightrightarrows\{e\}$ be a Lie group. Then

- Convolution = ordinary convolution in G;

Examples of the rule for convolution

Let $G \rightrightarrows\{e\}$ be a Lie group. Then

- Convolution = ordinary convolution in G;
- $\left(T^{*} G \rightrightarrows \mathfrak{g}^{*}\right) \simeq\left(\mathfrak{g}^{*} \rtimes G\right)\left((g, \xi) \mapsto\left(g, R_{g}^{*} \xi\right)\right)$

Examples of the rule for convolution

Let $G \rightrightarrows\{e\}$ be a Lie group. Then

- Convolution = ordinary convolution in G;
- $\left(T^{*} G \rightrightarrows \mathfrak{g}^{*}\right) \simeq\left(\mathfrak{g}^{*} \rtimes G\right)\left((g, \xi) \mapsto\left(g, R_{g}^{*} \xi\right)\right)$
- Here ker $m_{\Gamma}=G^{2} \times\{0\}$, therefore $u_{1} * u_{2}$ is always defined and $\mathrm{WF}\left(u_{1} * u_{2}\right) \subset\left\{(\xi, g) ;\left(\xi, h, \operatorname{Ad}_{h}^{*} . \xi, h^{-1} g\right) \in \mathrm{WF}\left(u_{1}\right) \times \mathrm{WF}\left(u_{2}\right), h \in G\right\} \subset \mathfrak{g}^{*} \times G$

Calculus of Lagrangian submanifolds in $T^{*} G$

Set $T_{a}^{*} G=T^{*} G \backslash\left(\operatorname{ker} r_{\Gamma} \cup \operatorname{ker} s_{\Gamma}\right)$.

G-relations

Conic Lagrangian submanifolds of $T^{*} G$ contained in $T_{a}^{*} G$.

If $G=X \times X$, these are the conic Lagrangian submanifolds contained in $T^{*} X \backslash 0 \times T^{*} X \backslash 0$.
(1) Let Λ_{1}, Λ_{2} be two G-relations. If $\Lambda_{1} \times \Lambda_{2} \cap \Gamma^{(2)}$ is clean, then $\Lambda_{1} . \Lambda_{2} \subset \Gamma$ is a (immersed) G-relation.

Calculus of Lagrangian submanifolds in $T^{*} G$

Set $T_{a}^{*} G=T^{*} G \backslash\left(\operatorname{ker} r_{\Gamma} \cup \operatorname{ker} s_{\Gamma}\right)$.

G-relations

Conic Lagrangian submanifolds of $T^{*} G$ contained in $T_{a}^{*} G$.

If $G=X \times X$, these are the conic Lagrangian submanifolds contained in $T^{*} X \backslash 0 \times T^{*} X \backslash 0$.
(1) Let Λ_{1}, Λ_{2} be two G-relations. If $\Lambda_{1} \times \Lambda_{2} \cap \Gamma^{(2)}$ is clean, then $\Lambda_{1} . \Lambda_{2} \subset \Gamma$ is a (immersed) G-relation.
(2) Let Λ be a G-relation. Then $\Lambda^{\star}:=\iota_{\Gamma}(\Lambda)$ is a G-relation.

Calculus of Lagrangian submanifolds in $T^{*} G$

 Set $T_{a}^{*} G=T^{*} G \backslash\left(\operatorname{ker} r_{\Gamma} \cup \operatorname{ker} s_{\Gamma}\right)$.
G-relations

Conic Lagrangian submanifolds of $T^{*} G$ contained in $T_{a}^{*} G$.

If $G=X \times X$, these are the conic Lagrangian submanifolds contained in $T^{*} X \backslash 0 \times T^{*} X \backslash 0$.
(1) Let Λ_{1}, Λ_{2} be two G-relations. If $\Lambda_{1} \times \Lambda_{2} \cap \Gamma^{(2)}$ is clean, then $\Lambda_{1} . \Lambda_{2} \subset \Gamma$ is a (immersed) G-relation.
(2) Let Λ be a G-relation. Then $\Lambda^{\star}:=\iota_{\Gamma}(\Lambda)$ is a G-relation.
(3) Let Λ be a G-relation. Then

$$
r_{\Gamma}: \Lambda \rightarrow A^{*} G \text { and } s_{\Gamma}: \Lambda \rightarrow A^{*} G
$$

are diffeomorphisms if and only if

$$
\Lambda \Lambda^{\star}=A^{*} G \quad \text { and } \quad \Lambda^{\star} \Lambda=A^{*} G
$$

Such G-relations are called invertible.

G-FIOs: definition, composition

Definition

G-FIOs $=$ Elements of $I(G, \Lambda)$, for any G-relation Λ.

$$
G-\mathrm{PDOs}=I\left(G, A^{*} G\right) \subset G-\mathrm{FIOs}
$$

$$
G-\mathrm{FIOs} \subset \mathcal{D}_{a}^{\prime}(G) \subset \mathrm{Op}_{G}^{\star}
$$

G-FIOs: definition, composition

Definition

G-FIOs $=$ Elements of $I(G, \Lambda)$, for any G-relation Λ.

$$
\begin{gathered}
G-\mathrm{PDOs}=I\left(G, A^{*} G\right) \subset G-\mathrm{FIOs} \\
G-\mathrm{FIOs} \subset \mathcal{D}_{a}^{\prime}(G) \subset \mathrm{Op}_{G}^{\star}
\end{gathered}
$$

If Λ is a G-relation and $A \in I^{m}(G, \Lambda)$, then $A^{\star} \in I^{m}\left(G, \Lambda^{\star}\right)$.

G-FIOs: definition, composition

Definition

G-FIOs = Elements of $I(G, \Lambda)$, for any G-relation Λ.

$$
\begin{gathered}
G-\mathrm{PDOs}=I\left(G, A^{*} G\right) \subset G-\mathrm{FIOs} \\
G-\mathrm{FIOs} \subset \mathcal{D}_{a}^{\prime}(G) \subset \mathrm{Op}_{G}^{\star}
\end{gathered}
$$

If Λ is a G-relation and $A \in I^{m}(G, \Lambda)$, then $A^{\star} \in I^{m}\left(G, \Lambda^{\star}\right)$.

Assume that Λ_{1}, Λ_{2} are closed G-relations, with a clean intersection $\Lambda_{1} \times \Lambda_{2} \cap\left(T^{*} G\right)^{(2)}$ of excess e. Then convolution gives a map:

$$
I_{c}^{m_{1}}\left(G, \Lambda_{1}\right) \times I^{m_{2}}\left(G, \Lambda_{2}\right) \longrightarrow I^{m_{1}+m_{2}+e / 2-\left(n-2 n^{(0)}\right) / 4}\left(G, \Lambda_{1} \Lambda_{2}\right)
$$

$\left(n=\operatorname{dim}(G), n^{(0)}=\operatorname{dim}\left(G^{(0)}\right)\right)$

$$
\Psi^{m}(G):=I^{m+\left(n-2 n^{(0)}\right) / 4}\left(G, A^{*} G\right)
$$

Since $A^{*} G . A^{*} G=A^{*} G$, the previous composition result recovers

$$
\Psi_{c}^{m_{1}}(G) . \Psi^{m_{2}}(G) \subset \Psi^{m_{1}+m_{2}}(G) .
$$

Since $A^{*} G \times \Lambda \cap\left(T^{*} G\right)^{(2)}$ is always transversal, we get:

$$
\Psi_{c}^{m_{1}}(G) * I^{m_{2}}(G, \Lambda) \subset I^{m_{1}+m_{2}}(G, \Lambda)
$$

$$
\Psi^{m}(G):=I^{m+\left(n-2 n^{(0)}\right) / 4}\left(G, A^{*} G\right)
$$

Since $A^{*} G . A^{*} G=A^{*} G$, the previous composition result recovers

$$
\Psi_{c}^{m_{1}}(G) \cdot \Psi^{m_{2}}(G) \subset \Psi^{m_{1}+m_{2}}(G) .
$$

Since $A^{*} G \times \Lambda \cap\left(T^{*} G\right)^{(2)}$ is always transversal, we get:

$$
\Psi_{c}^{m_{1}}(G) * I^{m_{2}}(G, \Lambda) \subset I^{m_{1}+m_{2}}(G, \Lambda)
$$

Egorov thm, C^{*}-continuity

(c) If $\Lambda_{1} \times \Lambda_{2} \cap\left(T^{*} G\right)^{(2)}$ is clean and $\Lambda_{1} \cdot \Lambda_{2} \subset A^{*} G$, Then

$$
I_{c}^{m_{1}}\left(G, \Lambda_{1}\right) * \Psi^{m_{2}}(G) * I_{c}^{m_{3}}\left(G, \Lambda_{2}\right) \subset \Psi^{m+e / 2-\left(n-2 n^{(0)}\right) / 4}(G) .
$$

(2) Let Λ be an invertible closed G-relation. Then

$$
\begin{aligned}
& I^{\left(n-2 n^{(0)}\right) / 4}(G, \Lambda) \subset \mathcal{M}\left(C^{*}(G)\right), \\
& I^{<\left(n-2 n^{(0)}\right) / 4}(G, \Lambda) \subset C^{*}(G) .
\end{aligned}
$$

Product of symbols

Remember the underlying densities bundles:

$$
I(G, \Lambda) \subset \mathcal{D}^{\prime}\left(G, \Omega^{1 / 2}\right) \quad \text { with } \Omega^{1 / 2}=\Omega^{1 / 2}(\operatorname{ker} d s) \otimes \Omega^{1 / 2}(\operatorname{ker} d r)
$$

Hörmander's principal symbol map reads here:

$$
\sigma: I^{m}(G, \Lambda) \longrightarrow S^{[m+n / 4]}\left(\Lambda, M_{\Lambda} \otimes \Omega_{\Lambda}^{1 / 2} \otimes \Omega^{1 / 2}\left(\operatorname{ker} d s_{\Gamma}\right)\right)
$$

Let $A_{j} \in I^{m_{j}}\left(G, \Lambda_{j}\right), j=1,2$ be as in the composition theorem.
A principal symbol a of $A_{1} . A_{2}$ is given by:

$$
\forall \delta \in \Lambda_{1} \cdot \Lambda_{2}, \quad a(\delta)=\int_{\delta_{1} \delta_{2}=\delta} a_{1}\left(\delta_{1}\right) a_{2}\left(\delta_{2}\right)
$$

When $\Lambda=A^{*} G$, the Maslov bundle M_{Λ} is trivial and

$$
\Omega_{A^{*} G}^{1 / 2} \otimes \Omega^{1 / 2}\left(\operatorname{ker} d s_{\Gamma}\right)=\left.\left(\Omega_{T^{*} G}^{1 / 2}\right)\right|_{A^{*} G} \simeq A^{*} G \times \mathbb{C}
$$

The last trivialization decreases by $\left(n-n^{(0)}\right) / 2$ the degree of symbols, thus :

$$
\sigma: \Psi^{m}(G)=I^{m+\left(n-2 n^{(0)}\right) / 4}\left(G, A^{*} G\right) \longrightarrow S^{[m]}\left(A^{*} G\right)
$$

Representations of G-FIOs

Any $P \in I_{c}(G, \Lambda)$ gives:

- continuous linear operators $P_{x} \in \mathcal{L}\left(C^{\infty}\left(G_{x}\right), C^{\infty}\left(G_{x}\right)\right), x \in M$.
- a continuous linear operator $r_{M}(P): C^{\infty}(M) \longrightarrow C^{\infty}(M)$:

$$
r_{M}(P)(f)=\left.P\left(r^{*} f\right)\right|_{M}, \quad f \in C^{\infty}(M)
$$

- continuous linear operators $r_{O}(P): C^{\infty}(O) \longrightarrow C^{\infty}(O)$, for any orbit $O=r\left(s^{-1}(x)\right) \subset M$:

$$
r_{O}(P)(f)=\left.\left(\left.P\right|_{r^{-1}(O)} r^{*} f\right)\right|_{o}, \quad f \in C^{\infty}(O)
$$

G_{x}, O are manifolds (C^{∞}, without boundary) therefore on may ask whether P_{x} and $r_{O}(P)$ are ordinary FIOs. Actually, they are given by oscillatory integrals with possibly degenerated phases.

Representations of G-FIOs

Let $P \in I^{m}(G, \Lambda)$ with Λ satisfying:
For any orbit $U \subset G$ the intersection $T_{U}^{*} G \cap \Lambda$ is transversal then (Λ is called a family G-relation and)

$$
P_{x} \in I^{m-\left(n-2 n^{(0)}\right) / 4}\left(G_{x} \times G_{x}, \Lambda_{x}\right), \quad \forall x .
$$

where $\Lambda_{x} \subset\left(T^{*} G_{x} \backslash 0\right) \times\left(T^{*} G_{x} \backslash 0\right)$ is a family of canonical relations induced by Λ.

Representations of G-FIOs

There are converse statements:

Theorem

Let $\left(\Lambda_{x}\right)_{x \in G^{(0)}}$ be an equivariant C^{∞} family of Lagrangians $\subset T^{*} G_{x} \backslash 0 \times T^{*} G_{x} \backslash 0$. Then there exists a unique (family) G-relation Λ "gluing" the family in the sense that

$$
d_{x}^{*}(\Lambda)=\Lambda_{x} \quad \forall x \in G^{(0)}
$$

Here d_{x} is the map: $\left(\gamma_{1}, \gamma_{2}\right) \rightarrow \gamma_{1} \gamma_{2}^{-1}$.

Proposition

G-FFIOs are in one-to-one correspondence with G-op P such that for all x, the operator P_{x} is a FIO on G_{x}.
G-FFIO $=G$-FIO associated with a family G-rel.

Evolution equations on groupoids

Let $P \in \Psi_{c}^{1}(G)$ be elliptic, symmetric. Then
$e^{-i t P} \in M\left(C^{*}(G)\right)$ is strongly differentiable and

$$
\left(D_{t}+P\right) e^{-i t P}=0
$$

Evolution equations on groupoids

Let $P \in \Psi_{c}^{1}(G)$ be elliptic, symmetric. Then
$e^{-i t P} \in M\left(C^{*}(G)\right)$ is strongly differentiable and

$$
\left(D_{t}+P\right) e^{-i t P}=0
$$

Consider the Hamilton flow χ of $p: T_{a}^{*} G \xrightarrow{r_{T}} A^{*} G \backslash 0 \xrightarrow{\sigma_{p r}(P)} \mathbb{R}$.

- χ is complete and homogeneous,
- $s_{\Gamma} \circ \chi_{t}=s_{\Gamma}$ for all t,
- $\chi_{t}(\alpha \beta)=\chi_{t}(\alpha) \beta$.

This uses again the full structure of the symplectic groupoid $T^{*} G$.

Evolution of $A^{*} G$ under Hamilton flows

Consider the G-relations

$$
\Lambda_{t}=\chi_{t}\left(A^{*} G \backslash 0\right), \quad t \in \mathbb{R}
$$

and the $(\mathbb{R} \times G)$-relation

$$
\Lambda=\left\{(t, \tau, \delta) \in T^{*}(\mathbb{R} \times G) \mid \tau=-p(\delta), \delta \in \Lambda_{t}\right\}
$$

Evolution of $A^{*} G$ under Hamilton flows

Consider the G-relations

$$
\Lambda_{t}=\chi_{t}\left(A^{*} G \backslash 0\right), \quad t \in \mathbb{R}
$$

and the $(\mathbb{R} \times G)$-relation

$$
\Lambda=\left\{(t, \tau, \delta) \in T^{*}(\mathbb{R} \times G) \mid \tau=-p(\delta), \delta \in \Lambda_{t}\right\}
$$

Theorem

There exists a C^{∞} family $U(t) \in I^{\left(n-2 n^{(0)}\right) / 4}\left(G, \Lambda_{t}\right)$ such that

$$
e^{-i t P}-U(t) \text { is smoothing }
$$

Main steps in the proof:
$>$ Compute the principal symbol of $Q A$ when $Q \in \Psi_{c}(G), A \in I(G, \Lambda)$ and $\sigma_{p r}(Q)$ vanishes on $r_{\Gamma}(\Lambda)$.
$>$ Solve the resulting transport equations and construct recursively G-FIOs approximations of $e^{-i t P}$.

Illustration: manifold with boundary

Let X be a manifold with boundary Y and defining function x.

$$
\begin{aligned}
G= & \left\{(p, q, t) \in X^{2} \times \mathbb{R}_{+} ; x(q)=t x(p)\right\} . \\
& \partial G \simeq Y^{2} \times \mathbb{R}_{+} \text {and } \stackrel{\circ}{G} \simeq \stackrel{\circ}{X} \times \stackrel{\circ}{X},
\end{aligned}
$$

If X_{b}^{2} denotes the b-stretched product, then: $G \simeq X_{b}^{2} \backslash(\mathrm{lb} \cup \mathrm{rb})$.
There are exactly two orbits in $G^{(0)}=X$, namely $\stackrel{\circ}{X}$ and Y.
The corresponding two orbits in G are ∂G and $\stackrel{\circ}{X} \times \stackrel{\circ}{X}$.
The symplectic groupoid $T^{*} G$ splits into two satured subgroupoids:

$$
T^{*} G=T_{(\dot{X} \times \dot{X})}^{*} G \bigcup T_{\partial G}^{*} G
$$

The first one is the cotangent groupoid of the pair groupoid ${ }^{\circ} \times \times \stackrel{\circ}{X}$ The second one is (isomorphic to) the restriction of
$T^{*}\left(Y^{2} \times[0,+\infty) \rtimes \mathbb{R}_{+}\right)$over $Y^{2} \times\{0\} \times \mathbb{R}_{+}$.

Illustration: manifold with boundary

$\Lambda \subset T^{*} G$ is a G-relation if and only if

$$
\begin{gathered}
\Lambda \cap T^{*}(\stackrel{\circ}{X} \times \stackrel{\circ}{X}) \subset\left(T^{*} X \stackrel{\circ}{X} \backslash 0\right) \times\left(T^{*} X \stackrel{\circ}{X} \backslash 0\right) \text {, and } \\
\Lambda \cap T_{Y^{2} \times \mathbb{R}_{+}^{*}}^{*} G \subset\left[T^{*} Y^{2} \times\left(T^{*} \mathbb{R}_{+} \backslash 0\right)\right] \bigcup\left[\left(T^{*} Y \backslash 0\right) \times\left(T^{*} Y \backslash 0\right) \times\left(\mathbb{R}_{+} \times\{0\}\right)\right] .
\end{gathered}
$$

Then Λ is a family G-relation iff

$$
\Lambda \cap T_{Y^{2} \times \mathbb{R}_{+}}^{*} G \text { is transversal. }
$$

It is equivalent to the fact that

$$
\Lambda \xrightarrow{\pi} G \longrightarrow[0,+\infty) ; \delta \mapsto(p, q, t) \mapsto x(p)
$$

is a submersion near $x=0$. It then follows that near $x=0$, we can parametrize Λ by phase functions $\phi(x, t, p, q, \theta)$ such that

$$
\phi_{x}(t, p, q, \theta)=\phi(x, t, p, q, \theta)
$$

is a again a non-degenerate phase parametrizing $\Lambda_{x}=i_{x}^{*}(\Lambda)$.

Illustration: manifold with boundary

Next, we get a an indicial operator map:

$$
\begin{equation*}
I^{m}(G, \Lambda) \ni P \longmapsto I(P)=i^{*}(P) \in I^{m+1 / 4}\left(Y^{2} \times \mathbb{R}_{+}, \Lambda_{0}\right) . \tag{5}
\end{equation*}
$$

If P is given by the oscillatory integral

$$
P=\int e^{i \phi_{x}\left(t, p, p^{\prime}, \theta\right)} a\left(x, t, p, p^{\prime}, \theta\right) d \theta
$$

then the indicial operator of P is given by

$$
I(P)=\int e^{i \phi_{0}\left(t, p, p^{\prime}, \theta\right)} a\left(0, t, p, p^{\prime}, \theta\right) d \theta
$$

Moreover, we get $P_{p}=P_{q}$, for any $p, q \in \stackrel{\circ}{X}$, and this common operator lies in

$$
P_{\circ} \in I^{m}\left(\circ_{X}^{X} \times \stackrel{\circ}{X}, \stackrel{\circ}{\Lambda}\right)
$$

