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Some examples of Lie groupoids

@ Spaces X = X and Lie groups G = {e}.
@ Pair groupoids: X x X = X and fibred pair groupoids : X X X=X

@ Vector bundles E = X.
@ Transformation groupoids: G x X = X:

s(g,%) = x, 1(8,%) = g.x, (g, hx).(h,x) = (gh, x), 1(g,x) = (g7, 8%).
@ The tangent groupoid of a manifold:
TM = (TM x {0}) U (0,1] x M x M = [0,1] x M.
@ The b-groupoid of a manifold with boundary:
(M\ OM) x (M\ OM)UOM x OM x R = M.

@ Analogous groupoids for stratified spaces and (singular)
foliations...



G-PDOs : Examples

G G-PDOs
Lie groups Right invariant PDOs
XxX=X PDOs on X
XxpX =X Families (P,),ep of PDOs in the fibers

Vector bundles Families of translation invariant PDOs

TM = [0,1] x M Asymptotic PDOs

b-groupoid b-PDOs (+ support conditions)

Stratified spaces | PDOs on manifolds with fibred corners

@ Can we find a notion of G-FIOs yielding a similar table ?
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FIOs are useful in the theory of linear PDE on compact manifolds:
strictly hyperbolic problems, asymptotics of spectra, singularities of
Tr(e~ ") € D'(R), Egorov theorem ...

@ Lie groups: Nielsen-Stetkaer (1974).

© Mfds with boundary, b-geometry framework: Melrose (1981).

© Foliations: Y. Kordyukov (1994).

© Mfds with conical sing.: Nazaikinskii-Schulze-Sternin (2001),
Nazaikinskii-Savin-Schulze-Sternin (2005).

@ Mfds with boundary, Boutet de Monvel’s framework:
Battisti-Coriasco-Schrohe (2014,2015); Bohlen (2015).



Lagrangian distributions (H6rmander)

Let X be a C> manifold of dimension n and A C T*X \ 0 a conic
lagrangian sub-mfd.
The set I'"'(X, A), m € R, consists of distributions u € D’(X) of the
form:
U= Z/ei¢f(x’9/)aj(x, 0,)dd; mod C*(X)
JjeJ

where

@ (x,6,) € V; C U; x RN with U; a coord. patch, V; open and

homogeneous;

@ ¢; : V; — Ris a non-degenerate phase parametrizing A;

@ aj(x,0;) € S"Tm=2N)/4(U; x RY) and supp(q;) C V;\ 0.
w ["(X, \) = Lagrangian distributions on X subordinated to A.



Convolution and G-ops

Convolution in C°(G)

fegl) = / g =maf D glow). frg€ CX(G)

| A\

G-operators
Continuous linear maps P : C2°(G) — C*(G) such that

P(fxg)=P(f)xg forany f,¢ € C°(G),

Equivalently, P = (Py)xem With Py : C°(G,) — C=(G,),

Py()Ry = RyPy() and
(P)le. = Pfla).  f€C2(O). |
(Notations: G, = s~ ' (x), G* = r ' (x)).

G-PDOs = G-Ops P with P, a pseudodifferential operator on G, for
any x. Actually:
G —PDOs =I(G, M)



Convolution of distributions

FIOs are lagrangian distributions. To get a satisfactory approach on
groupoids (calculus, continuity, Egorov, evolution equations...), we
need:

@ to understand the convolution of distributions;

@ to select a suitable set of Lagrangian submanifolds.

There are two ways of extending convolution product of functions to
distributions:



Schwartz kernel theorem and transversal distributions

Let G = M be a Lie groupoid.
e Forany u € D'(G) and f € C>°(G), define s, (uf) € D'(M) by:

g§ECTM), (si(uf),g) = (u.fs5"g).
This provides an isomorphism:
s 1 D'(G) — Loy (CZ2(G), D' (M)). (1)
e Consider the subspace of s-transversal distributions on G:
DI(G) = {u € D'(G) ; Im(s,(u)) C C(M)}. @)

Then N
S0 1 DUG) = Lew 1) (C(G), € (M)). (3)

appropriate densities are understood, similar statements hold with r instead of s.



Convolution in D’

Theorem wmv)

Convolution of functions extends (separately) continuously to:
° D}(G) x &'(G) = D'(G), e D/(G) x £/(G) == D!(G)
@ D/(G) x C*(G) — C*=(G), ° ...

V.

Corollary

@ &!/(G), £/(G) are unital algebras.
@ & (G) = &(G) N &/(G) is a unital involutive algebra.

unit: (6,f) = [,,f, involution: u* = ¢* (u).



G-operators are transversal distributions

This also proves that G-ops are operators given by convolution with
distributions.
The map

D,(G) — Opg, ur— (f — uxf)

is well defined and gives:

D;(G) ~ OpG (space of G-operators)
D:J(G) ~ Opg (subspace of G-operators with adjoints)




Coste-Dazord-Weinstein groupoid TG

Let G = M be a Lie groupoid.

Understanding under which conditions on the wave front sets of
u,v € D'(G), the convolution product « v is defined leads to the
algebraic structure of the cotangent space T*G.

There exists a natural symplectic Lie groupoid structure on 7*G with
unit space A*G = N*M.

['=(T"G =3 A*G = N*M)

v

A groupoid T = T is sympletic if " is a symplectic manifold and if the graph of the multiplication
map is lagrangianin (=T') x I' x T"



CDW groupoid: I' = T*G = A*G.
The product (v1,&1).(72, &) = (7, €) is defined by
Y =772

and the equality
£(t) = &i(h) +&(0)

forany t € T,G and (t;,1,) € T, .,)G® such that
t=dm(ty, 1)

Well defined iff it does not depend on the choice of such 7, 1,.
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£(t) = &i(h) +&(0)

forany t € T,G and (t;,1,) € T, .,)G® such that
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(Source) SF(%f) = (S(PY)J’:;(@) € A:(W)G’
(Range)  1r(7,§) = (7(7),132(5)) € A:(’Y)G’

st (7, &) is obtained by applying the codifferential of L, : G* — G"™) to the restriction
&: 7,6 — R. The result is a linear form on 7,.G vanishing on 7,G(?), thus an element of A*G.

(Inversion) (’Y,f)_l = ('7_17 _t(dL’y)(g))-



Wave front and convolution

Let W, W, C T*G \ 0 be closed, conic subsets such that
(W; x Wa) Nkermp = .
Then convolution extends continuously to
&, (G) x &y, (G) — &y(G) (4)

where W is the product of the sets W, U0 and W, U0 in T*G.
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Distributions and G-ops

Set :

ENG) :={u € &(G); WF(u)Nkersr = and WF(u) Nkerrpr = (}.
@ (£/(G),«) is a unital involutive algebra,
@ { compactly supported G-PDOs } C &,(G) C &/ (G) ;
@ for any u;,u; € £/(G) we have

WEF(u; % uz) C WF(u;) . WF(up) C T*G\ (ker rp U kersr).
@ Elements of £/(G) and even D, (G) provide G-operators :

e, (GO 2 SO ) o,
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Let X be a manifold and X = X be the trivial groupoid.
@ Convolution = pointwise multiplication;
@ I' =T*X = N*X = X is the ordinary vector bundle structure;

@ If WFE(u;) x WFE(u2) N{(x, &, x, —&)} = 0 then uu, is well defined
and
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Examples of the rule for convolution

Let G = X x X = X be the pair groupoid. Then
@ Convolution = composition of integral kernels;
o ' =T*X x T*X = N*Ax ~ T*X is the pair’ groupoid:

(x,&y.m) o (v,—n,2,¢) = (x,£,2,0).

@ If WF(u;) x WF(up) N{(x,0,y,m,y,—1,2,0)} = () then
uyoup € D'(X x X) is well defined and

WEF(u; 0 up) C (WF(uy) U0) o' (WF(u2) LO).
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Examples of the rule for convolution

Let G =2 {e} be a Lie group. Then
@ Convolution = ordinary convolution in G;

° (I"G = g") ~ (g" ¥ G) ((8:€) — (8, RgE))
@ Here kermr = G* x {0}, therefore u; * u, is always defined and

WE(ur u2) © {(€,8) s (6, h,Ad;.E h™"g) € WE(u1)xWE(u2),h € G} C g" %G
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SetT:G =T*G\ (kerrpr Ukersr).

Conic Lagrangian submanifolds of 7*G contained in T G.

If G = X X X, these are the conic Lagrangian submanifolds contained in 7*X \ 0 x T*X \ 0.

@ Let Ay, A, be two G-relations. If A; x A, NT'® is clean, then
A(.A, C T is a (immersed) G-relation.
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Calculus of Lagrangian submanifolds in 7%G
SetT:G =T*G\ (kerrpr Ukersr).

Conic Lagrangian submanifolds of 7*G contained in T G.

If G = X X X, these are the conic Lagrangian submanifolds contained in 7*X \ 0 x T*X \ 0.

@ Let Ay, A, be two G-relations. If A; x A, NT'® is clean, then
A(.A, C T is a (immersed) G-relation.

© Let A be a G-relation. Then A* :=.r(A) is a G-relation.
© Let A be a G-relation. Then

m: A —A*Gandsp : A - A*G
are diffeomorphisms if and only if

AN*=A"G and A*A=A"G.

Such G-relations are called invertible.
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G-FIOs: definition, composition

Definition

G-FIOs = Elements of I(G, A), for any G-relation A.

G — PDOs = I(G,A*G) C G — FIOs

G — FlOs C D (G) C Opg,

If Ais a G-relation and A € I"'(G, A), then A* € I"'(G, A*). |

Assume that A, A, are closed G-relations, with a clean intersection
A1 x Ay N (T*G)® of excess e. Then convolution gives a map:

™ (G, Ay) x I™(G, Ay) — [Fmte/2=m=21D)/4(G A 7).

(n = dim(G), n® = dim(G))




U(G) = 124G A% G)

Since A*G.A*G = A*G, the previous composition result recovers
UM (G). W™ (G) C ¥™™(G).
Since A*G x AN (T*G)? is always transversal, we get:

W (G)* I™(G,A) C I"(G, A)



U(G) = 124G A% G)

Since A*G.A*G = A*G, the previous composition result recovers
UM (G). W™ (G) C ¥™™(G).
Since A*G x AN (T*G)? is always transversal, we get:

UM (G) % 1™ (G, A) C I"+™ (G, A)

Egorov thm, C*-continuity

@ If A x A, (T*G)P is clean and A;.A, C A*G, Then
I™(G, Ay) * U™(G) # I™ (G, Ay) C TmHe/2=(=200)/4().
@ Let A be an invertible closed G-relation. Then

107G, A) € M(C*(G)),
£O=2N/4G A ¢ (6).




Product of symbols
Remember the underlying densities bundles:

I(G,A) c D'(G, Q%) with Q2 = Q2 (kerds) @ Q/?(ker dr).
Hérmander’s principal symbol map reads here:
o I"(G, A) — SN My @ QY © Q2 (ker dsr)),

LetA; € I"(G, A;), j = 1,2 be as in the composition theorem.
A principal symbol a of A;.A; is given by:

Vi € Al.AQ, a(é) = / al(él)ag(ég).
810,=0

When A = A*G, the Maslov bundle M, is trivial and

42 ® Q2 (kerdsr) = (/%) |ax6 ~ A*G x C.
The last trivialization decreases by (n — n(%)) /2 the degree of symbols, thus :

o U(G) = =2 /4G A*G) s s (4% G).



Representations of G-FIOs

Any P € I.(G, A) gives:
@ continuous linear operators P, € L(C>*(G,),C>*(G,)), x € M.
@ a continuous linear operator ry (P) : C°(M) — C>=(M):

rv(P)(f) = P(r*f)|u, f€C™(M), (vector rep.)

@ continuous linear operators ro(P) : C*°(0) — C*(0), for any
orbit O = r(s7!(x)) Cc M:

ro(P)(f) = (Pl—10)""flo, [ € CZ(0).

G,, O are manifolds (C*°, without boundary) therefore on may ask
whether P, and ro(P) are ordinary FIOs. Actually, they are given by
oscillatory integrals with possibly degenerated phases.



Representations of G-FIOs

Let P € I'"(G, A) with A satisfying:

For any orbit U C G the intersection 7;;G N A is transversal

then (A is called a family G-relation and)
P, e "2 N/4(G % G, A,), Vx.

where A, C (T*G, \ 0) x (T*G, \ 0) is a family of canonical relations
induced by A.




Representations of G-FIOs

There are converse statements:

Theorem

Let (Ay),eqo be an equivariant C> family of Lagrangians
C T*G,\ 0 x T*G, \ 0. Then there exists a unique (family) G-relation A
“gluing” the family in the sense that

d*(A) = A, Vxe GO,

Here d, is the map: (v1,72) — 717{1-

Proposition

G-FFIOs are in one-to-one correspondence with G-op P such that for
all x, the operator P, is a FIO on G,.

G-FFIO = G-FIO associated with a family G-rel.



Evolution equations on groupoids

Let P € U!(G) be elliptic, symmetric. Then
e~ ¢ M(C*(G)) is strongly differentiable and

(D, + P)e™"" = 0.




Evolution equations on groupoids

Let P € W!(G) be elliptic, symmetric. Then
e~ ¢ M(C*(G)) is strongly differentiable and

(D, + P)e™"" = 0.

Consider the Hamilton flow x of p: T:G /5 4*G \ 0 ™Y R.

@ Yy is complete and homogeneous,
@ sy oy; = sr forall ¢,

@ x:(aB) = xi(a)B.

This uses again the full structure of the symplectic groupoid T*G.



Evolution of A*G under Hamilton flows
Consider the G-relations

A = Xi(A*G\0), r€R
and the (R x G)-relation

A={(t,7,8) eT"R xG) | 7=—p(8), § € A}.



Evolution of A*G under Hamilton flows
Consider the G-relations

A =xi(A*G\0), 1€R
and the (R x G)-relation

A={(t,7,8) eT"R xG) | 7=—p(8), § € A}.

There exists a € family U(r) € 1=2")/4(G, A,) such that

e~ — U(t) is smoothing

Main steps in the proof:
> Compute the principal symbol of QA when O € ¥.(G), A € I(G,A)
and o,,(Q) vanishes on rp(A).

> Solve the resulting transport equations and construct recursively
G-FIOs approximations of =P,



lllustration: manifold with boundary

Let X be a manifold with boundary Y and defining function x.
G={(p,q,1) € X* xRy ; x(q) = x(p)}.

0G ~Y* xRy and(o;z}o(x)o(,
If X? denotes the b-stretched product, then: G ~ X2 \ (Ib U tb).

There are exactly two orbits in G(» = X, namely X and Y.

The corresponding two orbits in G are 0G and )% X )%
The symplectic groupoid 7*G splits into two satured subgroupoids:

T°G=T" . G| |T5-G.
(XxX) U oG

The first one is the cotangent groupoid of the pair groupoid X x X
The second one is (isomorphic to) the restriction of
T*(Y* x [0, +00) x R,) over Y2 x {0} x R,.



lllustration: manifold with boundary

A C T*G is a G-relation if and only if

[e] [e]

ANT*(X x X) C (T"X\ 0) x (T*X \ 0), and
AmT;ZX]RiG C [T*Y? x (T*R4\0)] U[(T*Y\O) X (T*Y\0) x (Ry x {0})].
Then A is a family G-relation iff
ANTy g, Gis transversal.
It is equivalent to the fact that
AT G —1[0,+00); 6 (p,q,1) — x(p)

is a submersion near x = 0. It then follows that near x = 0, we can
parametrize A by phase functions ¢(x, 1, p, g, ) such that

éx(t,p,q,0) = ¢(x,1,p,q,0)

is a again a non-degenerate phase parametrizing A, = if(A).



lllustration: manifold with boundary

Next, we get a an indicial operator map:
I"(G,A) 3 P I(P) = i*(P) € I"V/*(¥? x Ry, Ay). (5)
If P is given by the oscillatory integral
P= /ei‘z"(”p’pl’e)a(x, t,p,p’,0)do
then the indicial operator of P is given by

1(P) = / P Da(0,1,p,p/, 0)do.

Moreover, we get P, = P,, for any p, ¢ € X, and this common operator
lies in
o] o o
P, € I"(X x X, A).



