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Some examples of Lie groupoids

Spaces X ⇒ X and Lie groups G ⇒ {e}.

Pair groupoids: X×X ⇒ X and fibred pair groupoids : X×
B

X ⇒ X.

Vector bundles E ⇒ X.
Transformation groupoids: G× X ⇒ X:

s(g, x) = x, r(g, x) = g.x, (g, hx).(h, x) = (gh, x), ι(g, x) = (g−1, gx).

The tangent groupoid of a manifold:

T M = (TM × {0}) t (0, 1]×M ×M ⇒ [0, 1]×M.

The b-groupoid of a manifold with boundary:

(M \ ∂M)× (M \ ∂M) ∪ ∂M × ∂M × R ⇒ M.

Analogous groupoids for stratified spaces and (singular)
foliations...
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G-PDOs : Examples

G G-PDOs

Lie groups Right invariant PDOs

X × X ⇒ X PDOs on X

X×BX ⇒ X Families (Pb)b∈B of PDOs in the fibers

Vector bundles Families of translation invariant PDOs

T M ⇒ [0, 1]×M Asymptotic PDOs

b-groupoid b-PDOs (+ support conditions)

Stratified spaces PDOs on manifolds with fibred corners

Can we find a notion of G-FIOs yielding a similar table ?



FIOs are useful in the theory of linear PDE on compact manifolds:
strictly hyperbolic problems, asymptotics of spectra, singularities of
Tr(e−itP) ∈ D′(R), Egorov theorem . . .

1 Lie groups: Nielsen-Stetkær (1974).

2 Mfds with boundary, b-geometry framework: Melrose (1981).
3 Foliations: Y. Kordyukov (1994).
4 Mfds with conical sing.: Nazaikinskii-Schulze-Sternin (2001),

Nazaikinskii-Savin-Schulze-Sternin (2005).
5 Mfds with boundary, Boutet de Monvel’s framework:

Battisti-Coriasco-Schrohe (2014,2015); Bohlen (2015).
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Lagrangian distributions (Hörmander)

Let X be a C∞ manifold of dimension n and Λ ⊂ T∗X \ 0 a conic
lagrangian sub-mfd.
The set Im(X,Λ), m ∈ R, consists of distributions u ∈ D′(X) of the
form:

u =
∑
j∈J

∫
eiφj(x,θj)aj(x, θj)dθj mod C∞(X)

where
(x, θj) ∈ Vj ⊂ Uj × RNj with Uj a coord. patch, Vj open and
homogeneous;
φj : Vj → R is a non-degenerate phase parametrizing Λ;
aj(x, θj) ∈ Sm+(nX−2Nj)/4(Uj × RNj) and supp(aj) ⊂ Vj \ 0.

+ Im(X,Λ) = Lagrangian distributions on X subordinated to Λ.



Convolution and G-ops

Convolution in C∞c (G)

f ∗ g(γ) =

∫
γ1γ2=γ

f (γ1)g(γ2) = m∗(f ⊗ g|G(2)), f , g ∈ C∞c (G)

G-operators
Continuous linear maps P : C∞c (G)→ C∞(G) such that

P(f ∗ g) = P(f ) ∗ g for any f , g ∈ C∞c (G),

Equivalently, P = (Px)x∈M with Px : C∞c (Gx)→ C∞(Gx),
Pr(γ)Rγ = RγPs(γ) and

(Pf )|Gx = Px(f |Gx ), f ∈ C∞c (G).

(Notations: Gx = s−1(x), Gx = r−1(x)).
G-PDOs = G-Ops P with Px a pseudodifferential operator on Gx for
any x. Actually:

G− PDOs = I(G,M)



Convolution of distributions

FIOs are lagrangian distributions. To get a satisfactory approach on
groupoids (calculus, continuity, Egorov, evolution equations. . . ), we
need:

to understand the convolution of distributions;
to select a suitable set of Lagrangian submanifolds.

There are two ways of extending convolution product of functions to
distributions:

Under transversality conditions Under wave front sets sonditions



Schwartz kernel theorem and transversal distributions

Let G ⇒ M be a Lie groupoid.
• For any u ∈ D′(G) and f ∈ C∞c (G), define s∗(uf ) ∈ D′(M) by:

g ∈ C∞(M), 〈s∗(uf ), g〉 = 〈u, f .s∗g〉.

This provides an isomorphism:

s∗ : D′(G)
'−→ LC∞(M)(C∞c (G),D′(M)). (1)

• Consider the subspace of s-transversal distributions on G:

D′s(G) = {u ∈ D′(G) ; Im(s∗(u)) ⊂ C∞(M)}. (2)

Then
s∗ : D′s(G)

'−→ LC∞(M)(C∞c (G),C∞(M)). (3)

appropriate densities are understood, similar statements hold with r instead of s.



Convolution in D′

Theorem (LMV)

Convolution of functions extends (separately) continuously to:
D′s(G)× E ′(G)

∗−→ D′(G),

D′r(G)× C∞c (G)
∗−→ C∞(G),

D′s(G)× E ′s(G)
∗−→ D′s(G)

. . .

Corollary
E ′s(G), E ′r(G) are unital algebras.
E ′r,s(G) = E ′s(G) ∩ E ′r(G) is a unital involutive algebra.

unit: 〈δ, f 〉 =
∫

M f , involution: u? = ι∗(u).



G-operators are transversal distributions

This also proves that G-ops are operators given by convolution with
distributions.
The map

D′r(G) −→ OpG, u 7−→ (f 7→ u ∗ f )

is well defined and gives:

D′r(G) ' OpG (space of G-operators)

D′r,s(G) ' Op∗G (subspace of G-operators with adjoints)



Coste-Dazord-Weinstein groupoid T∗G

Let G ⇒ M be a Lie groupoid.

Understanding under which conditions on the wave front sets of
u, v ∈ D′(G), the convolution product u ∗ v is defined leads to the
algebraic structure of the cotangent space T∗G.

There exists a natural symplectic Lie groupoid structure on T∗G with
unit space A∗G = N∗M.

Γ = (T∗G ⇒ A∗G = N∗M)

A groupoid Γ ⇒ Γ(0) is sympletic if Γ is a symplectic manifold and if the graph of the multiplication
map is lagrangian in (−Γ)× Γ× Γ



CDW groupoid: Γ = T∗G ⇒ A∗G.
The product (γ1, ξ1).(γ2, ξ2) = (γ, ξ) is defined by

γ = γ1γ2

and the equality
ξ(t) = ξ1(t1) + ξ2(t2)

for any t ∈ TγG and (t1, t2) ∈ T(γ1,γ2)G
(2) such that

t = dm(t1, t2)

Well defined iff it does not depend on the choice of such t1, t2.

(Source) sΓ(γ, ξ) = (s(γ),L∗γ(ξ)) ∈ A∗s(γ)G,

(Range) rΓ(γ, ξ) = (r(γ),R∗γ(ξ)) ∈ A∗r(γ)G,

sΓ(γ, ξ) is obtained by applying the codifferential of Lγ : Gx → Gr(γ) to the restriction

ξ : TγGr(γ) → R. The result is a linear form on TxG vanishing on TxG(0), thus an element of A∗x G.

(Inversion) (γ, ξ)−1 = (γ−1,−t(dιγ)(ξ)).
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Wave front and convolution

Let W1,W2 ⊂ T∗G \ 0 be closed, conic subsets such that

(W1 ×W2) ∩ ker mΓ = ∅.

Then convolution extends continuously to

E ′W1
(G)× E ′W2

(G) −→ E ′W(G) (4)

where W is the product of the sets W1 ∪ 0 and W2 ∪ 0 in T∗G.



Distributions and G-ops

Set :
E ′a(G) := {u ∈ E ′(G) ; WF(u)∩ ker sΓ = ∅ and WF(u)∩ ker rΓ = ∅}.

(E ′a(G), ∗) is a unital involutive algebra,

{ compactly supported G-PDOs } ⊂ E ′a(G) ⊂ E ′r,s(G) ;
for any u1, u2 ∈ E ′a(G) we have

WF(u1 ∗ u2) ⊂WF(u1) .WF(u2) ⊂ T∗G \ (ker rΓ ∪ ker sΓ).

Elements of E ′a(G) and even D′a(G) provide G-operators :

u ∈ D′a(G),

(
C∞c (G) −→ C∞(G)

f 7−→ u ∗ f

)
∈ OpG.
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Examples of the rule for convolution

Let X be a manifold and X ⇒ X be the trivial groupoid.
Convolution = pointwise multiplication;

Γ = T∗X ⇒ N∗X = X is the ordinary vector bundle structure;
If WF(u1)×WF(u2)∩{(x, ξ, x,−ξ)} = ∅ then u1u2 is well defined
and

WF(u1u2) ⊂ (WF(u1) + WF(u2)) ∪WF(u1)∪WF(u2) .
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Examples of the rule for convolution

Let G = X × X ⇒ X be the pair groupoid. Then
Convolution = composition of integral kernels;

Γ = T∗X × T∗X ⇒ N∗∆X ' T∗X is the pair′ groupoid:

(x, ξ, y, η) ◦′ (y,−η, z, ζ) = (x, ξ, z, ζ).

If WF(u1)×WF(u2)∩{(x, 0, y, η, y,−η, z, 0)} = ∅ then
u1 ◦ u2 ∈ D′(X × X) is well defined and

WF(u1 ◦ u2) ⊂ (WF(u1)∪0) ◦′ (WF(u2)∪0).
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Examples of the rule for convolution

Let G ⇒ {e} be a Lie group. Then
Convolution = ordinary convolution in G;

(T∗G ⇒ g∗) ' (g∗ o G) ((g, ξ) 7→ (g,R∗gξ))

Here ker mΓ = G2 × {0}, therefore u1 ∗ u2 is always defined and

WF(u1 ∗ u2) ⊂ {(ξ, g) ; (ξ, h,Ad∗h .ξ, h
−1g) ∈WF(u1)×WF(u2), h ∈ G} ⊂ g∗×G
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Calculus of Lagrangian submanifolds in T∗G
Set T∗a G = T∗G \ (ker rΓ ∪ ker sΓ).

G-relations
Conic Lagrangian submanifolds of T∗G contained in T∗a G.

If G = X × X, these are the conic Lagrangian submanifolds contained in T∗X \ 0× T∗X \ 0.

1 Let Λ1,Λ2 be two G-relations. If Λ1 × Λ2 ∩ Γ(2) is clean, then
Λ1.Λ2 ⊂ Γ is a (immersed) G-relation.

2 Let Λ be a G-relation. Then Λ? := ιΓ(Λ) is a G-relation.
3 Let Λ be a G-relation. Then

rΓ : Λ→ A∗G and sΓ : Λ→ A∗G

are diffeomorphisms if and only if

ΛΛ? = A∗G and Λ?Λ = A∗G.

Such G-relations are called invertible.
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G-FIOs: definition, composition

Definition
G-FIOs = Elements of I(G,Λ), for any G-relation Λ.

G− PDOs = I(G,A∗G) ⊂ G− FIOs

G− FIOs ⊂ D′a(G) ⊂ Op?G

If Λ is a G-relation and A ∈ Im(G,Λ), then A? ∈ Im(G,Λ?).

Assume that Λ1,Λ2 are closed G-relations, with a clean intersection
Λ1 × Λ2 ∩ (T∗G)(2) of excess e. Then convolution gives a map:

Im1
c (G,Λ1)× Im2(G,Λ2) −→ Im1+m2+e/2−(n−2n(0))/4(G,Λ1Λ2).

(n = dim(G), n(0) = dim(G(0)))
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Ψm(G) := Im+(n−2n(0))/4(G,A∗G)

Since A∗G.A∗G = A∗G, the previous composition result recovers

Ψm1
c (G).Ψm2(G) ⊂ Ψm1+m2(G).

Since A∗G× Λ ∩ (T∗G)(2) is always transversal, we get:

Ψm1
c (G) ∗ Im2(G,Λ) ⊂ Im1+m2(G,Λ)

Egorov thm, C∗-continuity
1 If Λ1 × Λ2 ∩ (T∗G)(2) is clean and Λ1.Λ2 ⊂ A∗G, Then

Im1
c (G,Λ1) ∗Ψm2(G) ∗ Im3

c (G,Λ2) ⊂ Ψm+e/2−(n−2n(0))/4(G).

2 Let Λ be an invertible closed G-relation. Then

I(n−2n(0))/4(G,Λ) ⊂M(C∗(G)),

I<(n−2n(0))/4(G,Λ) ⊂ C∗(G).

Symbols representation of G-FIOs Evolution equations on groupoids b-FIOs
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Product of symbols
Remember the underlying densities bundles:

I(G,Λ) ⊂ D′(G,Ω1/2) with Ω1/2 = Ω1/2(ker ds)⊗ Ω1/2(ker dr).

Hörmander’s principal symbol map reads here:

σ : Im(G,Λ) −→ S[m+n/4](Λ,MΛ ⊗ Ω
1/2
Λ ⊗ Ω1/2(ker dsΓ)),

Let Aj ∈ Imj(G,Λj), j = 1, 2 be as in the composition theorem.
A principal symbol a of A1.A2 is given by:

∀δ ∈ Λ1.Λ2, a(δ) =

∫
δ1δ2=δ

a1(δ1)a2(δ2).

When Λ = A∗G, the Maslov bundle MΛ is trivial and

Ω
1/2
A∗G ⊗ Ω1/2(ker dsΓ) = (Ω

1/2
T∗G)|A∗G ' A∗G× C.

The last trivialization decreases by (n− n(0))/2 the degree of symbols, thus :

σ : Ψm(G) = Im+(n−2n(0))/4(G,A∗G) −→ S[m](A∗G).



Representations of G-FIOs

Any P ∈ Ic(G,Λ) gives:
continuous linear operators Px ∈ L(C∞(Gx),C∞(Gx)), x ∈ M.
a continuous linear operator rM(P) : C∞(M) −→ C∞(M):

rM(P)(f ) = P(r∗f )|M, f ∈ C∞(M), (vector rep.)

continuous linear operators rO(P) : C∞(O) −→ C∞(O), for any
orbit O = r(s−1(x)) ⊂ M:

rO(P)(f ) = (P|r−1(O)r
∗f )|O, f ∈ C∞(O).

Gx, O are manifolds (C∞, without boundary) therefore on may ask
whether Px and rO(P) are ordinary FIOs. Actually, they are given by
oscillatory integrals with possibly degenerated phases.



Representations of G-FIOs

Let P ∈ Im(G,Λ) with Λ satisfying:

For any orbit U ⊂ G the intersection T∗UG ∩ Λ is transversal

then (Λ is called a family G-relation and)

Px ∈ Im−(n−2n(0))/4(Gx × Gx,Λx), ∀x.

where Λx ⊂ (T∗Gx \ 0)× (T∗Gx \ 0) is a family of canonical relations
induced by Λ.



Representations of G-FIOs

There are converse statements:

Theorem
Let (Λx)x∈G(0) be an equivariant C∞ family of Lagrangians
⊂ T∗Gx \ 0× T∗Gx \ 0. Then there exists a unique (family) G-relation Λ
“gluing” the family in the sense that

d∗x (Λ) = Λx ∀x ∈ G(0).

Here dx is the map: (γ1, γ2)→ γ1γ
−1
2 .

Proposition
G-FFIOs are in one-to-one correspondence with G-op P such that for
all x, the operator Px is a FIO on Gx.

G-FFIO = G-FIO associated with a family G-rel.



Evolution equations on groupoids

Let P ∈ Ψ1
c(G) be elliptic, symmetric. Then

e−itP ∈ M(C∗(G)) is strongly differentiable and

(Dt + P)e−itP = 0.

Consider the Hamilton flow χ of p : T∗a G rΓ→ A∗G \ 0
σpr(P)→ R.

χ is complete and homogeneous,
sΓ ◦ χt = sΓ for all t,
χt(αβ) = χt(α)β.

This uses again the full structure of the symplectic groupoid T∗G.
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Evolution of A∗G under Hamilton flows
Consider the G-relations

Λt = χt(A∗G \ 0), t ∈ R

and the (R× G)-relation

Λ = {(t, τ, δ) ∈ T∗(R× G) | τ = −p(δ), δ ∈ Λt}.

Theorem
There exists a C∞ family U(t) ∈ I(n−2n(0))/4(G,Λt) such that

e−itP − U(t) is smoothing

Main steps in the proof:
â Compute the principal symbol of QA when Q ∈ Ψc(G), A ∈ I(G,Λ)

and σpr(Q) vanishes on rΓ(Λ).
â Solve the resulting transport equations and construct recursively

G-FIOs approximations of e−itP.
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Illustration: manifold with boundary

Let X be a manifold with boundary Y and defining function x.

G = {(p, q, t) ∈ X2 × R+ ; x(q) = tx(p)}.

∂G ' Y2 × R+ and
◦
G '

◦
X ×

◦
X,

If X2
b denotes the b-stretched product, then: G ' X2

b \ (lb ∪ rb).

There are exactly two orbits in G(0) = X, namely
◦
X and Y.

The corresponding two orbits in G are ∂G and
◦
X ×

◦
X.

The symplectic groupoid T∗G splits into two satured subgroupoids:

T∗G = T∗
(
◦
X×
◦
X)

G
⋃

T∗∂GG.

The first one is the cotangent groupoid of the pair groupoid
◦
X ×

◦
X

The second one is (isomorphic to) the restriction of
T∗(Y2 × [0,+∞) oR+) over Y2 × {0} × R+.



Illustration: manifold with boundary
Λ ⊂ T∗G is a G-relation if and only if

Λ ∩ T∗(
◦
X ×

◦
X) ⊂ (T∗

◦
X \ 0)× (T∗

◦
X \ 0), and

Λ∩T∗Y2×R∗+
G ⊂ [T∗Y2×(T∗R+\0)]

⋃
[(T∗Y \0)×(T∗Y \0)×(R+×{0})].

Then Λ is a family G-relation iff

Λ ∩ T∗Y2×R+
G is transversal.

It is equivalent to the fact that

Λ
π−→ G −→ [0,+∞); δ 7→ (p, q, t) 7→ x(p)

is a submersion near x = 0. It then follows that near x = 0, we can
parametrize Λ by phase functions φ(x, t, p, q, θ) such that

φx(t, p, q, θ) = φ(x, t, p, q, θ)

is a again a non-degenerate phase parametrizing Λx = i∗x (Λ).



Illustration: manifold with boundary

Next, we get a an indicial operator map:

Im(G,Λ) 3 P 7−→ I(P) = i∗(P) ∈ Im+1/4(Y2 × R+,Λ0). (5)

If P is given by the oscillatory integral

P =

∫
eiφx(t,p,p′,θ)a(x, t, p, p′, θ)dθ

then the indicial operator of P is given by

I(P) =

∫
eiφ0(t,p,p′,θ)a(0, t, p, p′, θ)dθ.

Moreover, we get Pp = Pq, for any p, q ∈
◦
X, and this common operator

lies in
P◦ ∈ Im(

◦
X ×

◦
X,
◦
Λ).


