K-theory, groupoids and propagation

H. Oyono Oyono

May 22, 2019

Conference for Jean May 21-24, Orléans

<ロト < 団ト < 団ト < 団ト = 三

590

Aim : Generalize to (locally compact Hausdorf) groupoids the "cut-and-pasting" strategy for *K*-computation of the action groupoid $\beta_{\Gamma} \rtimes \Gamma$ where

▲ロ▶▲母▶▲臣▶▲臣▶ 臣 のへで

Aim : Generalize to (locally compact Hausdorf) groupoids the "cut-and-pasting" strategy for *K*-computation of the action groupoid $\beta_{\Gamma} \rtimes \Gamma$ where

Γ is a finitely generated group;

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Aim : Generalize to (locally compact Hausdorf) groupoids the "cut-and-pasting" strategy for *K*-computation of the action groupoid $\beta_{\Gamma} \rtimes \Gamma$ where

- Γ is a finitely generated group;
- β_{Γ} is the Stone-Cěch compactification of Γ .

Aim : Generalize to (locally compact Hausdorf) groupoids the "cut-and-pasting" strategy for *K*-computation of the action groupoid $\beta_{\Gamma} \rtimes \Gamma$ where

- Γ is a finitely generated group;
- β_{Γ} is the Stone-Cěch compactification of Γ .

Let ℓ be a lenght on Γ associated to any finite and symetric generating set and let $d(\gamma, \gamma') = \ell(\gamma'^{-1}\gamma)$ be the associated metric.

Aim : Generalize to (locally compact Hausdorf) groupoids the "cut-and-pasting" strategy for *K*-computation of the action groupoid $\beta_{\Gamma} \rtimes \Gamma$ where

- Γ is a finitely generated group;
- β_{Γ} is the Stone-Cěch compactification of Γ .

Let ℓ be a lenght on Γ associated to any finite and symetric generating set and let $d(\gamma, \gamma') = \ell(\gamma'^{-1}\gamma)$ be the associated metric. For *r* positive, let us set

• $B(e, r) = \{\gamma \in \Gamma; \ell(\gamma) \leq r\};$

Aim : Generalize to (locally compact Hausdorf) groupoids the "cut-and-pasting" strategy for *K*-computation of the action groupoid $\beta_{\Gamma} \rtimes \Gamma$ where

- Γ is a finitely generated group;
- β_{Γ} is the Stone-Cěch compactification of Γ .

Let ℓ be a lenght on Γ associated to any finite and symetric generating set and let $d(\gamma, \gamma') = \ell(\gamma'^{-1}\gamma)$ be the associated metric. For *r* positive, let us set

- $B(e, r) = \{\gamma \in \Gamma; \ell(\gamma) \leq r\};$
- C^{*}_{red} (β_Γ ⋊ Γ)_r the set of functions f : Γ × Γ → C with second variable support in B(e, r)

▲□▶▲□▶▲□▶▲□▶ = のQ@

Aim : Generalize to (locally compact Hausdorf) groupoids the "cut-and-pasting" strategy for *K*-computation of the action groupoid $\beta_{\Gamma} \rtimes \Gamma$ where

- Γ is a finitely generated group;
- β_{Γ} is the Stone-Cěch compactification of Γ .

Let ℓ be a lenght on Γ associated to any finite and symetric generating set and let $d(\gamma, \gamma') = \ell(\gamma'^{-1}\gamma)$ be the associated metric. For *r* positive, let us set

- $B(e, r) = \{\gamma \in \Gamma; \ell(\gamma) \leq r\};$
- C^{*}_{red} (β_Γ ⋊ Γ)_r the set of functions f : Γ × Γ → C with second variable support in B(e, r)

Then $C^*_{red}(\beta_{\Gamma} \rtimes \Gamma)_r \subseteq C^*_{red}(\beta_{\Gamma} \rtimes \Gamma)$ and $\cup_{r>0} C^*_{red}(\beta_{\Gamma} \rtimes \Gamma)_r$ is dense in $C^*_{red}(\beta_{\Gamma} \rtimes \Gamma)$.

▲□▶▲□▶▲≣▶▲≣▶ ≣ のQ@

Let us consider the obvious faithful representation of $C^*_{red}(\beta_{\Gamma} \rtimes \Gamma)$ on $\ell^2(\Gamma)$.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三 ● の Q @ ●

Let us consider the obvious faithful representation of $C^*_{red}(\beta_{\Gamma} \rtimes \Gamma)$ on $\ell^2(\Gamma)$. If *f* be an element in $C^*_{red}(\beta_{\Gamma} \rtimes \Gamma)_r$ (i.e $f(\gamma, \gamma') = 0$ if $\ell(\gamma') > r$)

▲ロ▶ ▲□▶ ▲三▶ ▲三▶ 三三 - 釣��

Let us consider the obvious faithful representation of $C^*_{red}(\beta_{\Gamma} \rtimes \Gamma)$ on $\ell^2(\Gamma)$. If *f* be an element in $C^*_{red}(\beta_{\Gamma} \rtimes \Gamma)_r$ (i.e $f(\gamma, \gamma') = 0$ if $\ell(\gamma') > r$) then *f* acts as kernel operator :

$$f \cdot \xi(\gamma) = \sum_{\gamma' \in \Gamma} \tilde{f}(\gamma, \gamma') \xi(\gamma')$$

with

$$\widetilde{f}: \Gamma \times \Gamma \to \mathbb{C}: (\gamma, \gamma') \mapsto f(\gamma, \gamma \gamma'^{-1}).$$

▲ロ▶ ▲□▶ ▲三▶ ▲三▶ 三三 - 釣��

Let us consider the obvious faithful representation of $C^*_{red}(\beta_{\Gamma} \rtimes \Gamma)$ on $\ell^2(\Gamma)$. If *f* be an element in $C^*_{red}(\beta_{\Gamma} \rtimes \Gamma)_r$ (i.e $f(\gamma, \gamma') = 0$ if $\ell(\gamma') > r$) then *f* acts as kernel operator :

$$f \cdot \xi(\gamma) = \sum_{\gamma' \in \Gamma} \tilde{f}(\gamma, \gamma') \xi(\gamma')$$

with

$$\tilde{f}: \Gamma \times \Gamma \to \mathbb{C}: (\gamma, \gamma') \mapsto f(\gamma, \gamma \gamma'^{-1}).$$

Moreover, \tilde{f} has propagation less than r, i.e $\tilde{f}(\gamma, \gamma') = 0$ if $d(\gamma, \gamma') > r$.

▲□▶▲□▶▲≣▶▲≣▶ ≣ のQ@

H. Oyono Oyono (Université de Lorraine)

May 22, 2019 4 / 26

◆□▶ ◆□▶ ◆ 三▶ ◆ 三 ● の Q @ ●

• Let *f* be an element in $C_{red}^*(\beta_{\mathbb{Z}} \rtimes \mathbb{Z})$. Then for any integer *N* with N > 2r, the we can write $\tilde{f} = \tilde{f}_1 + \tilde{f}_2$ with $\tilde{f}_i : \Gamma \times \Gamma \to \mathbb{C}$ supported in $Z_r^{(i)} = \bigsqcup_{j \in \mathbb{Z}} X_{j,r}^{(i)} \times X_{j,r}^{(i)}$ with $X_{j,r}^{(i)}$ the set of integers at distance to $X_j^{(i)}$ less than *r*.

- Let *f* be an element in $C_{red}^* (\beta_{\mathbb{Z}} \rtimes \mathbb{Z})$. Then for any integer *N* with N > 2r, the we can write $\tilde{f} = \tilde{f}_1 + \tilde{f}_2$ with $\tilde{f}_i : \Gamma \times \Gamma \to \mathbb{C}$ supported in $Z_r^{(i)} = \bigsqcup_{j \in \mathbb{Z}} X_{j,r}^{(i)} \times X_{j,r}^{(i)}$ with $X_{j,r}^{(i)}$ the set of integers at distance to $X_i^{(i)}$ less than *r*.
- for i = 1, 2, set $\chi_i(\gamma, \gamma') = 1$ if $(\gamma, \gamma'^{-1}\gamma) \in Z_r^{(i)}$ and 0 otherwise and view χ_i as a function on $\beta_{\mathbb{Z}} \rtimes \mathbb{Z}$ with finite \mathbb{Z} -support.

▲□▶▲□▶▲≣▶▲≣▶ = の�?

- Let *f* be an element in $C_{red}^*(\beta_{\mathbb{Z}} \rtimes \mathbb{Z})$. Then for any integer *N* with N > 2r, the we can write $\tilde{f} = \tilde{f}_1 + \tilde{f}_2$ with $\tilde{f}_i : \Gamma \times \Gamma \to \mathbb{C}$ supported in $Z_r^{(i)} = \bigsqcup_{j \in \mathbb{Z}} X_{j,r}^{(i)} \times X_{j,r}^{(i)}$ with $X_{j,r}^{(i)}$ the set of integers at distance to $X_i^{(i)}$ less than *r*.
- for i = 1, 2, set $\chi_i(\gamma, \gamma') = 1$ if $(\gamma, \gamma'^{-1}\gamma) \in Z_r^{(i)}$ and 0 otherwise and view χ_i as a function on $\beta_{\mathbb{Z}} \rtimes \mathbb{Z}$ with finite \mathbb{Z} -support.
- then $\mathcal{H}_i = \chi_i^{-1}(\{1\})$ is a compact-open subgroupoid of $\beta_{\mathbb{Z}} \rtimes \mathbb{Z}$;

▲□▶▲□▶▲≣▶▲≣▶ = の�?

- Let *f* be an element in $C_{red}^*(\beta_{\mathbb{Z}} \rtimes \mathbb{Z})$. Then for any integer *N* with N > 2r, the we can write $\tilde{f} = \tilde{f}_1 + \tilde{f}_2$ with $\tilde{f}_j : \Gamma \times \Gamma \to \mathbb{C}$ supported in $Z_r^{(i)} = \bigsqcup_{j \in \mathbb{Z}} X_{j,r}^{(i)} \times X_{j,r}^{(i)}$ with $X_{j,r}^{(i)}$ the set of integers at distance to $X_j^{(i)}$ less than *r*.
- for i = 1, 2, set $\chi_i(\gamma, \gamma') = 1$ if $(\gamma, \gamma'^{-1}\gamma) \in Z_r^{(i)}$ and 0 otherwise and view χ_i as a function on $\beta_{\mathbb{Z}} \rtimes \mathbb{Z}$ with finite \mathbb{Z} -support.
- then $\mathcal{H}_i = \chi_i^{-1}(\{1\})$ is a compact-open subgroupoid of $\beta_{\mathbb{Z}} \rtimes \mathbb{Z}$;
- $\{(x, n) \in \beta_{\mathbb{Z}} \rtimes \mathbb{Z} \text{ such that } |n| \leq r\}$ is contained in $\mathcal{H}_1 \cup \mathcal{H}_2$.

SQR

To generalize this decomposition to locally compact groupoids, we have to replace lengths by G-orders.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ● のへで

To generalize this decomposition to locally compact groupoids, we have to replace lengths by G-orders.

Notations

Let \mathcal{G} be locally compact groupoid with unit space X and source and range maps $s, r : \mathcal{G} \to X$ and let Z be a subset of \mathcal{G} .

- we set $Z^{-1} = \{\gamma^{-1}; \gamma \in Z\};$
- for any $Y \subseteq X$, we set $Z_Y = s^{-1}(Y) \cap Z$ and $Z^Y = r^{-1}(Y) \cap Z$;

To generalize this decomposition to locally compact groupoids, we have to replace lengths by \mathcal{G} -orders.

Notations

Let \mathcal{G} be locally compact groupoid with unit space X and source and range maps $s, r : \mathcal{G} \to X$ and let Z be a subset of \mathcal{G} .

- we set $Z^{-1} = \{\gamma^{-1}; \gamma \in Z\};$
- for any $Y \subseteq X$, we set $Z_Y = s^{-1}(Y) \cap Z$ and $Z^Y = r^{-1}(Y) \cap Z$;

Definition

A $\mathcal G\text{-order}$ is a subset $\mathcal R$ of $\mathcal G$ such that

- $X \subseteq \mathcal{R};$
- $\mathcal{R}^{-1} = \mathcal{R}$ (\mathcal{R} is symetric).
- for every compact subset Y of X, then \mathcal{R}_Y is compact.

Definition

Let \mathcal{G} be a locally compact groupoid, let \mathcal{H} be a subgroupoid of \mathcal{G} with unit space Y and let \mathcal{R} be a \mathcal{G} -order. An \mathcal{R} -decomposition of \mathcal{H} is a quadruple $(V_1, V_2, \mathcal{H}_1, \mathcal{H}_2)$ where

 $\mathcal{O} \mathcal{O}$

Definition

Let \mathcal{G} be a locally compact groupoid, let \mathcal{H} be a subgroupoid of \mathcal{G} with unit space Y and let \mathcal{R} be a \mathcal{G} -order. An \mathcal{R} -decomposition of \mathcal{H} is a quadruple ($V_1, V_2, \mathcal{H}_1, \mathcal{H}_2$) where

• V_1 and V_2 are open subsets of Y with $Y = V_1 \cup V_2$ and such that there exists a partition of the unit subordinated to (V_1, V_2) ;

Definition

Let \mathcal{G} be a locally compact groupoid, let \mathcal{H} be a subgroupoid of \mathcal{G} with unit space Y and let \mathcal{R} be a \mathcal{G} -order. An \mathcal{R} -decomposition of \mathcal{H} is a quadruple ($V_1, V_2, \mathcal{H}_1, \mathcal{H}_2$) where

- V_1 and V_2 are open subsets of Y with $Y = V_1 \cup V_2$ and such that there exists a partition of the unit subordinated to (V_1, V_2) ;
- \mathcal{H}_1 and \mathcal{H}_2 are subgroupoids of \mathcal{H} which are open in \mathcal{G} .

Definition

Let \mathcal{G} be a locally compact groupoid, let \mathcal{H} be a subgroupoid of \mathcal{G} with unit space Y and let \mathcal{R} be a \mathcal{G} -order. An \mathcal{R} -decomposition of \mathcal{H} is a quadruple $(V_1, V_2, \mathcal{H}_1, \mathcal{H}_2)$ where

- V_1 and V_2 are open subsets of Y with $Y = V_1 \cup V_2$ and such that there exists a partition of the unit subordinated to (V_1, V_2) ;
- \mathcal{H}_1 and \mathcal{H}_2 are subgroupoids of \mathcal{H} which are open in \mathcal{G} .
- \mathcal{R}_{V_i} is contained in \mathcal{H}_i for i = 1, 2.

▲□▶▲□▶▲□▶▲□▶ = の�?

6/26

Definition

Let \mathcal{G} be a locally compact groupoid, let \mathcal{H} be a subgroupoid of \mathcal{G} with unit space Y and let \mathcal{R} be a \mathcal{G} -order. An \mathcal{R} -decomposition of \mathcal{H} is a quadruple $(V_1, V_2, \mathcal{H}_1, \mathcal{H}_2)$ where

- V_1 and V_2 are open subsets of Y with $Y = V_1 \cup V_2$ and such that there exists a partition of the unit subordinated to (V_1, V_2) ;
- \mathcal{H}_1 and \mathcal{H}_2 are subgroupoids of \mathcal{H} which are open in \mathcal{G} .
- \mathcal{R}_{V_i} is contained in \mathcal{H}_i for i = 1, 2.

Example

Let \mathcal{G} be the action groupoid $\beta_{\mathbb{Z}} \rtimes \mathbb{Z}$ and consider for r > 0 the \mathcal{G} -order

$$\mathcal{R} = \{(x, n) \in \mathcal{G}; |n| \leq r\}.$$

Definition

Let \mathcal{G} be a locally compact groupoid, let \mathcal{H} be a subgroupoid of \mathcal{G} with unit space Y and let \mathcal{R} be a \mathcal{G} -order. An \mathcal{R} -decomposition of \mathcal{H} is a quadruple $(V_1, V_2, \mathcal{H}_1, \mathcal{H}_2)$ where

- V_1 and V_2 are open subsets of Y with $Y = V_1 \cup V_2$ and such that there exists a partition of the unit subordinated to (V_1, V_2) ;
- \mathcal{H}_1 and \mathcal{H}_2 are subgroupoids of \mathcal{H} which are open in \mathcal{G} .
- \mathcal{R}_{V_i} is contained in \mathcal{H}_i for i = 1, 2.

Example

Let \mathcal{G} be the action groupoid $\beta_{\mathbb{Z}} \rtimes \mathbb{Z}$ and consider for r > 0 the \mathcal{G} -order

$$\mathcal{R} = \{(x, n) \in \mathcal{G}; |n| \leq r\}.$$

Then \mathcal{G} admits a \mathcal{R} -decomposition with \mathcal{H}_1 and \mathcal{H}_2 compact-open.

Coercive \mathcal{R} -decomposition of a groupoid

Definition

Let \mathcal{G} be locally compact groupoid. A relatively clopen sugroupoid of \mathcal{G} is an open subgroupoid \mathcal{H} of \mathcal{G} such that if Y stands for the unit space of \mathcal{H} , then \mathcal{H} is closed in \mathcal{G}_Y .

 $\mathcal{O} \mathcal{O}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □

Coercive \mathcal{R} -decomposition of a groupoid

Definition

Let \mathcal{G} be locally compact groupoid. A relatively clopen sugroupoid of \mathcal{G} is an open subgroupoid \mathcal{H} of \mathcal{G} such that if Y stands for the unit space of \mathcal{H} , then \mathcal{H} is closed in \mathcal{G}_Y .

Definition

Let \mathcal{G} be a locally compact groupoid, let \mathcal{H} be a subgroupoid of \mathcal{G} and let \mathcal{R} be a \mathcal{G} -order. A coercive \mathcal{R} -decomposition of \mathcal{H} is a \mathcal{R} -decomposition ($V_1, V_2, \mathcal{H}_1, \mathcal{H}_2$) of \mathcal{H} such that \mathcal{H}_1 and \mathcal{H}_2 are relatively clopen in \mathcal{G} ,

Coercive \mathcal{R} -decomposition of a groupoid

Definition

Let \mathcal{G} be locally compact groupoid. A relatively clopen sugroupoid of \mathcal{G} is an open subgroupoid \mathcal{H} of \mathcal{G} such that if Y stands for the unit space of \mathcal{H} , then \mathcal{H} is closed in \mathcal{G}_Y .

Definition

Let \mathcal{G} be a locally compact groupoid, let \mathcal{H} be a subgroupoid of \mathcal{G} and let \mathcal{R} be a \mathcal{G} -order. A coercive \mathcal{R} -decomposition of \mathcal{H} is a \mathcal{R} -decomposition ($V_1, V_2, \mathcal{H}_1, \mathcal{H}_2$) of \mathcal{H} such that \mathcal{H}_1 and \mathcal{H}_2 are relatively clopen in \mathcal{G} , i.e

- V_1 and V_2 are open subsets of Y with $Y = V_1 \cup V_2$ and such that there exists a partition of the unit subordinated to (V_1, V_2) ;
- \mathcal{H}_1 and \mathcal{H}_2 are subgroupoids of \mathcal{H} which are relatively clopen in \mathcal{G} .
- \mathcal{R}_{V_i} is contained in \mathcal{H}_i for i = 1, 2.

\mathcal{D} -decomposable groupoids

Definition

Let \mathcal{D} be a set of open subgroupoids of \mathcal{G} . A subgroupoid \mathcal{H} of \mathcal{G} is \mathcal{D} -decomposable if for every \mathcal{G} -order \mathcal{R} , there exists an \mathcal{R} -decomposition ($V_1, V_2, \mathcal{H}_1, \mathcal{H}_2$) with \mathcal{H}_1 and \mathcal{H}_2 in \mathcal{D} .

▲□▶▲□▶▲≣▶▲≣▶ ≣ のQ@

\mathcal{D} -decomposable groupoids

Definition

Let \mathcal{D} be a set of open subgroupoids of \mathcal{G} . A subgroupoid \mathcal{H} of \mathcal{G} is \mathcal{D} -decomposable if for every \mathcal{G} -order \mathcal{R} , there exists an \mathcal{R} -decomposition ($V_1, V_2, \mathcal{H}_1, \mathcal{H}_2$) with \mathcal{H}_1 and \mathcal{H}_2 in \mathcal{D} .

Lemma

Let \mathcal{H} be a subgroupoid of \mathcal{G} .

• if \mathcal{D} is a set of open subgroupoids of \mathcal{G} such that \mathcal{H} is \mathcal{D} -decomposable then \mathcal{H} is an open subgroupoid of \mathcal{G} .

 $\mathcal{O}\mathcal{Q}\mathcal{O}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □

\mathcal{D} -decomposable groupoids

Definition

Let \mathcal{D} be a set of open subgroupoids of \mathcal{G} . A subgroupoid \mathcal{H} of \mathcal{G} is \mathcal{D} -decomposable if for every \mathcal{G} -order \mathcal{R} , there exists an \mathcal{R} -decomposition ($V_1, V_2, \mathcal{H}_1, \mathcal{H}_2$) with \mathcal{H}_1 and \mathcal{H}_2 in \mathcal{D} .

Lemma

Let \mathcal{H} be a subgroupoid of \mathcal{G} .

- If \mathcal{D} is a set of open subgroupoids of \mathcal{G} such that \mathcal{H} is \mathcal{D} -decomposable then \mathcal{H} is an open subgroupoid of \mathcal{G} .
- if \mathcal{D} is a set of relatively clopen subgroupoids of \mathcal{G} such that \mathcal{H} is \mathcal{D} -decomposable, then \mathcal{H} is a relatively clopen subgroupoid of \mathcal{G} .

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □

$\mathcal{D}\text{-}decomposable \ groupoids}$

Definition

Let \mathcal{D} be a set of open subgroupoids of \mathcal{G} . A subgroupoid \mathcal{H} of \mathcal{G} is \mathcal{D} -decomposable if for every \mathcal{G} -order \mathcal{R} , there exists an \mathcal{R} -decomposition ($V_1, V_2, \mathcal{H}_1, \mathcal{H}_2$) with \mathcal{H}_1 and \mathcal{H}_2 in \mathcal{D} .

Lemma

Let \mathcal{H} be a subgroupoid of \mathcal{G} .

- If \mathcal{D} is a set of open subgroupoids of \mathcal{G} such that \mathcal{H} is \mathcal{D} -decomposable then \mathcal{H} is an open subgroupoid of \mathcal{G} .
- if \mathcal{D} is a set of relatively clopen subgroupoids of \mathcal{G} such that \mathcal{H} is \mathcal{D} -decomposable, then \mathcal{H} is a relatively clopen subgroupoid of \mathcal{G} .

Example

 $\mathcal{G} = \beta_{\mathbb{Z}} \rtimes \mathbb{Z}$ is \mathcal{D} -decomposable with \mathcal{D} the set of its compact-open subgroupoids of \mathcal{G} .

H. Oyono Oyono (Université de Lorraine)

$\mathcal{D}\text{-}decomposable groupoids}$

Definition

Let \mathcal{D} be a set of open subgroupoids of \mathcal{G} . A subgroupoid \mathcal{H} of \mathcal{G} is \mathcal{D} -decomposable if for every \mathcal{G} -order \mathcal{R} , there exists an \mathcal{R} -decomposition ($V_1, V_2, \mathcal{H}_1, \mathcal{H}_2$) with \mathcal{H}_1 and \mathcal{H}_2 in \mathcal{D} .

Lemma

Let \mathcal{H} be a subgroupoid of \mathcal{G} .

- If \mathcal{D} is a set of open subgroupoids of \mathcal{G} such that \mathcal{H} is \mathcal{D} -decomposable then \mathcal{H} is an open subgroupoid of \mathcal{G} .
- if \mathcal{D} is a set of relatively clopen subgroupoids of \mathcal{G} such that \mathcal{H} is \mathcal{D} -decomposable, then \mathcal{H} is a relatively clopen subgroupoid of \mathcal{G} .

Example

 $\mathcal{G} = \beta_{\mathbb{Z}} \rtimes \mathbb{Z}$ is \mathcal{D} -decomposable with \mathcal{D} the set of its compact-open subgroupoids of \mathcal{G} . The same holds for $\mathcal{G} = \beta_{\mathbb{F}_n} \rtimes \mathbb{F}_n$.

H. Oyono Oyono (Université de Lorraine)

K-th, groupoids and propagation

Groupoid with finite *D*-complexity (Guentner/Willet/Yu)

Definition

Let \mathcal{G} be locally compact groupoid.

 A set D of open subgroupoids of G is closed under coarse decompositions if every D-decomposable subgroupoid is in D.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Groupoid with finite D-complexity (Guentner/Willet/Yu)

Definition

Let \mathcal{G} be locally compact groupoid.

- A set D of open subgroupoids of G is closed under coarse decompositions if every D-decomposable subgroupoid is in D.
- If D is a set of open subgroupoid of G, let D be the smallest set of open subgroupoids of G closed under coarse decompositions.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

(4日) (王) (王) (王)
Definition

Let ${\mathcal{G}}$ be locally compact groupoid.

- A set D of open subgroupoids of G is closed under coarse decompositions if every D-decomposable subgroupoid is in D.
- If D is a set of open subgroupoid of G, let D be the smallest set of open subgroupoids of G closed under coarse decompositions. A open subgroupoid H has finite D-complexity if H belongs to D.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ─ 豆

Definition

Let \mathcal{G} be locally compact groupoid.

- A set D of open subgroupoids of G is closed under coarse decompositions if every D-decomposable subgroupoid is in D.
- If D is a set of open subgroupoid of G, let D be the smallest set of open subgroupoids of G closed under coarse decompositions. A open subgroupoid H has finite D-complexity if H belongs to D.

Lemma

Let \mathcal{D} be a set of relatively clopen subgroupoids of \mathcal{G} .

• if \mathcal{H} is in $\widehat{\mathcal{D}}$, then \mathcal{H} is locally clopen;

Definition

Let \mathcal{G} be locally compact groupoid.

- A set D of open subgroupoids of G is closed under coarse decompositions if every D-decomposable subgroupoid is in D.
- If D is a set of open subgroupoid of G, let D be the smallest set of open subgroupoids of G closed under coarse decompositions. A open subgroupoid H has finite D-complexity if H belongs to D.

Lemma

Let \mathcal{D} be a set of relatively clopen subgroupoids of \mathcal{G} .

- if \mathcal{H} is in $\widehat{\mathcal{D}}$, then \mathcal{H} is locally clopen;
- 2 $\widehat{\mathcal{D}}$ is the smallest set of relatively clopen subgroupoids of \mathcal{G} closed under coercive coarse decomposition;

Definition

Let \mathcal{G} be locally compact groupoid.

- A set D of open subgroupoids of G is closed under coarse decompositions if every D-decomposable subgroupoid is in D.
- If D is a set of open subgroupoid of G, let D be the smallest set of open subgroupoids of G closed under coarse decompositions. A open subgroupoid H has finite D-complexity if H belongs to D.

Lemma

Let \mathcal{D} be a set of relatively clopen subgroupoids of \mathcal{G} .

- if \mathcal{H} is in $\widehat{\mathcal{D}}$, then \mathcal{H} is locally clopen;
- 2 $\widehat{\mathcal{D}}$ is the smallest set of relatively clopen subgroupoids of \mathcal{G} closed under coercive coarse decomposition;
- ${f 0}$ If ${\cal D}$ is closed under taking relatively clopen subgroupoids, so is ${\widehat {\cal D}}.$

Definition

Let *X* be a proper discrete metric space. Then *X* has asymptotic dimension *m* if for every r > 0 there exist m + 1 subsets $X^{(1)}, \ldots X^{(m+1)}$ of *X* such that

▲ロ▶▲□▶▲□▶▲□▶ ■ のへで

Definition

Let X be a proper discrete metric space. Then X has asymptotic dimension *m* if for every r > 0 there exist m + 1 subsets $X^{(1)}, \ldots X^{(m+1)}$ of X such that

•
$$X = \bigcup_{i=1}^{m+1} X^{(i)};$$

▲ロ▶▲□▶▲□▶▲□▶ ■ のへで

Definition

Let X be a proper discrete metric space. Then X has asymptotic dimension m if for every r > 0 there exist m + 1 subsets $X^{(1)}, \ldots X^{(m+1)}$ of X such that

- $X = \bigcup_{i=1}^{m+1} X^{(i)};$
- $X^{(i)}$ is a *r*-disjoint union of a uniformly bounded family of subsets,

▲□▶▲□▶▲□▶▲□▶ = の�?

Definition

Let X be a proper discrete metric space. Then X has asymptotic dimension m if for every r > 0 there exist m + 1 subsets $X^{(1)}, \ldots X^{(m+1)}$ of X such that

- $X = \bigcup_{i=1}^{m+1} X^{(i)};$
- $X^{(i)}$ is a *r*-disjoint union of a uniformly bounded family of subsets, i.e $X^{(i)} = \bigsqcup_{k \in \mathbb{N}} X_k^{(i)}$ with $(diam X_k^{(i)})_{k \in \mathbb{N}}$ bounded and $d(X_k^{(i)}, X_l^{(i)}) > r$ if $k \neq l$;

▲□▶▲□▶▲□▶▲□▶ = 少�?

Definition

Let X be a proper discrete metric space. Then X has asymptotic dimension m if for every r > 0 there exist m + 1 subsets $X^{(1)}, \ldots X^{(m+1)}$ of X such that

- $X = \bigcup_{i=1}^{m+1} X^{(i)};$
- $X^{(i)}$ is a *r*-disjoint union of a uniformly bounded family of subsets, i.e $X^{(i)} = \bigsqcup_{k \in \mathbb{N}} X_k^{(i)}$ with $(diam X_k^{(i)})_{k \in \mathbb{N}}$ bounded and $d(X_k^{(i)}, X_l^{(i)}) > r$ if $k \neq l$;

Example

\bigcirc \mathbb{Z}'' has asymptotic dimension	n;
--	----

Definition

Let X be a proper discrete metric space. Then X has asymptotic dimension m if for every r > 0 there exist m + 1 subsets $X^{(1)}, \ldots X^{(m+1)}$ of X such that

- $X = \bigcup_{i=1}^{m+1} X^{(i)};$
- $X^{(i)}$ is a *r*-disjoint union of a uniformly bounded family of subsets, i.e $X^{(i)} = \bigsqcup_{k \in \mathbb{N}} X_k^{(i)}$ with $(diam X_k^{(i)})_{k \in \mathbb{N}}$ bounded and $d(X_k^{(i)}, X_l^{(i)}) > r$ if $k \neq l$;

Example

- \mathbb{Z}^n has asymptotic dimension *n*;
- Gromov hyperbolic spaces have finite asymptotic dimension;

Definition

Let X be a proper discrete metric space. Then X has asymptotic dimension m if for every r > 0 there exist m + 1 subsets $X^{(1)}, \ldots X^{(m+1)}$ of X such that

- $X = \bigcup_{i=1}^{m+1} X^{(i)};$
- $X^{(i)}$ is a *r*-disjoint union of a uniformly bounded family of subsets, i.e $X^{(i)} = \bigsqcup_{k \in \mathbb{N}} X_k^{(i)}$ with $(diam X_k^{(i)})_{k \in \mathbb{N}}$ bounded and $d(X_k^{(i)}, X_l^{(i)}) > r$ if $k \neq l$;

Example

- \mathbb{Z}^n has asymptotic dimension *n*;
- Gromov hyperbolic spaces have finite asymptotic dimension;
- Oiscrete subgroups in Lie groups have finite asymptotic dimension.

H. Oyono Oyono (Université de Lorraine)

Let Σ be a proper discrete metric space with bounded geometry. If X has finite asymptotic dimension, then Σ admit a coarse embedding into a product of trees $T_1 \times \cdots \times T_n$

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Let Σ be a proper discrete metric space with bounded geometry. If X has finite asymptotic dimension, then Σ admit a coarse embedding into a product of trees $T_1 \times \cdots \times T_n$

(i.e there exists proper maps $\rho_{\pm} : \mathbb{R}^+ \to \mathbb{R}^+$ and a map $f : \Sigma \to T_1 \times \cdots \times T_n$ such that $\rho_-(d(f(x), f(y))) \leq d(x, y) \leq \rho_+(d(f(x), f(y)))$ for all x, y in Σ).

▲□▶▲□▶▲□▶▲□▶ = の�?

Let Σ be a proper discrete metric space with bounded geometry. If X has finite asymptotic dimension, then Σ admit a coarse embedding into a product of trees $T_1 \times \cdots \times T_n$

(i.e there exists proper maps $\rho_{\pm} : \mathbb{R}^+ \to \mathbb{R}^+$ and a map $f : \Sigma \to T_1 \times \cdots \times T_n$ such that $\rho_-(d(f(x), f(y))) \leq d(x, y) \leq \rho_+(d(f(x), f(y)))$ for all x, y in Σ).

Corollary

Let Γ be a finitely generated group viewed as a metric space for a metric arising from a word metric length associated to a finite symmetric generating set.

590

<ロ> < 四> < 四> < 돈> < 돈> 三臣

Let Σ be a proper discrete metric space with bounded geometry. If X has finite asymptotic dimension, then Σ admit a coarse embedding into a product of trees $T_1 \times \cdots \times T_n$

(i.e there exists proper maps $\rho_{\pm} : \mathbb{R}^+ \to \mathbb{R}^+$ and a map $f : \Sigma \to T_1 \times \cdots \times T_n$ such that $\rho_-(d(f(x), f(y))) \leq d(x, y) \leq \rho_+(d(f(x), f(y)))$ for all x, y in Σ).

Corollary

Let Γ be a finitely generated group viewed as a metric space for a metric arising from a word metric length associated to a finite symmetric generating set.

If Γ has finite asymptotic dimension, then $\mathcal{G} = \beta_{\Gamma} \rtimes \Gamma$ is \mathcal{D} -decomposable with respect the set \mathcal{D} of compact-open subgroupoids of \mathcal{G} .

590

<ロ> < 四> < 四> < 돈> < 돈> 三臣

Let \mathcal{G} be a locally compact groupoid provided with a Haar System and let A be a \mathcal{G} -algebra. For any \mathcal{G} -order \mathcal{R} , let $(V_1, V_2, \mathcal{G}_1, \mathcal{G}_2)$ be a \mathcal{R} -decomposition for \mathcal{G} .

▲□▶▲□▶▲□▶▲□▶ = 少�?

Let \mathcal{G} be a locally compact groupoid provided with a Haar System and let A be a \mathcal{G} -algebra. For any \mathcal{G} -order \mathcal{R} , let $(V_1, V_2, \mathcal{G}_1, \mathcal{G}_2)$ be a \mathcal{R} -decomposition for \mathcal{G} .Then we have inclusions $A \rtimes_r (\mathcal{G}_1 \cap \mathcal{G}_2) \hookrightarrow A \rtimes_r \mathcal{G}_1$, $A \rtimes_r (\mathcal{G}_1 \cap \mathcal{G}_2) \hookrightarrow A \rtimes_r \mathcal{G}_2$, $A \rtimes_r \mathcal{G}_1 \hookrightarrow A \rtimes_r \mathcal{G}$ $A \rtimes_r \mathcal{G}_1 \hookrightarrow A \rtimes_r \mathcal{G}$

▲□▶▲□▶▲□▶▲□▶ = の�?

Let \mathcal{G} be a locally compact groupoid provided with a Haar System and let A be a \mathcal{G} -algebra. For any \mathcal{G} -order \mathcal{R} , let $(V_1, V_2, \mathcal{G}_1, \mathcal{G}_2)$ be a \mathcal{R} -decomposition for \mathcal{G} .Then we have inclusions $A \rtimes_r (\mathcal{G}_1 \cap \mathcal{G}_2) \hookrightarrow A \rtimes_r \mathcal{G}_1$, $A \rtimes_r (\mathcal{G}_1 \cap \mathcal{G}_2) \hookrightarrow A \rtimes_r \mathcal{G}_2$, $A \rtimes_r \mathcal{G}_1 \hookrightarrow A \rtimes_r \mathcal{G}$ $A \rtimes_r \mathcal{G}_1 \hookrightarrow A \rtimes_r \mathcal{G}$ We deduce a sequence

 $K_*(A \rtimes_r (\mathcal{G}_1 \cap \mathcal{G}_2)) \longrightarrow K_*(A \rtimes_r \mathcal{G}_1) \oplus K_*(A \rtimes_r \mathcal{G}_2) \longrightarrow K_*(A \rtimes_r \mathcal{G}).$

▲□▶▲□▶▲□▶▲□▶ = の�?

Let \mathcal{G} be a locally compact groupoid provided with a Haar System and let A be a \mathcal{G} -algebra. For any \mathcal{G} -order \mathcal{R} , let $(V_1, V_2, \mathcal{G}_1, \mathcal{G}_2)$ be a \mathcal{R} -decomposition for \mathcal{G} .Then we have inclusions $A \rtimes_r (\mathcal{G}_1 \cap \mathcal{G}_2) \hookrightarrow A \rtimes_r \mathcal{G}_1$, $A \rtimes_r (\mathcal{G}_1 \cap \mathcal{G}_2) \hookrightarrow A \rtimes_r \mathcal{G}_2$, $A \rtimes_r \mathcal{G}_1 \hookrightarrow A \rtimes_r \mathcal{G}$ $A \rtimes_r \mathcal{G}_1 \hookrightarrow A \rtimes_r \mathcal{G}$ We deduce a sequence

 $K_*(A \rtimes_r (\mathcal{G}_1 \cap \mathcal{G}_2)) \longrightarrow K_*(A \rtimes_r \mathcal{G}_1) \oplus K_*(A \rtimes_r \mathcal{G}_2) \longrightarrow K_*(A \rtimes_r \mathcal{G}).$

If we take into account propagation control by \mathcal{G} -orders, this sequence becomes exact up to rescaling for \mathcal{G} -order \mathcal{R}' with $\mathcal{R}' \ll \mathcal{R}$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Let \mathcal{G} be a locally compact groupoid provided with a Haar System and let A be a \mathcal{G} -algebra. For any \mathcal{G} -order \mathcal{R} , let $(V_1, V_2, \mathcal{G}_1, \mathcal{G}_2)$ be a \mathcal{R} -decomposition for \mathcal{G} .Then we have inclusions $A \rtimes_r (\mathcal{G}_1 \cap \mathcal{G}_2) \hookrightarrow A \rtimes_r \mathcal{G}_1$, $A \rtimes_r (\mathcal{G}_1 \cap \mathcal{G}_2) \hookrightarrow A \rtimes_r \mathcal{G}_2$, $A \rtimes_r \mathcal{G}_1 \hookrightarrow A \rtimes_r \mathcal{G}$ $A \rtimes_r \mathcal{G}_1 \hookrightarrow A \rtimes_r \mathcal{G}$ We deduce a sequence

 $K_*(A \rtimes_r (\mathcal{G}_1 \cap \mathcal{G}_2)) \longrightarrow K_*(A \rtimes_r \mathcal{G}_1) \oplus K_*(A \rtimes_r \mathcal{G}_2) \longrightarrow K_*(A \rtimes_r \mathcal{G}).$

If we take into account propagation control by \mathcal{G} -orders, this sequence becomes exact up to rescaling for \mathcal{G} -order \mathcal{R}' with $\mathcal{R}' \ll \mathcal{R}$. Moreover, we can constructs boundary maps at order \mathcal{R}' which turns the above sequence into a six-term exact sequence (up to rescaling) at order $\mathcal{R}'_{\mathcal{I}}$.

QUANTITATIVE K-THEORY FOR GROUPOIDS CROSSED PRODUCT ALGEBRAS (Dell'aiera)

• Aim : Generalize quantitative *K*-theory (O-Yu) to groupoids crossed product algebras when there is no length arising.

 $\mathcal{O} \mathcal{O}$

→ □ → → 토 → → 토 → → 토

 $\bullet \square \bullet$

QUANTITATIVE K-THEORY FOR GROUPOIDS CROSSED PRODUCT ALGEBRAS (Dell'aiera)

- Aim : Generalize quantitative *K*-theory (O-Yu) to groupoids crossed product algebras when there is no length arising.
- We replace the length by the lattice of \mathcal{G} -orders.

 $\mathcal{O} \mathcal{O}$

▲ 클 ▶ < 클 ▶ · · 클·

 $\bullet \square \bullet$

Let \mathcal{G} be a locally compact groupoid with unit space X. Recall that a \mathcal{G} -order is a subset \mathcal{R} of \mathcal{G} such that $X \subseteq \mathcal{R}$, $\mathcal{R}^{-1} = \mathcal{R}$ and \mathcal{R}_Y is compact for every compact subset Y of X.

▲□▶▲□▶▲≣▶▲≣▶ ≣ の�?

Let \mathcal{G} be a locally compact groupoid with unit space X. Recall that a \mathcal{G} -order is a subset \mathcal{R} of \mathcal{G} such that $X \subseteq \mathcal{R}$, $\mathcal{R}^{-1} = \mathcal{R}$ and \mathcal{R}_Y is compact for every compact subset Y of X. Let $\mathcal{E}_{\mathcal{G}}$ be the set of \mathcal{G} -order of \mathcal{G} .

▲□▶▲□▶▲≣▶▲≣▶ ≣ の�?

Let \mathcal{G} be a locally compact groupoid with unit space X. Recall that a \mathcal{G} -order is a subset \mathcal{R} of \mathcal{G} such that $X \subseteq \mathcal{R}$, $\mathcal{R}^{-1} = \mathcal{R}$ and \mathcal{R}_Y is compact for every compact subset Y of X. Let $\mathcal{E}_{\mathcal{G}}$ be the set of \mathcal{G} -order of \mathcal{G} .

• $\mathcal{E}_{\mathcal{G}}$ is a poset for the inclusion;

▲□▶▲□▶▲□▶▲□▶ = の�?

Let \mathcal{G} be a locally compact groupoid with unit space X. Recall that a \mathcal{G} -order is a subset \mathcal{R} of \mathcal{G} such that $X \subseteq \mathcal{R}$, $\mathcal{R}^{-1} = \mathcal{R}$ and \mathcal{R}_Y is compact for every compact subset Y of X. Let $\mathcal{E}_{\mathcal{G}}$ be the set of \mathcal{G} -order of \mathcal{G} .

- $\mathcal{E}_{\mathcal{G}}$ is a poset for the inclusion;
- if \mathcal{R} and \mathcal{R}' are in $\mathcal{E}_{\mathcal{G}}$ the $\mathcal{R} \cap \mathcal{R}'$ and $\mathcal{R} \cup \mathcal{R}'$ are in $\mathcal{E}_{\mathcal{G}}$.

▲□▶▲□▶▲□▶▲□▶ = の�?

Let \mathcal{G} be a locally compact groupoid with unit space X. Recall that a \mathcal{G} -order is a subset \mathcal{R} of \mathcal{G} such that $X \subseteq \mathcal{R}$, $\mathcal{R}^{-1} = \mathcal{R}$ and \mathcal{R}_Y is compact for every compact subset Y of X. Let $\mathcal{E}_{\mathcal{G}}$ be the set of \mathcal{G} -order of \mathcal{G} .

- $\mathcal{E}_{\mathcal{G}}$ is a poset for the inclusion;
- if \mathcal{R} and \mathcal{R}' are in $\mathcal{E}_{\mathcal{G}}$ the $\mathcal{R} \cap \mathcal{R}'$ and $\mathcal{R} \cup \mathcal{R}'$ are in $\mathcal{E}_{\mathcal{G}}$.
- for any compact K in \mathcal{G} , there exists \mathcal{R} in $\mathcal{E}_{\mathcal{G}}$ such that $K \subseteq \mathcal{R}$ (take $\mathcal{R} = K \cup K^{-1} \cup X$).

▲□▶▲□▶▲□▶▲□▶ = 少�?

Let \mathcal{G} be a locally compact groupoid with unit space X. Recall that a \mathcal{G} -order is a subset \mathcal{R} of \mathcal{G} such that $X \subseteq \mathcal{R}$, $\mathcal{R}^{-1} = \mathcal{R}$ and \mathcal{R}_Y is compact for every compact subset Y of X. Let $\mathcal{E}_{\mathcal{G}}$ be the set of \mathcal{G} -order of \mathcal{G} .

- $\mathcal{E}_{\mathcal{G}}$ is a poset for the inclusion;
- if \mathcal{R} and \mathcal{R}' are in $\mathcal{E}_{\mathcal{G}}$ the $\mathcal{R} \cap \mathcal{R}'$ and $\mathcal{R} \cup \mathcal{R}'$ are in $\mathcal{E}_{\mathcal{G}}$.
- for any compact K in \mathcal{G} , there exists \mathcal{R} in $\mathcal{E}_{\mathcal{G}}$ such that $K \subseteq \mathcal{R}$ (take $\mathcal{R} = K \cup K^{-1} \cup X$).
- if ${\mathcal R}$ and ${\mathcal R}'$ are in ${\mathcal G}$ then

$$\mathcal{R} \ast \mathcal{R}' = \mathcal{R} \cdot \mathcal{R}' \cup \mathcal{R}' \cdot \mathcal{R}$$

is in $\mathcal{E}_{\mathcal{G}}$, with

$$\mathcal{R} \cdot \mathcal{R}' = \{\gamma \gamma'; \gamma \in \mathcal{R}, \gamma \in \mathcal{R}', s(\gamma) = r(\gamma')\}.$$

▲□▶▲□▶▲□▶▲□▶ = 少�?

Let \mathcal{G} be a locally compact groupoid with unit space X. Recall that a \mathcal{G} -order is a subset \mathcal{R} of \mathcal{G} such that $X \subseteq \mathcal{R}$, $\mathcal{R}^{-1} = \mathcal{R}$ and \mathcal{R}_Y is compact for every compact subset Y of X. Let $\mathcal{E}_{\mathcal{G}}$ be the set of \mathcal{G} -order of \mathcal{G} .

- $\mathcal{E}_{\mathcal{G}}$ is a poset for the inclusion;
- if \mathcal{R} and \mathcal{R}' are in $\mathcal{E}_{\mathcal{G}}$ the $\mathcal{R} \cap \mathcal{R}'$ and $\mathcal{R} \cup \mathcal{R}'$ are in $\mathcal{E}_{\mathcal{G}}$.
- for any compact K in \mathcal{G} , there exists \mathcal{R} in $\mathcal{E}_{\mathcal{G}}$ such that $K \subseteq \mathcal{R}$ (take $\mathcal{R} = K \cup K^{-1} \cup X$).
- if ${\mathcal R}$ and ${\mathcal R}'$ are in ${\mathcal G}$ then

$$\mathcal{R} \ast \mathcal{R}' = \mathcal{R} \cdot \mathcal{R}' \cup \mathcal{R}' \cdot \mathcal{R}$$

is in $\mathcal{E}_{\mathcal{G}}$, with

$$\mathcal{R} \cdot \mathcal{R}' = \{\gamma \gamma'; \gamma \in \mathcal{R}, \gamma \in \mathcal{R}', s(\gamma) = r(\gamma')\}.$$

• for any integer *n*, we set $\mathcal{R}^{*n} = \mathcal{R} * \cdots * \mathcal{R}$ (*n* products).

590

Definition

A \mathcal{G} -filtered C^* -algebra B is a C^* -algebra equipped with a family $(B_{\mathcal{R}})_{\mathcal{R}\in\mathcal{E}_{\mathcal{G}}}$ of closed linear subspaces such that

- $B_{\mathcal{R}} \subseteq B_{\mathcal{R}'}$ if $\mathcal{R} \subseteq \mathcal{R}'$;
- $B_{\mathcal{R}}$ is closed under involution;
- $B_{\mathcal{R}} \cdot B_{\mathcal{R}'} \subseteq B_{\mathcal{R}*\mathcal{R}'};$
- the subalgebra $\bigcup_{\mathcal{R}\in\mathcal{E}_{G}}B_{\mathcal{R}}$ is dense in *B*.

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Definition

A \mathcal{G} -filtered C^* -algebra B is a C^* -algebra equipped with a family $(B_{\mathcal{R}})_{\mathcal{R}\in\mathcal{E}_{\mathcal{G}}}$ of closed linear subspaces such that

- $B_{\mathcal{R}} \subseteq B_{\mathcal{R}'}$ if $\mathcal{R} \subseteq \mathcal{R}'$;
- $B_{\mathcal{R}}$ is closed under involution;
- $B_{\mathcal{R}} \cdot B_{\mathcal{R}'} \subseteq B_{\mathcal{R}*\mathcal{R}'};$
- the subalgebra $\bigcup_{\mathcal{R}\in\mathcal{E}_{G}}B_{\mathcal{R}}$ is dense in *B*.

Example

Let A be a G-algebra. Then A can be viewed as the algebra of continuous sections of a bundle algebra \mathfrak{A} .

Definition

A \mathcal{G} -filtered C^* -algebra B is a C^* -algebra equipped with a family $(B_{\mathcal{R}})_{\mathcal{R}\in\mathcal{E}_{\mathcal{G}}}$ of closed linear subspaces such that

- $B_{\mathcal{R}} \subseteq B_{\mathcal{R}'}$ if $\mathcal{R} \subseteq \mathcal{R}'$;
- $B_{\mathcal{R}}$ is closed under involution;
- $B_{\mathcal{R}} \cdot B_{\mathcal{R}'} \subseteq B_{\mathcal{R}*\mathcal{R}'};$
- the subalgebra $\bigcup_{\mathcal{R}\in\mathcal{E}_{G}}B_{\mathcal{R}}$ is dense in *B*.

Example

Let *A* be a *G*-algebra. Then *A* can be viewed as the algebra of continuous sections of a bundle algebra \mathfrak{A} . For any *G*-order \mathcal{R} , let $A \rtimes_r \mathcal{R}$ be the closure of the set of continuous sections $f : \mathcal{G} \to s^* \mathfrak{A}$ compactly supported in \mathcal{R} .

Definition

A \mathcal{G} -filtered C^* -algebra B is a C^* -algebra equipped with a family $(B_{\mathcal{R}})_{\mathcal{R}\in\mathcal{E}_{\mathcal{G}}}$ of closed linear subspaces such that

- $B_{\mathcal{R}} \subseteq B_{\mathcal{R}'}$ if $\mathcal{R} \subseteq \mathcal{R}'$;
- $B_{\mathcal{R}}$ is closed under involution;
- $B_{\mathcal{R}} \cdot B_{\mathcal{R}'} \subseteq B_{\mathcal{R}*\mathcal{R}'};$
- the subalgebra $\bigcup_{\mathcal{R}\in\mathcal{E}_{\mathcal{G}}}B_{\mathcal{R}}$ is dense in *B*.

Example

Let *A* be a *G*-algebra. Then *A* can be viewed as the algebra of continuous sections of a bundle algebra \mathfrak{A} . For any *G*-order \mathcal{R} , let $A \rtimes_r \mathcal{R}$ be the closure of the set of continuous sections $f : \mathcal{G} \to s^* \mathfrak{A}$ compactly supported in \mathcal{R} . Then $(A \rtimes_r \mathcal{R})_{\mathcal{R} \in \mathcal{E}_{\mathcal{G}}}$ provides $A \rtimes_r \mathcal{G}$ with a *G*-filtered *C**-algebra structure.

Almost projections and almost unitaries

Let A, $(A_{\mathcal{R}})_{\mathcal{R} \in \mathcal{E}_{\mathcal{G}}}$ be a unital \mathcal{G} -filtered C^* -algebra. Let us fix $\mathcal{R} \in \mathcal{E}_{\mathcal{G}}$ (propagation) and $0 < \varepsilon < 1/4$ (control):

▲ロ▶▲□▶▲□▶▲□▶ ▲□ シ へ ()

Almost projections and almost unitaries

Let A, $(A_{\mathcal{R}})_{\mathcal{R} \in \mathcal{E}_{\mathcal{G}}}$ be a unital \mathcal{G} -filtered C^* -algebra. Let us fix $\mathcal{R} \in \mathcal{E}_{\mathcal{G}}$ (propagation) and $0 < \varepsilon < 1/4$ (control):

• $p \in A$ is an ε - \mathcal{R} -projection if $p \in A_{\mathcal{R}}$, $p = p^*$ and $||p^2 - p|| < \varepsilon$.

▲ロ▶ ▲□▶ ▲三▶ ▲三▶ 三三 - 釣��

Almost projections and almost unitaries

Let A, $(A_{\mathcal{R}})_{\mathcal{R} \in \mathcal{E}_{\mathcal{G}}}$ be a unital \mathcal{G} -filtered C^* -algebra. Let us fix $\mathcal{R} \in \mathcal{E}_{\mathcal{G}}$ (propagation) and $0 < \varepsilon < 1/4$ (control):

- $\rho \in A$ is an ε - \mathcal{R} -projection if $\rho \in A_{\mathcal{R}}$, $\rho = \rho^*$ and $\|\rho^2 \rho\| < \varepsilon$.
- an ε-R projection p has a spectral gap around 1/2 and hence gives rise by functional calculus to a projection κ(p) s.t ||p - κ(p)|| < 2ε.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □
Let A, $(A_{\mathcal{R}})_{\mathcal{R} \in \mathcal{E}_{\mathcal{G}}}$ be a unital \mathcal{G} -filtered C^* -algebra. Let us fix $\mathcal{R} \in \mathcal{E}_{\mathcal{G}}$ (propagation) and $0 < \varepsilon < 1/4$ (control):

- $p \in A$ is an ε - \mathcal{R} -projection if $p \in A_{\mathcal{R}}$, $p = p^*$ and $\|p^2 p\| < \varepsilon$.
- an ε-R projection p has a spectral gap around 1/2 and hence gives rise by functional calculus to a projection κ(p) s.t ||p - κ(p)|| < 2ε.
- $u \in A$ is an ε - \mathcal{R} -unitary if $u \in A_{\mathcal{R}}$, $||u^* \cdot u 1|| < \varepsilon$ and $||u \cdot u^* 1|| < \varepsilon$.

▲ロ▶▲□▶▲□▶▲□▶ ▲□ シ へ ()

Let A, $(A_{\mathcal{R}})_{\mathcal{R} \in \mathcal{E}_{\mathcal{G}}}$ be a unital \mathcal{G} -filtered C^* -algebra. Let us fix $\mathcal{R} \in \mathcal{E}_{\mathcal{G}}$ (propagation) and $0 < \varepsilon < 1/4$ (control):

- $p \in A$ is an ε - \mathcal{R} -projection if $p \in A_{\mathcal{R}}$, $p = p^*$ and $\|p^2 p\| < \varepsilon$.
- an ε-R projection p has a spectral gap around 1/2 and hence gives rise by functional calculus to a projection κ(p) s.t ||p - κ(p)|| < 2ε.
- $u \in A$ is an ε - \mathcal{R} -unitary if $u \in A_{\mathcal{R}}$, $||u^* \cdot u 1|| < \varepsilon$ and $||u \cdot u^* 1|| < \varepsilon$. (in particular, ε - \mathcal{R} -unitaries are invertible).

Let A, $(A_{\mathcal{R}})_{\mathcal{R} \in \mathcal{E}_{\mathcal{G}}}$ be a unital \mathcal{G} -filtered C^* -algebra. Let us fix $\mathcal{R} \in \mathcal{E}_{\mathcal{G}}$ (propagation) and $0 < \varepsilon < 1/4$ (control):

- $p \in A$ is an ε - \mathcal{R} -projection if $p \in A_{\mathcal{R}}$, $p = p^*$ and $\|p^2 p\| < \varepsilon$.
- an ε-R projection p has a spectral gap around 1/2 and hence gives rise by functional calculus to a projection κ(p) s.t ||p − κ(p)|| < 2ε.
- $u \in A$ is an ε - \mathcal{R} -unitary if $u \in A_{\mathcal{R}}$, $||u^* \cdot u 1|| < \varepsilon$ and $||u \cdot u^* 1|| < \varepsilon$. (in particular, ε - \mathcal{R} -unitaries are invertible).

Remark

if q and q' are ε-R-projections of A, then diag(q, q') and diag(q', q) are homotopic ε-R-projections in M₂(A);

Let A, $(A_{\mathcal{R}})_{\mathcal{R} \in \mathcal{E}_{\mathcal{G}}}$ be a unital \mathcal{G} -filtered C^* -algebra. Let us fix $\mathcal{R} \in \mathcal{E}_{\mathcal{G}}$ (propagation) and $0 < \varepsilon < 1/4$ (control):

- $p \in A$ is an ε - \mathcal{R} -projection if $p \in A_{\mathcal{R}}$, $p = p^*$ and $\|p^2 p\| < \varepsilon$.
- an ε-R projection p has a spectral gap around 1/2 and hence gives rise by functional calculus to a projection κ(p) s.t ||p − κ(p)|| < 2ε.
- $u \in A$ is an ε - \mathcal{R} -unitary if $u \in A_{\mathcal{R}}$, $||u^* \cdot u 1|| < \varepsilon$ and $||u \cdot u^* 1|| < \varepsilon$. (in particular, ε - \mathcal{R} -unitaries are invertible).

Remark

- if q and q' are ε-R-projections of A, then diag(q, q') and diag(q', q) are homotopic ε-R-projections in M₂(A);
- if u and v are ε-R-unitaries in A, then diag(u, v), diag(v, u) and diag(uv, 1) are homotopic as 3ε-2R-unitaries in M₂(A);

Let A, $(A_{\mathcal{R}})_{\mathcal{R} \in \mathcal{E}_{\mathcal{G}}}$ be a unital \mathcal{G} -filtered C^* -algebra. Let us fix $\mathcal{R} \in \mathcal{E}_{\mathcal{G}}$ (propagation) and $0 < \varepsilon < 1/4$ (control):

- $p \in A$ is an ε - \mathcal{R} -projection if $p \in A_{\mathcal{R}}$, $p = p^*$ and $\|p^2 p\| < \varepsilon$.
- an ε-R projection p has a spectral gap around 1/2 and hence gives rise by functional calculus to a projection κ(p) s.t ||p − κ(p)|| < 2ε.
- $u \in A$ is an ε - \mathcal{R} -unitary if $u \in A_{\mathcal{R}}$, $||u^* \cdot u 1|| < \varepsilon$ and $||u \cdot u^* 1|| < \varepsilon$. (in particular, ε - \mathcal{R} -unitaries are invertible).

Remark

- if q and q' are ε-R-projections of A, then diag(q, q') and diag(q', q) are homotopic ε-R-projections in M₂(A);
- if u and v are ε-R-unitaries in A, then diag(u, v), diag(v, u) and diag(uv, 1) are homotopic as 3ε-2R-unitaries in M₂(A);
- If *u* is an ε - \mathcal{R} -unitary in *A*, then diag (u, u^*) and I_2 are homotopic as 3ε - $2\mathcal{R}$ -unitaries in $M_2(A)$.

Notations

- $P^{\varepsilon,\mathcal{R}}(A)$ is the set of ε - \mathcal{R} -projections of A.
- $U^{\varepsilon,\mathcal{R}}(A)$ is the set of ε - \mathcal{R} -unitaries of A.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三 ● の Q @ ●

Notations

- $P^{\varepsilon,\mathcal{R}}(A)$ is the set of ε - \mathcal{R} -projections of A.
- $U^{\varepsilon,\mathcal{R}}(A)$ is the set of ε - \mathcal{R} -unitaries of A.
- $\mathsf{P}^{\varepsilon,\mathcal{R}}_{\infty}(A) = \bigcup_{n \in \mathbb{N}} \mathsf{P}^{\varepsilon,\mathcal{R}}(M_n(A))$ for $\mathsf{P}^{\varepsilon,\mathcal{R}}(M_n(A)) \hookrightarrow \mathsf{P}^{\varepsilon,\mathcal{R}}(M_{n+1}(A)); x \mapsto \operatorname{diag}(x,0).$

Notations

- $P^{\varepsilon,\mathcal{R}}(A)$ is the set of ε - \mathcal{R} -projections of A.
- $U^{\varepsilon,\mathcal{R}}(A)$ is the set of ε - \mathcal{R} -unitaries of A.
- $\mathsf{P}^{\varepsilon,\mathcal{R}}_{\infty}(A) = \bigcup_{n \in \mathbb{N}} \mathsf{P}^{\varepsilon,\mathcal{R}}(M_n(A))$ for $\mathsf{P}^{\varepsilon,\mathcal{R}}(M_n(A)) \hookrightarrow \mathsf{P}^{\varepsilon,\mathcal{R}}(M_{n+1}(A)); x \mapsto \operatorname{diag}(x,0).$
- $U_{\infty}^{\varepsilon,\mathcal{R}}(A) = \bigcup_{n \in \mathbb{N}} U^{\varepsilon,\mathcal{R}}(M_n(A))$ for $U^{\varepsilon,\mathcal{R}}(M_n(A)) \hookrightarrow U^{\varepsilon,\mathcal{R}}(M_{n+1}(A)); x \mapsto \text{diag}(x, 1).$

Define for a unital \mathcal{G} -filtred C^* -algebra $A, \mathcal{R} \in \mathcal{E}_{\mathcal{G}}$ and $0 < \varepsilon < 1/4$ the (stably)-homotopy equivalence relations on $\mathsf{P}_{\infty}^{\varepsilon,\mathcal{R}}(A) \times \mathbb{N}$ and $\mathsf{U}_{\infty}^{\varepsilon,\mathcal{R}}(A)$ (with $\mathsf{P}_{\infty}^{\varepsilon,\mathcal{R}}(A) = \bigcup_{n \in \mathbb{N}} \mathsf{P}^{\varepsilon,\mathcal{R}}(M_n(A))$ and $\mathsf{U}_{\infty}^{\varepsilon,\mathcal{R}}(A) = \bigcup_{n \in \mathbb{N}} \mathsf{U}^{\varepsilon,\mathcal{R}}(M_n(A))$)

Define for a unital \mathcal{G} -filtred C^* -algebra $A, \mathcal{R} \in \mathcal{E}_{\mathcal{G}}$ and $0 < \varepsilon < 1/4$ the (stably)-homotopy equivalence relations on $\mathsf{P}_{\infty}^{\varepsilon,\mathcal{R}}(A) \times \mathbb{N}$ and $\mathsf{U}_{\infty}^{\varepsilon,\mathcal{R}}(A)$ (with $\mathsf{P}_{\infty}^{\varepsilon,\mathcal{R}}(A) = \bigcup_{n \in \mathbb{N}} \mathsf{P}^{\varepsilon,\mathcal{R}}(M_n(A))$ and $\mathsf{U}_{\infty}^{\varepsilon,\mathcal{R}}(A) = \bigcup_{n \in \mathbb{N}} \mathsf{U}^{\varepsilon,\mathcal{R}}(M_n(A))$): • $(p, l) \sim (q, l')$ if there exists $k \in \mathbb{N}$ such that $\operatorname{diag}(p, I_{k+l'})$ and

diag (q, I_{k+l}) are homotopic as ε - \mathcal{R} -projections.

Define for a unital \mathcal{G} -filtred C^* -algebra $A, \mathcal{R} \in \mathcal{E}_{\mathcal{G}}$ and $0 < \varepsilon < 1/4$ the (stably)-homotopy equivalence relations on $P^{\varepsilon,\mathcal{R}}_{\infty}(A) \times \mathbb{N}$ and $U^{\varepsilon,\mathcal{R}}_{\infty}(A)$ (with $P^{\varepsilon,\mathcal{R}}_{\infty}(A) = \bigcup_{n \in \mathbb{N}} P^{\varepsilon,\mathcal{R}}(M_n(A))$ and $U^{\varepsilon,\mathcal{R}}_{\infty}(A) = \bigcup_{n \in \mathbb{N}} U^{\varepsilon,\mathcal{R}}(M_n(A))$):

- (p, l) ~ (q, l') if there exists k ∈ N such that diag(p, l_{k+l'}) and diag(q, l_{k+l}) are homotopic as ε-R-projections.
- $u \sim v$ if u and v are homotopic as $3\varepsilon 2\mathcal{R}$ -unitaries.

Define for a unital \mathcal{G} -filtred C^* -algebra $A, \mathcal{R} \in \mathcal{E}_{\mathcal{G}}$ and $0 < \varepsilon < 1/4$ the (stably)-homotopy equivalence relations on $P^{\varepsilon,\mathcal{R}}_{\infty}(A) \times \mathbb{N}$ and $U^{\varepsilon,\mathcal{R}}_{\infty}(A)$ (with $P^{\varepsilon,\mathcal{R}}_{\infty}(A) = \bigcup_{n \in \mathbb{N}} P^{\varepsilon,\mathcal{R}}(M_n(A))$ and $U^{\varepsilon,\mathcal{R}}_{\infty}(A) = \bigcup_{n \in \mathbb{N}} U^{\varepsilon,\mathcal{R}}(M_n(A))$):

- (p, l) ~ (q, l') if there exists k ∈ N such that diag(p, l_{k+l'}) and diag(q, l_{k+l}) are homotopic as ε-R-projections.
- $u \sim v$ if u and v are homotopic as $3\varepsilon 2\mathcal{R}$ -unitaries.

Definition

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Define for a unital \mathcal{G} -filtred C^* -algebra $A, \mathcal{R} \in \mathcal{E}_{\mathcal{G}}$ and $0 < \varepsilon < 1/4$ the (stably)-homotopy equivalence relations on $P^{\varepsilon,\mathcal{R}}_{\infty}(A) \times \mathbb{N}$ and $U^{\varepsilon,\mathcal{R}}_{\infty}(A)$ (with $P^{\varepsilon,\mathcal{R}}_{\infty}(A) = \bigcup_{n \in \mathbb{N}} P^{\varepsilon,\mathcal{R}}(M_n(A))$ and $U^{\varepsilon,\mathcal{R}}_{\infty}(A) = \bigcup_{n \in \mathbb{N}} U^{\varepsilon,\mathcal{R}}(M_n(A))$):

- (p, l) ~ (q, l') if there exists k ∈ N such that diag(p, l_{k+l'}) and diag(q, l_{k+l}) are homotopic as ε-R-projections.
- $u \sim v$ if u and v are homotopic as $3\varepsilon 2\mathcal{R}$ -unitaries.

Definition

•
$$K_0^{\varepsilon,\mathcal{R}}(A) = \mathsf{P}^{\varepsilon,\mathcal{R}}(A) / \sim and [p, I]_{\varepsilon,\mathcal{R}}$$
 is the class of (p, I) mod. \sim ;

2 $K_1^{\varepsilon,\mathcal{R}}(A) = U^{\varepsilon,r}(A) / \sim and [u]_{\varepsilon,\mathcal{R}}$ is the class of $u \mod . \sim$.

•
$$\mathcal{K}_0^{\varepsilon,\mathcal{R}}(A)$$
 is an abelian group for
 $[p, I]_{\varepsilon,\mathcal{R}} + [p', I']_{\varepsilon,\mathcal{R}} = [\operatorname{diag}(p, p'), I + I']_{\varepsilon,\mathcal{R}};$

▲□▶▲□▶▲□▶▲□▶ = 少�?

Define for a unital \mathcal{G} -filtred C^* -algebra $A, \mathcal{R} \in \mathcal{E}_{\mathcal{G}}$ and $0 < \varepsilon < 1/4$ the (stably)-homotopy equivalence relations on $P^{\varepsilon,\mathcal{R}}_{\infty}(A) \times \mathbb{N}$ and $U^{\varepsilon,\mathcal{R}}_{\infty}(A)$ (with $P^{\varepsilon,\mathcal{R}}_{\infty}(A) = \bigcup_{n \in \mathbb{N}} P^{\varepsilon,\mathcal{R}}(M_n(A))$ and $U^{\varepsilon,\mathcal{R}}_{\infty}(A) = \bigcup_{n \in \mathbb{N}} U^{\varepsilon,\mathcal{R}}(M_n(A))$):

- (p, l) ~ (q, l') if there exists k ∈ N such that diag(p, l_{k+l'}) and diag(q, l_{k+l}) are homotopic as ε-R-projections.
- $u \sim v$ if u and v are homotopic as $3\varepsilon 2\mathcal{R}$ -unitaries.

Definition

•
$$K_0^{\varepsilon,\mathcal{R}}(A) = P^{\varepsilon,\mathcal{R}}(A) / \sim and [p, I]_{\varepsilon,\mathcal{R}}$$
 is the class of $(p, I) \mod . \sim;$

2 $K_1^{\varepsilon,\mathcal{R}}(A) = U^{\varepsilon,r}(A) / \sim and [u]_{\varepsilon,\mathcal{R}}$ is the class of $u \mod . \sim$.

*K*₀^{ε,R}(*A*) is an abelian group for
[*p*, *I*]_{ε,R} + [*p*', *I*']_{ε,R} = [diag(*p*, *p*'), *I* + *I*']_{ε,R}; *K*₁^{ε,R}(*A*) is an abelian group for [*u*]_{ε,R} + [*v*]_{ε,R} = [diag(*u*, *v*)]_{ε,R}.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● の Q @

Define for a unital \mathcal{G} -filtred C^* -algebra $A, \mathcal{R} \in \mathcal{E}_{\mathcal{G}}$ and $0 < \varepsilon < 1/4$ the (stably)-homotopy equivalence relations on $P^{\varepsilon,\mathcal{R}}_{\infty}(A) \times \mathbb{N}$ and $U^{\varepsilon,\mathcal{R}}_{\infty}(A)$ (with $P^{\varepsilon,\mathcal{R}}_{\infty}(A) = \bigcup_{n \in \mathbb{N}} P^{\varepsilon,\mathcal{R}}(M_n(A))$ and $U^{\varepsilon,\mathcal{R}}_{\infty}(A) = \bigcup_{n \in \mathbb{N}} U^{\varepsilon,\mathcal{R}}(M_n(A))$):

- (p, l) ~ (q, l') if there exists k ∈ N such that diag(p, l_{k+l'}) and diag(q, l_{k+l}) are homotopic as ε-R-projections.
- $u \sim v$ if u and v are homotopic as $3\varepsilon 2\mathcal{R}$ -unitaries.

Definition

•
$$K_0^{\varepsilon,\mathcal{R}}(A) = P^{\varepsilon,\mathcal{R}}(A) / \sim and [p, I]_{\varepsilon,\mathcal{R}}$$
 is the class of $(p, I) \mod \varepsilon \sim$;

2 $K_1^{\varepsilon,\mathcal{R}}(A) = U^{\varepsilon,r}(A) / \sim and [u]_{\varepsilon,\mathcal{R}}$ is the class of $u \mod . \sim$.

- $K_0^{\varepsilon,\mathcal{R}}(A)$ is an abelian group for $[p, I]_{\varepsilon,\mathcal{R}} + [p', I']_{\varepsilon,\mathcal{R}} = [\operatorname{diag}(p, p'), I + I']_{\varepsilon,\mathcal{R}};$
- $K_1^{\varepsilon,\mathcal{R}}(A)$ is an abelian group for $[u]_{\varepsilon,\mathcal{R}} + [v]_{\varepsilon,\mathcal{R}} = [\operatorname{diag}(u,v)]_{\varepsilon,\mathcal{R}}$.
- if A is not unital, we use its unitarization to define $K_0^{\varepsilon,\mathcal{R}}$ and $K_1^{\varepsilon,\mathcal{R}}$.

For any G-filtered C^* -algebra A, any $0 < \varepsilon < 1/4$ and $\mathcal{R} \in \mathcal{E}_{\mathcal{G}}$, we have natural homomorphisms

- $K_0^{\varepsilon,\mathcal{R}}(A) \longrightarrow K_0(A)$; $[p, I]_{\varepsilon,\mathcal{R}} \mapsto [\kappa(p)] [I_I]$; (with $\kappa(p)$ the spectral projection)
- $K_1^{\varepsilon,r}(A) \longrightarrow K_1(A); [u]_{\varepsilon,\mathcal{R}} \mapsto [u]; (\varepsilon \cdot \mathcal{R} unitaries are invertible);$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For any G-filtered C^* -algebra A, any $0 < \varepsilon < 1/4$ and $\mathcal{R} \in \mathcal{E}_{\mathcal{G}}$, we have natural homomorphisms

- $K_0^{\varepsilon,\mathcal{R}}(A) \longrightarrow K_0(A)$; $[p, I]_{\varepsilon,\mathcal{R}} \mapsto [\kappa(p)] [I_I]$; (with $\kappa(p)$ the spectral projection)
- $K_1^{\varepsilon,r}(A) \longrightarrow K_1(A); [u]_{\varepsilon,\mathcal{R}} \mapsto [u]; (\varepsilon \cdot \mathcal{R} unitaries are invertible);$

For any $\varepsilon \in (0, 1/4)$ and any projection p in A, there exists a \mathcal{G} -order \mathcal{R} and q an ε - \mathcal{R} -projection of A such that $\kappa(q)$ and p are closed and hence homotopic projections.

▲□▶▲□▶▲□▶▲□▶ = の�?

For any G-filtered C^* -algebra A, any $0 < \varepsilon < 1/4$ and $\mathcal{R} \in \mathcal{E}_{\mathcal{G}}$, we have natural homomorphisms

- $K_0^{\varepsilon,\mathcal{R}}(A) \longrightarrow K_0(A)$; $[p, I]_{\varepsilon,\mathcal{R}} \mapsto [\kappa(p)] [I_I]$; (with $\kappa(p)$ the spectral projection)
- $K_1^{\varepsilon,r}(A) \longrightarrow K_1(A); [u]_{\varepsilon,\mathcal{R}} \mapsto [u]; (\varepsilon \cdot \mathcal{R} unitaries are invertible);$

For any $\varepsilon \in (0, 1/4)$ and any projection p in A, there exists a \mathcal{G} -order \mathcal{R} and q an ε - \mathcal{R} -projection of A such that $\kappa(q)$ and p are closed and hence homotopic projections. We have a similar result for unitaries

▲□▶▲□▶▲□▶▲□▶ = の�?

For any G-filtered C^* -algebra A, any $0 < \varepsilon < 1/4$ and $\mathcal{R} \in \mathcal{E}_{\mathcal{G}}$, we have natural homomorphisms

- $K_0^{\varepsilon,\mathcal{R}}(A) \longrightarrow K_0(A)$; $[p, I]_{\varepsilon,\mathcal{R}} \mapsto [\kappa(p)] [I_I]$; (with $\kappa(p)$ the spectral projection)
- $K_1^{\varepsilon,r}(A) \longrightarrow K_1(A); [u]_{\varepsilon,\mathcal{R}} \mapsto [u]; (\varepsilon \cdot \mathcal{R} unitaries are invertible);$

For any $\varepsilon \in (0, 1/4)$ and any projection p in A, there exists a \mathcal{G} -order \mathcal{R} and q an ε - \mathcal{R} -projection of A such that $\kappa(q)$ and p are closed and hence homotopic projections. We have a similar result for unitaries

Consequence

If we fix ε in (0, 1/4), then

$$K_*(A) = \lim_{\mathcal{R}\in\mathcal{E}_{\mathcal{G}}} K^{\varepsilon,\mathcal{R}}_*(A).$$

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □

There exists a integer valued non increasing function $\varepsilon \mapsto n_{\varepsilon}$ such that the following holds :

There exists a integer valued non increasing function $\varepsilon \mapsto n_{\varepsilon}$ such that the following holds :

Let \mathcal{G} be a locally compact groupoid and let A be a \mathcal{G} -algebra. Let \mathcal{R}' be a \mathcal{G} -order and let $(V_1, V_2, \mathcal{G}_1, \mathcal{G}_2)$ be a \mathcal{R}' -decomposition.

▲□▶▲□▶▲□▶▲□▶ = の�?

There exists a integer valued non increasing function $\varepsilon \mapsto n_{\varepsilon}$ such that the following holds :

Let \mathcal{G} be a locally compact groupoid and let A be a \mathcal{G} -algebra. Let \mathcal{R}' be a \mathcal{G} -order and let $(V_1, V_2, \mathcal{G}_1, \mathcal{G}_2)$ be a \mathcal{R}' -decomposition. For any $\varepsilon \in (0, 1/4)$, the sequence

$$K_*^{\varepsilon,\mathcal{R}}(A \rtimes_r (\mathcal{G}_1 \cap \mathcal{G}_2)) \longrightarrow K_*^{\varepsilon,\mathcal{R}}(A \rtimes_r \mathcal{G}_1) \oplus K_*^{\varepsilon,\mathcal{R}}(A \rtimes_r \mathcal{G}_2) \longrightarrow K_*^{\varepsilon,\mathcal{R}}(A \rtimes_r \mathcal{G})$$

is exact up to rescaling in the middle for any \mathcal{G} -order \mathcal{R} with $\mathcal{R}^{*n_{\varepsilon}} \subseteq \mathcal{R}'$, up to rescaling,

▲□▶▲□▶▲□▶▲□▶ = の�?

There exists a integer valued non increasing function $\varepsilon \mapsto n_{\varepsilon}$ such that the following holds :

Let \mathcal{G} be a locally compact groupoid and let A be a \mathcal{G} -algebra. Let \mathcal{R}' be a \mathcal{G} -order and let $(V_1, V_2, \mathcal{G}_1, \mathcal{G}_2)$ be a \mathcal{R}' -decomposition. For any $\varepsilon \in (0, 1/4)$, the sequence

$$K_*^{\varepsilon,\mathcal{R}}(A\rtimes_r(\mathcal{G}_1\cap\mathcal{G}_2))\longrightarrow K_*^{\varepsilon,\mathcal{R}}(A\rtimes_r\mathcal{G}_1)\oplus K_*^{\varepsilon,\mathcal{R}}(A\rtimes_r\mathcal{G}_2)\longrightarrow K_*^{\varepsilon,\mathcal{R}}(A\rtimes_r\mathcal{G})$$

is exact up to rescaling in the middle for any \mathcal{G} -order \mathcal{R} with $\mathcal{R}^{*n_{\varepsilon}} \subseteq \mathcal{R}'$, up to rescaling, i.e kernel elements at order \mathcal{R} are in the image at order $\mathcal{R}^{*l_{\varepsilon}}$ for some (universal) integer valued non increasing function $\varepsilon \mapsto l_{\varepsilon}$ with $l_{\varepsilon} \ll n_{\varepsilon}$.

▲□▶▲□▶▲≣▶▲≣▶ ≣ のQ@

The controled Mayer-Vietoris boundary

Let \mathcal{G} be a locally compact groupoid and let A be a \mathcal{G} -algebra. Let \mathcal{R}' be a \mathcal{G} -order and let $(V_1, V_2, \mathcal{G}_1, \mathcal{G}_2)$ be a \mathcal{R}' -decomposition.

The controled Mayer-Vietoris boundary

Let \mathcal{G} be a locally compact groupoid and let A be a \mathcal{G} -algebra. Let \mathcal{R}' be a \mathcal{G} -order and let $(V_1, V_2, \mathcal{G}_1, \mathcal{G}_2)$ be a \mathcal{R}' -decomposition. For some (universal) integer valued non increasing function $\varepsilon \mapsto m_{\varepsilon}$, there exists for any \mathcal{G} -order \mathcal{R} with $\mathcal{R}^{*n_{\varepsilon}m_{\varepsilon}} \subseteq \mathcal{R}'$ a morphisms

$$\partial^{\varepsilon,\mathcal{R}}: K^{\varepsilon,\mathcal{R}}_*(A \rtimes_r \mathcal{G}) \longrightarrow K^{\varepsilon,\mathcal{R}^{*m_\varepsilon}}_{*+1}(A \rtimes_r (\mathcal{G}_1 \cap \mathcal{G}_2))$$

such that the sequence

$$K_*^{\varepsilon,\mathcal{R}}(A\rtimes_r\mathcal{G}_1)\oplus K_*^{\varepsilon,\mathcal{R}}(A\rtimes_r\mathcal{G}_2) \longrightarrow K_*^{\varepsilon,\mathcal{R}}(A\rtimes_r\mathcal{G}) \xrightarrow{\partial^{\varepsilon,\mathcal{R}}} K_{*+1}^{\varepsilon,\mathcal{R}^{*m_{\varepsilon}}}(A\rtimes_r\mathcal{G}_1) \oplus K_{*+1}^{\varepsilon,\mathcal{R}^{*m_{\varepsilon}}}(A\rtimes_r\mathcal{G}_2)$$

is exact up to rescaling.

The controled Mayer-Vietoris boundary

Let \mathcal{G} be a locally compact groupoid and let A be a \mathcal{G} -algebra. Let \mathcal{R}' be a \mathcal{G} -order and let $(V_1, V_2, \mathcal{G}_1, \mathcal{G}_2)$ be a \mathcal{R}' -decomposition. For some (universal) integer valued non increasing function $\varepsilon \mapsto m_{\varepsilon}$, there exists for any \mathcal{G} -order \mathcal{R} with $\mathcal{R}^{*n_{\varepsilon}m_{\varepsilon}} \subseteq \mathcal{R}'$ a morphisms

$$\partial^{\varepsilon,\mathcal{R}}: K^{\varepsilon,\mathcal{R}}_*(A \rtimes_r \mathcal{G}) \longrightarrow K^{\varepsilon,\mathcal{R}^{*m_\varepsilon}}_{*+1}(A \rtimes_r (\mathcal{G}_1 \cap \mathcal{G}_2))$$

such that the sequence

$$\begin{split} & \mathcal{K}^{\varepsilon,\mathcal{R}}_*(A\rtimes_r\mathcal{G}_1)\oplus\mathcal{K}^{\varepsilon,\mathcal{R}}_*(A\rtimes_r\mathcal{G}_2)\longrightarrow\mathcal{K}^{\varepsilon,\mathcal{R}}_*(A\rtimes_r\mathcal{G})\stackrel{\partial^{\varepsilon,\mathcal{R}}}{\longrightarrow} \\ & \mathcal{K}^{\varepsilon,\mathcal{R}^{*m_\varepsilon}}_{*+1}(A\rtimes_r(\mathcal{G}_1\cap\mathcal{G}_2))\longrightarrow\mathcal{K}^{\varepsilon,\mathcal{R}^{*m_\varepsilon}}_{*+1}(A\rtimes_r\mathcal{G}_1)\oplus\mathcal{K}^{\varepsilon,\mathcal{R}^{*m_\varepsilon}}_{*+1}(A\rtimes_r\mathcal{G}_2) \end{split}$$

is exact up to rescaling. Moreover, if the \mathcal{R}' -decomposition is coercive, the exactness is persistent at any order.

▲□▶▲□▶▲□▶▲□▶ = の�?

Application to the Künneth formula in K-theory

Definition

Let A be a C^* -algebra. We say that A is of class \mathcal{N} if for every C^* -algebra B with free abelian K-theory, then the K-theory external product

$$\alpha: \mathsf{K}_*(\mathsf{A}) \otimes \mathsf{K}_*(\mathsf{B}) \longrightarrow \mathsf{K}_*(\mathsf{A} \otimes \mathsf{B})$$

is an isomorphism.

Application to the Künneth formula in K-theory

Definition

Let A be a C^* -algebra. We say that A is of class \mathcal{N} if for every C^* -algebra B with free abelian K-theory, then the K-theory external product

$$lpha: {\it K}_{*}({\it A})\otimes {\it K}_{*}({\it B}) \longrightarrow {\it K}_{*}({\it A}\otimes {\it B})$$

is an isomorphism.

Theorem (Schochet)

If A is a C^{*}-algebra of class \mathcal{N} , then the Künneth formula holds for any C^{*}-algebras B :

3

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶

 \bullet \Box \bullet

Application to the Künneth formula in K-theory

Definition

Let A be a C^* -algebra. We say that A is of class \mathcal{N} if for every C^* -algebra B with free abelian K-theory, then the K-theory external product

$$lpha: {\it K}_{*}({\it A})\otimes {\it K}_{*}({\it B}) \longrightarrow {\it K}_{*}({\it A}\otimes {\it B})$$

is an isomorphism.

Theorem (Schochet)

If A is a C^{*}-algebra of class N, then the Künneth formula holds for any C^{*}-algebras B : there exist a natural exact sequence

$$0 \longrightarrow K_*(A) \otimes K_*(B) \stackrel{\alpha}{\longrightarrow} K_*(A \otimes B) \stackrel{\beta}{\longrightarrow} \operatorname{Tor}(K_*(A), K_*(B)) \longrightarrow 0.$$

3

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

<□> < □ > < □ > < □ >

• the Künneth formula admits a quantitative version;

◆□▶ ◆□▶ ◆ 三▶ ◆ 三 ● の へ ⊙

- the Künneth formula admits a quantitative version;
- the quantitative Künneth formula implies the genuine one.

▲ロ▶▲母▶▲臣▶▲臣▶ 臣 めぬぐ

- the Künneth formula admits a quantitative version;
- the quantitative Künneth formula implies the genuine one.
- many examples are provided by crossed products algebra by groupoids satisfying the Baum-Connes conjecture with coefficients (Bönicke-Dell'Aiera)

▲□▶▲□▶▲□▶▲□▶ = の�?

- the Künneth formula admits a quantitative version;
- the quantitative Künneth formula implies the genuine one.
- many examples are provided by crossed products algebra by groupoids satisfying the Baum-Connes conjecture with coefficients (Bönicke-Dell'Aiera)

Theorem

Let \mathcal{G} be a locally compact groupoid and let A be \mathcal{G} -algebra. Assume that for any \mathcal{G} -order \mathcal{R} , there exists a coercice \mathcal{R} -decomposition $(V_1, V_2, \mathcal{G}_1, \mathcal{G}_2)$ such that $A \rtimes_r \mathcal{G}_1$, $A \rtimes_r \mathcal{G}_2$ and $A \rtimes_r (\mathcal{G}_1 \cap \mathcal{G}_2)$ satisfy the quantitative Künneth formula. Then $A \rtimes_r \mathcal{G}$ satisfies the quantitative Künneth formula.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □

Theorem

Let \mathcal{G} be a locally compact groupoid and let A be \mathcal{G} -algebra. Assume that for any \mathcal{G} -order \mathcal{R} , there exists a coercice \mathcal{R} -decomposition $(V_1, V_2, \mathcal{G}_1, \mathcal{G}_2)$ such that $A \rtimes_r \mathcal{G}_1$, $A \rtimes_r \mathcal{G}_2$ and $A \rtimes_r (\mathcal{G}_1 \cap \mathcal{G}_2)$ satisfy the quantitative Künneth formula. Then $A \rtimes_r \mathcal{G}$ satisfies the quantitative Künneth formula.

Theorem

Let \mathcal{G} be a locally compact groupoid and let A be \mathcal{G} -algebra. Assume that for any \mathcal{G} -order \mathcal{R} , there exists a coercice \mathcal{R} -decomposition $(V_1, V_2, \mathcal{G}_1, \mathcal{G}_2)$ such that $A \rtimes_r \mathcal{G}_1$, $A \rtimes_r \mathcal{G}_2$ and $A \rtimes_r (\mathcal{G}_1 \cap \mathcal{G}_2)$ satisfy the quantitative Künneth formula. Then $A \rtimes_r \mathcal{G}$ satisfies the quantitative Künneth formula.

Corollary

Let \mathcal{G} be a locally compact groupoid and let A be \mathcal{G} -algebra.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

▲□▶▲圖▶▲圖▶▲圖▶ = 필
Let \mathcal{G} be a locally compact groupoid and let A be \mathcal{G} -algebra. Assume that for any \mathcal{G} -order \mathcal{R} , there exists a coercice \mathcal{R} -decomposition $(V_1, V_2, \mathcal{G}_1, \mathcal{G}_2)$ such that $A \rtimes_r \mathcal{G}_1$, $A \rtimes_r \mathcal{G}_2$ and $A \rtimes_r (\mathcal{G}_1 \cap \mathcal{G}_2)$ satisfy the quantitative Künneth formula. Then $A \rtimes_r \mathcal{G}$ satisfies the quantitative Künneth formula.

Corollary

Let \mathcal{G} be a locally compact groupoid and let A be \mathcal{G} -algebra. Assume that \mathcal{G} has finite \mathcal{D} -complexity with respect to a set \mathcal{D} of relatively clopen subgroupoids of \mathcal{G} such that

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

▲□▶▲圖▶▲圖▶▲圖▶ = 필

Let \mathcal{G} be a locally compact groupoid and let A be \mathcal{G} -algebra. Assume that for any \mathcal{G} -order \mathcal{R} , there exists a coercice \mathcal{R} -decomposition $(V_1, V_2, \mathcal{G}_1, \mathcal{G}_2)$ such that $A \rtimes_r \mathcal{G}_1$, $A \rtimes_r \mathcal{G}_2$ and $A \rtimes_r (\mathcal{G}_1 \cap \mathcal{G}_2)$ satisfy the quantitative Künneth formula. Then $A \rtimes_r \mathcal{G}$ satisfies the quantitative Künneth formula.

Corollary

Let \mathcal{G} be a locally compact groupoid and let A be \mathcal{G} -algebra. Assume that \mathcal{G} has finite \mathcal{D} -complexity with respect to a set \mathcal{D} of relatively clopen subgroupoids of \mathcal{G} such that

• \mathcal{D} is stable under taking relatively clopen subgroupoids

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● 豆

Let \mathcal{G} be a locally compact groupoid and let A be \mathcal{G} -algebra. Assume that for any \mathcal{G} -order \mathcal{R} , there exists a coercice \mathcal{R} -decomposition $(V_1, V_2, \mathcal{G}_1, \mathcal{G}_2)$ such that $A \rtimes_r \mathcal{G}_1$, $A \rtimes_r \mathcal{G}_2$ and $A \rtimes_r (\mathcal{G}_1 \cap \mathcal{G}_2)$ satisfy the quantitative Künneth formula. Then $A \rtimes_r \mathcal{G}$ satisfies the quantitative Künneth formula.

Corollary

Let \mathcal{G} be a locally compact groupoid and let A be \mathcal{G} -algebra. Assume that \mathcal{G} has finite \mathcal{D} -complexity with respect to a set \mathcal{D} of relatively clopen subgroupoids of \mathcal{G} such that

- \mathcal{D} is stable under taking relatively clopen subgroupoids
- $A \rtimes_r \mathcal{H}$ satisfies the quantitative Künneth formula for any \mathcal{H} in \mathcal{D} .

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● 豆

Let \mathcal{G} be a locally compact groupoid and let A be \mathcal{G} -algebra. Assume that for any \mathcal{G} -order \mathcal{R} , there exists a coercice \mathcal{R} -decomposition $(V_1, V_2, \mathcal{G}_1, \mathcal{G}_2)$ such that $A \rtimes_r \mathcal{G}_1$, $A \rtimes_r \mathcal{G}_2$ and $A \rtimes_r (\mathcal{G}_1 \cap \mathcal{G}_2)$ satisfy the quantitative Künneth formula. Then $A \rtimes_r \mathcal{G}$ satisfies the quantitative Künneth formula.

Corollary

Let \mathcal{G} be a locally compact groupoid and let A be \mathcal{G} -algebra. Assume that \mathcal{G} has finite \mathcal{D} -complexity with respect to a set \mathcal{D} of relatively clopen subgroupoids of \mathcal{G} such that

D is stable under taking relatively clopen subgroupoids

• $A \rtimes_r \mathcal{H}$ satisfies the quantitative Künneth formula for any \mathcal{H} in \mathcal{D} . then $A \rtimes_r \mathcal{G}$ satisfies the quantitative Künneth formula.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □

Definition

Let Γ be a finitely generated group acting on a second countable compact space *X*.

▲□▶▲□▶▲□▶▲□▶ = の�?

Definition

Let Γ be a finitely generated group acting on a second countable compact space X. Then the action has finite dynamic complexity if the groupoid $X \rtimes \Gamma$ has finite \mathcal{D} -complexity with respect to the set \mathcal{D} of open and relatively compact subgroupoids.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Definition

Let Γ be a finitely generated group acting on a second countable compact space X. Then the action has finite dynamic complexity if the groupoid $X \rtimes \Gamma$ has finite \mathcal{D} -complexity with respect to the set \mathcal{D} of open and relatively compact subgroupoids.

Remark

If the has finite dynamic complexity, then $X \rtimes \Gamma$ is amenable.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Definition

Let Γ be a finitely generated group acting on a second countable compact space X. Then the action has finite dynamic complexity if the groupoid $X \rtimes \Gamma$ has finite \mathcal{D} -complexity with respect to the set \mathcal{D} of open and relatively compact subgroupoids.

Remark

If the has finite dynamic complexity, then $X \rtimes \Gamma$ is amenable.

Theorem (Guentner-Willet-Yu)

If an action of a finitely generated group Γ on a compact space X has finite dynamic complexity, then $X \rtimes \Gamma$ satisfies the Baum-Connes conjecture.

THANK YOU FOR YOUR ATTENTION MERCI JEAN!!!

H. Oyono Oyono (Université de Lorraine)

May 22, 2019 26 / 26

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで