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Introduction

Aim : Generalize to (locally compact Hausdorf) groupoids the
”cut-and-pasting” strategy for K -computation of the action groupoid
βΓ o Γ where

Γ is a finitely generated group;
βΓ is the Stone-Cěch compactification of Γ.

Let ` be a lenght on Γ associated to any finite and symetric generating
set and let d(γ, γ′) = `(γ′−1γ) be the associated metric. For r positive,
let us set

B(e, r) = {γ ∈ Γ; `(γ) 6 r};
C∗red (βΓ o Γ)r the set of functions f : Γ× Γ→ C with second
variable support in B(e, r)

Then C∗red (βΓ o Γ)r ⊆ C∗red (βΓ o Γ) and ∪r>0C∗red (βΓ o Γ)r is dense in
C∗red (βΓ o Γ).
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βΓ is the Stone-Cěch compactification of Γ.

Let ` be a lenght on Γ associated to any finite and symetric generating
set and let d(γ, γ′) = `(γ′−1γ) be the associated metric.

For r positive,
let us set

B(e, r) = {γ ∈ Γ; `(γ) 6 r};
C∗red (βΓ o Γ)r the set of functions f : Γ× Γ→ C with second
variable support in B(e, r)

Then C∗red (βΓ o Γ)r ⊆ C∗red (βΓ o Γ) and ∪r>0C∗red (βΓ o Γ)r is dense in
C∗red (βΓ o Γ).
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Introduction

Let us consider the obvious faithful representation of C∗red (βΓ o Γ) on
`2(Γ).

If f be an element in C∗red (βΓ o Γ)r (i.e f (γ, γ′) = 0 if `(γ′) > r )
then f acts as kernel operator :

f · ξ(γ) =
∑
γ′∈Γ

f̃ (γ, γ′)ξ(γ′)

with
f̃ : Γ× Γ→ C : (γ, γ′) 7→ f (γ, γγ′−1).

Moreover, f̃ has propagation less than r , i.e f̃ (γ, γ′) = 0 if d(γ, γ′) > r .
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Example : βZ o Z.

X (1)
1 X (2)

1 X (1)
2 X (2)

2r r r r r r r r r r r r r r r r r r
N

← →
N

← →
N

← →
N

← →

Let f be an element in C∗red (βZ o Z). Then for any integer N with
N > 2r , the we can write f̃ = f̃1 + f̃2 with f̃i : Γ× Γ→ C supported
in Z (i)

r =
⊔

j∈Z X (i)
j,r × X (i)

j,r with X (i)
j,r the set of integers at distance to

X (i)
j less than r .

for i = 1,2, set χi(γ, γ
′) = 1 if (γ, γ′−1γ) ∈ Z (i)

r and 0 otherwise
and view χi as a function on βZ o Z with finite Z-support.
then Hi = χ−1

i ({1}) is a compact-open subgroupoid of βZ o Z;
{(x ,n) ∈ βZ o Z such that |n| 6 r} is contained in H1 ∪H2.
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To generalize this decomposition to locally compact groupoids, we
have to replace lengths by G-orders.

Notations
Let G be locally compact groupoid with unit space X and source and
range maps s, r : G → X and let Z be a subset of G.

we set Z−1 = {γ−1; γ ∈ Z};
for any Y ⊆ X , we set ZY = s−1(Y ) ∩ Z and Z Y = r−1(Y ) ∩ Z ;

Definition
A G-order is a subset R of G such that

X ⊆ R;
R−1 = R (R is symetric).
for every compact subset Y of X , then RY is compact.
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R-decomposition of a groupoid

Definition
Let G be a locally compact groupoid, let H be a subgroupoid of G with
unit space Y and let R be a G-order. An R-decomposition of H is a
quadruple (V1,V2,H1,H2) where

V1 and V2 are open subsets of Y with Y = V1 ∪ V2 and such that
there exists a partition of the unit subordinated to (V1,V2);
H1 and H2 are subgroupoids of H which are open in G.
RVi is contained in Hi for i = 1,2.

Example
Let G be the action groupoid βZ o Z and consider for r > 0 the G-order

R = {(x ,n) ∈ G; |n| 6 r}.

Then G admits a R-decomposition with H1 and H2 compact-open.
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Coercive R-decomposition of a groupoid

Definition
Let G be locally compact groupoid. A relatively clopen sugroupoid of G
is an open subgroupoid H of G such that if Y stands for the unit space
of H, then H is closed in GY .

Definition
Let G be a locally compact groupoid, let H be a subgroupoid of G and
let R be a G-order. A coercive R-decomposition of H is a
R-decomposition (V1,V2,H1,H2) of H such that H1 and H2 are
relatively clopen in G, i.e

V1 and V2 are open subsets of Y with Y = V1 ∪ V2 and such that
there exists a partition of the unit subordinated to (V1,V2);
H1 and H2 are subgroupoids of H which are relatively clopen in G.
RVi is contained in Hi for i = 1,2.

H. Oyono Oyono (Université de Lorraine) K -th, groupoids and propagation May 22, 2019 7 / 26



Coercive R-decomposition of a groupoid

Definition
Let G be locally compact groupoid. A relatively clopen sugroupoid of G
is an open subgroupoid H of G such that if Y stands for the unit space
of H, then H is closed in GY .

Definition
Let G be a locally compact groupoid, let H be a subgroupoid of G and
let R be a G-order. A coercive R-decomposition of H is a
R-decomposition (V1,V2,H1,H2) of H such that H1 and H2 are
relatively clopen in G,

i.e
V1 and V2 are open subsets of Y with Y = V1 ∪ V2 and such that
there exists a partition of the unit subordinated to (V1,V2);
H1 and H2 are subgroupoids of H which are relatively clopen in G.
RVi is contained in Hi for i = 1,2.
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D-decomposable groupoids

Definition
Let D be a set of open subgroupoids of G. A subgroupoid H of G is
D-decomposable if for every G-order R, there exists an
R-decomposition (V1,V2,H1,H2) with H1 and H2 in D.

Lemma
Let H be a subgroupoid of G.

1 if D is a set of open subgroupoids of G such that H is
D-decomposable then H is an open subgroupoid of G.

2 if D is a set of relatively clopen subgroupoids of G such that H is
D-decomposable, then H is a relatively clopen subgroupoid of G.

Example
G = βZ o Z is D-decomposable with D the set of its compact-open
subgroupoids of G. The same holds for G = βFn o Fn.
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Groupoid with finite D-complexity (Guentner/Willet/Yu)

Definition
Let G be locally compact groupoid.

A set D of open subgroupoids of G is closed under coarse
decompositions if every D-decomposable subgroupoid is in D.

If D is a set of open subgroupoid of G, let D̂ be the smallest set of
open subgroupoids of G closed under coarse decompositions. A
open subgroupoid H has finite D-complexity if H belongs to D̂.

Lemma
Let D be a set of relatively clopen subgroupoids of G.

1 if H is in D̂, then H is locally clopen;
2 D̂ is the smallest set of relatively clopen subgroupoids of G closed

under coercive coarse decomposition;
3 If D is closed under taking relatively clopen subgroupoids, so is D̂.
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Metric spaces with finite asymptotic dimension

Definition
Let X be a proper discrete metric space. Then X has asymptotic
dimension m if for every r > 0 there exist m + 1 subsets
X (1), . . .X (m+1) of X such that

X = ∪m+1
i=1 X (i);

X (i) is a r -disjoint union of a uniformly bounded family of subsets,
i.e X (i) =

⊔
k∈N X (i)

k with (diam X (i)
k )k∈N bounded and

d(X (i)
k ,X (i)

l ) > r if k 6= l ;

Example
1 Zn has asymptotic dimension n;
2 Gromov hyperbolic spaces have finite asymptotic dimension;
3 Discrete subgroups in Lie groups have finite asymptotic

dimension.
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Theorem (Dranishnikov-Zarichnyi)
Let Σ be a proper discrete metric space with bounded geometry. If X
has finite asymptotic dimension, then Σ admit a coarse embedding into
a product of trees T1 × · · · × Tn

(i.e there exists proper maps ρ± : R+ → R+ and a map
f : Σ→ T1 × · · · × Tn such that
ρ−(d(f (x), f (y))) 6 d(x , y) 6 ρ+(d(f (x), f (y))) for all x, y in Σ).

Corollary
Let Γ be a finitely generated group viewed as a metric space for a
metric arising from a word metric length associated to a finite
symmetric generating set.
If Γ has finite asymptotic dimension, then G = βΓ o Γ is
D-decomposable with respect the set D of compact-open
subgroupoids of G.
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K -theory computations for groupoid crossed product
algebras

Let G be a locally compact groupoid provided with a Haar System and
let A be a G-algebra. For any G-order R, let (V1,V2,G1,G2) be a
R-decomposition for G.

Then we have inclusions
A or (G1 ∩ G2) ↪→ A or G1,
A or (G1 ∩ G2) ↪→ A or G2,
A or G1 ↪→ A or G
A or G1 ↪→ A or G
We deduce a sequence

K∗(A or (G1 ∩ G2))−→K∗(A or G1)⊕ K∗(A or G2)−→K∗(A or G).

If we take into account propagation control by G-orders, this sequence
becomes exact up to rescaling for G-order R′ with R′ � R. Moreover,
we can constructs boundary maps at order R′ which turns the above
sequence into a six-term exact sequence (up to rescaling) at order R′.
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QUANTITATIVE K -THEORY FOR GROUPOIDS CROSSED
PRODUCT ALGEBRAS

(Dell’aiera)

Aim : Generalize quantitative K -theory (O-Yu) to groupoids
crossed product algebras when there is no length arising.

We replace the length by the lattice of G-orders.

H. Oyono Oyono (Université de Lorraine) K -th, groupoids and propagation May 22, 2019 13 / 26



QUANTITATIVE K -THEORY FOR GROUPOIDS CROSSED
PRODUCT ALGEBRAS

(Dell’aiera)

Aim : Generalize quantitative K -theory (O-Yu) to groupoids
crossed product algebras when there is no length arising.
We replace the length by the lattice of G-orders.
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The lattice of G-orders

Let G be a locally compact groupoid with unit space X . Recall that a
G-order is a subset R of G such that X ⊆ R, R−1 = R and RY is
compact for every compact subset Y of X .

Let EG be the set of G-order of G.
EG is a poset for the inclusion;
if R and R′ are in EG the R∩R′ and R∪R′ are in EG .
for any compact K in G, there exists R in EG such that K ⊆ R (take
R = K ∪ K−1 ∪ X ).
if R and R′ are in G then

R ∗R′ = R · R′ ∪R′ · R
is in EG , with

R · R′ = {γγ′; γ ∈ R, γ ∈ R′, s(γ) = r(γ′)}.

for any integer n, we set R∗n = R ∗ · · · ∗ R (n products).

H. Oyono Oyono (Université de Lorraine) K -th, groupoids and propagation May 22, 2019 14 / 26



The lattice of G-orders

Let G be a locally compact groupoid with unit space X . Recall that a
G-order is a subset R of G such that X ⊆ R, R−1 = R and RY is
compact for every compact subset Y of X .
Let EG be the set of G-order of G.

EG is a poset for the inclusion;
if R and R′ are in EG the R∩R′ and R∪R′ are in EG .
for any compact K in G, there exists R in EG such that K ⊆ R (take
R = K ∪ K−1 ∪ X ).
if R and R′ are in G then

R ∗R′ = R · R′ ∪R′ · R
is in EG , with

R · R′ = {γγ′; γ ∈ R, γ ∈ R′, s(γ) = r(γ′)}.

for any integer n, we set R∗n = R ∗ · · · ∗ R (n products).
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The framework : G-filtered algebras

Definition
A G-filtered C∗-algebra B is a C∗-algebra equipped with a family
(BR)R∈EG of closed linear subspaces such that

BR ⊆ BR′ if R ⊆ R′;
BR is closed under involution;
BR · BR′ ⊆ BR∗R′ ;
the subalgebra

⋃
R∈EG BR is dense in B.

Example
Let A be a G-algebra. Then A can be viewed as the algebra of
continuous sections of a bundle algebra A. For any G-order R, let
A or R be the closure of the set of continuous sections f : G → s∗A
compactly supported in R. Then (A or R)R∈EG provides A or G with a
G-filtered C∗-algebra structure.
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H. Oyono Oyono (Université de Lorraine) K -th, groupoids and propagation May 22, 2019 15 / 26



The framework : G-filtered algebras

Definition
A G-filtered C∗-algebra B is a C∗-algebra equipped with a family
(BR)R∈EG of closed linear subspaces such that

BR ⊆ BR′ if R ⊆ R′;
BR is closed under involution;
BR · BR′ ⊆ BR∗R′ ;
the subalgebra

⋃
R∈EG BR is dense in B.

Example
Let A be a G-algebra. Then A can be viewed as the algebra of
continuous sections of a bundle algebra A. For any G-order R, let
A or R be the closure of the set of continuous sections f : G → s∗A
compactly supported in R. Then (A or R)R∈EG provides A or G with a
G-filtered C∗-algebra structure.
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Almost projections and almost unitaries

Let A, (AR)R∈EG be a unital G-filtered C∗-algebra. Let us fix R ∈ EG
(propagation) and 0 < ε < 1/4 (control):

p ∈ A is an ε-R-projection if p ∈ AR, p = p∗ and ‖p2 − p‖ < ε.
an ε-R projection p has a spectral gap around 1/2 and hence
gives rise by functional calculus to a projection κ(p) s.t
‖p − κ(p)‖ < 2ε.
u ∈ A is an ε-R-unitary if u ∈ AR, ‖u∗ · u − 1‖ < ε and
‖u · u∗ − 1‖ < ε. (in particular, ε-R-unitaries are invertible).

Remark
if q and q′ are ε-R-projections of A, then diag(q,q′) and diag(q′,q)
are homotopic ε-R-projections in M2(A);
if u and v are ε-R-unitaries in A, then diag(u, v), diag(v ,u) and
diag(uv ,1) are homotopic as 3ε-2R-unitaries in M2(A);
If u is an ε-R-unitary in A, then diag(u,u∗) and I2 are homotopic as
3ε-2R-unitaries in M2(A).
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Notations

Pε,R(A) is the set of ε-R-projections of A.

Uε,R(A) is the set of ε-R-unitaries of A.
Pε,R∞ (A) =

⋃
n∈N Pε,R(Mn(A)) for

Pε,R(Mn(A)) ↪→ Pε,R(Mn+1(A)); x 7→ diag(x ,0).
Uε,R∞ (A) =

⋃
n∈N Uε,R(Mn(A)) for

Uε,R(Mn(A)) ↪→ Uε,R(Mn+1(A)); x 7→ diag(x ,1).
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Quantitative K -groups

Define for a unital G-filtred C∗-algebra A, R ∈ EG and 0 < ε < 1/4 the
(stably)-homotopy equivalence relations on Pε,R∞ (A)× N and Uε,R∞ (A)
(with Pε,R∞ (A) =

⋃
n∈N Pε,R(Mn(A)) and Uε,R∞ (A) =

⋃
n∈N Uε,R(Mn(A)) )

:
(p, l) ∼ (q, l ′) if there exists k ∈ N such that diag(p, Ik+l ′) and
diag(q, Ik+l) are homotopic as ε-R-projections.
u ∼ v if u and v are homotopic as 3ε-2R-unitaries.

Definition
1 K ε,R

0 (A) = Pε,R(A)/ ∼ and [p, l]ε,R is the class of (p, l) mod. ∼;
2 K ε,R

1 (A) = Uε,r (A)/ ∼ and [u]ε,R is the class of u mod. ∼.

K ε,R
0 (A) is an abelian group for

[p, l]ε,R + [p′, l ′]ε,R = [diag(p,p′), l + l ′]ε,R;
K ε,R

1 (A) is an abelian group for [u]ε,R + [v ]ε,R = [diag(u, v)]ε,R.
if A is not unital, we use its unitarization to define K ε,R

0 and K ε,R
1 .
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H. Oyono Oyono (Université de Lorraine) K -th, groupoids and propagation May 22, 2019 18 / 26



Quantitative K -groups

Define for a unital G-filtred C∗-algebra A, R ∈ EG and 0 < ε < 1/4 the
(stably)-homotopy equivalence relations on Pε,R∞ (A)× N and Uε,R∞ (A)
(with Pε,R∞ (A) =

⋃
n∈N Pε,R(Mn(A)) and Uε,R∞ (A) =

⋃
n∈N Uε,R(Mn(A)) ):

(p, l) ∼ (q, l ′) if there exists k ∈ N such that diag(p, Ik+l ′) and
diag(q, Ik+l) are homotopic as ε-R-projections.
u ∼ v if u and v are homotopic as 3ε-2R-unitaries.

Definition
1 K ε,R

0 (A) = Pε,R(A)/ ∼ and [p, l]ε,R is the class of (p, l) mod. ∼;
2 K ε,R

1 (A) = Uε,r (A)/ ∼ and [u]ε,R is the class of u mod. ∼.

K ε,R
0 (A) is an abelian group for

[p, l]ε,R + [p′, l ′]ε,R = [diag(p,p′), l + l ′]ε,R;

K ε,R
1 (A) is an abelian group for [u]ε,R + [v ]ε,R = [diag(u, v)]ε,R.

if A is not unital, we use its unitarization to define K ε,R
0 and K ε,R

1 .
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(with Pε,R∞ (A) =

⋃
n∈N Pε,R(Mn(A)) and Uε,R∞ (A) =

⋃
n∈N Uε,R(Mn(A)) ):

(p, l) ∼ (q, l ′) if there exists k ∈ N such that diag(p, Ik+l ′) and
diag(q, Ik+l) are homotopic as ε-R-projections.
u ∼ v if u and v are homotopic as 3ε-2R-unitaries.

Definition
1 K ε,R

0 (A) = Pε,R(A)/ ∼ and [p, l]ε,R is the class of (p, l) mod. ∼;
2 K ε,R

1 (A) = Uε,r (A)/ ∼ and [u]ε,R is the class of u mod. ∼.

K ε,R
0 (A) is an abelian group for

[p, l]ε,R + [p′, l ′]ε,R = [diag(p,p′), l + l ′]ε,R;
K ε,R

1 (A) is an abelian group for [u]ε,R + [v ]ε,R = [diag(u, v)]ε,R.
if A is not unital, we use its unitarization to define K ε,R

0 and K ε,R
1 .

H. Oyono Oyono (Université de Lorraine) K -th, groupoids and propagation May 22, 2019 18 / 26



Approximation of K -theory

For any G-filtered C∗-algebra A, any 0 < ε < 1/4 and R ∈ EG , we have
natural homomorphisms

K ε,R
0 (A)−→K0(A); [p, l]ε,R 7→ [κ(p)]− [Il ]; (with κ(p) the spectral

projection)
K ε,r

1 (A)−→K1(A); [u]ε,R 7→ [u]; (ε-R-unitaries are invertible);

For any ε ∈ (0,1/4) and any projection p in A, there exists a G-order R
and q an ε-R-projection of A such that κ(q) and p are closed and
hence homotopic projections. We have a similar result for unitaries

Consequence

If we fix ε in (0,1/4), then

K∗(A) = lim
R∈EG

K ε,R
∗ (A).
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The controlled Mayer-Vietoris exact sequence
associated to a R-decomposition (O-Yu/Dell’Aiera)

There exists a integer valued non increasing function ε 7→ nε such that
the following holds :

Let G be a locally compact groupoid and let A be a G-algebra. Let R′
be a G-order and let (V1,V2,G1,G2) be a R′-decomposition. For any
ε ∈ (0,1/4), the sequence

K ε,R
∗ (Aor (G1 ∩G2))−→K ε,R

∗ (Aor G1)⊕K ε,R
∗ (Aor G2)−→K ε,R

∗ (Aor G)

is exact up to rescaling in the middle for any G-order R with R∗nε ⊆ R′,
up to rescaling, i.e kernel elements at order R are in the image at
order R∗lε for some (universal) integer valued non increasing function
ε 7→ lε with lε � nε.
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The controled Mayer-Vietoris boundary

Let G be a locally compact groupoid and let A be a G-algebra. Let R′
be a G-order and let (V1,V2,G1,G2) be a R′-decomposition.

For some
(universal) integer valued non increasing function ε 7→ mε, there exists
for any G-order R with R∗nεmε ⊆ R′ a morphisms

∂ε,R : K ε,R
∗ (A or G)−→K ε,R∗mε

∗+1 (A or (G1 ∩ G2))

such that the sequence

K ε,R
∗ (A or G1)⊕ K ε,R

∗ (A or G2)−→K ε,R
∗ (A or G)

∂ε,R−→

K ε,R∗mε

∗+1 (A or (G1 ∩ G2))−→K ε,R∗mε

∗+1 (A or G1)⊕ K ε,R∗mε

∗+1 (A or G2)

is exact up to rescaling. Moreover, if the R′-decomposition is coercive,
the exactness is persistent at any order.
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Application to the Künneth formula in K -theory

Definition
Let A be a C∗-algebra. We say that A is of class N if for every
C∗-algebra B with free abelian K -theory, then the K -theory external
product

α : K∗(A)⊗ K∗(B) −→ K∗(A⊗ B)

is an isomorphism.

Theorem (Schochet)
If A is a C∗-algebra of class N , then the Künneth formula holds for any
C∗-algebras B : there exist a natural exact sequence

0−→K∗(A)⊗K∗(B)
α−→ K∗(A⊗B)

β−→ Tor(K∗(A),K∗(B))−→0.
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Quantitative Künneth formula

the Künneth formula admits a quantitative version;

the quantitative Künneth formula implies the genuine one.
many examples are provided by crossed products algebra by
groupoids satisfying the Baum-Connes conjecture with
coefficients (Bönicke-Dell’Aiera)

Theorem
Let G be a locally compact groupoid and let A be G-algebra. Assume
that for any G-order R, there exists a coercice R-decomposition
(V1,V2,G1,G2) such that A or G1, A or G2 and A or (G1 ∩ G2) satisfy the
quantitative Künneth formula. Then A or G satisfies the quantitative
Künneth formula.
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the Künneth formula admits a quantitative version;
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Baum-Connes conjecture for group action with finite
dynamic complexity (Guentner-Willet-Yu)

Definition
Let Γ be a finitely generated group acting on a second countable
compact space X .

Then the action has finite dynamic complexity if the
groupoid X o Γ has finite D-complexity with respect to the set D of
open and relatively compact subgroupoids.

Remark
If the has finite dynamic complexity, then X o Γ is amenable.

Theorem (Guentner-Willet-Yu)
If an action of a finitely generated group Γ on a compact space X has
finite dynamic complexity, then X o Γ satisfies the Baum-Connes
conjecture.
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